Classified enhancement model for big data storage reliability based on Boolean satisfiability problem

Disk reliability is a serious problem in the big data foundation environment. Although the reliability of disk drives has greatly improved over the past few years, they are still the most vulnerable core components in the server. If they fail, the result can be catastrophic: it can take some days to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cluster computing Ročník 23; číslo 2; s. 483 - 492
Hlavní autoři: Huang, Hong, Khan, Latifur, Zhou, Shaohua
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2020
Springer Nature B.V
Témata:
ISSN:1386-7857, 1573-7543
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Disk reliability is a serious problem in the big data foundation environment. Although the reliability of disk drives has greatly improved over the past few years, they are still the most vulnerable core components in the server. If they fail, the result can be catastrophic: it can take some days to recover data, sometimes data lost forever. These are unacceptable for some important data. XOR parity is a typical method to generate reliability syndrome, thus improving the reliability of the data. In practice, we find that the data is still likely to be lost. In most storage systems reliability improvements are achieved through the allocation of additional disks in Redundant Arrays of Independent Disks (RAID), which will increase the hardware costs, thus it will be very difficult for cost-constrained environments. Therefore, how to improve the data integrity without raising the hardware cost has aroused much interest of big data researchers. This challenge is when creating non-traditional RAID geometries, care must be taken to respect data dependence relationships to ensure that the new RAID strategy improves reliability, which is a NP-hard problem. In this paper, we present an approach for characterizing these challenges using high-dimension variants of the n-queens problem that enables performable solutions via the SAT solver MiniSAT, and use the greedy algorithm to analyze the queen’s attack domain, as a basis for reliability syndrome generation. A large number of experiments show that the approach proposed in this paper is feasible in software-defined data centers and the performance of the algorithm can meet the current requirements of the big data environment.
AbstractList Disk reliability is a serious problem in the big data foundation environment. Although the reliability of disk drives has greatly improved over the past few years, they are still the most vulnerable core components in the server. If they fail, the result can be catastrophic: it can take some days to recover data, sometimes data lost forever. These are unacceptable for some important data. XOR parity is a typical method to generate reliability syndrome, thus improving the reliability of the data. In practice, we find that the data is still likely to be lost. In most storage systems reliability improvements are achieved through the allocation of additional disks in Redundant Arrays of Independent Disks (RAID), which will increase the hardware costs, thus it will be very difficult for cost-constrained environments. Therefore, how to improve the data integrity without raising the hardware cost has aroused much interest of big data researchers. This challenge is when creating non-traditional RAID geometries, care must be taken to respect data dependence relationships to ensure that the new RAID strategy improves reliability, which is a NP-hard problem. In this paper, we present an approach for characterizing these challenges using high-dimension variants of the n-queens problem that enables performable solutions via the SAT solver MiniSAT, and use the greedy algorithm to analyze the queen’s attack domain, as a basis for reliability syndrome generation. A large number of experiments show that the approach proposed in this paper is feasible in software-defined data centers and the performance of the algorithm can meet the current requirements of the big data environment.
Author Khan, Latifur
Huang, Hong
Zhou, Shaohua
Author_xml – sequence: 1
  givenname: Hong
  surname: Huang
  fullname: Huang, Hong
  email: huanghong@swust.edu.cn
  organization: School of Computer Science and Technology, Southwest University of Science and Technology
– sequence: 2
  givenname: Latifur
  surname: Khan
  fullname: Khan, Latifur
  organization: Computer Science Department, The University of Texas at Dallas
– sequence: 3
  givenname: Shaohua
  surname: Zhou
  fullname: Zhou, Shaohua
  organization: Financial Research Department, Southwest University of Science and Technology
BookMark eNp9kMtKBDEQRYMo6Kg_4CrgujWP7k6y1MEXCG50HSrd1WOkJ9EkLvx7oyMKLmZVBXVP3aq7ILshBiTkhLMzzpg6z5x1um8YNw0TpuUN3yEHvFOyUV0rd2sv61jpTu2TRc4vjDGjhDkguJwhZz95HCmGZwgDrjEUuo4jznSKiTq_oiMUoLnEBCukCWcPzs--fFAHuYIx0MsYZ4RAMxSfp9_5a4puxvUR2Ztgznj8Uw_J0_XV4_K2uX-4uVte3DeD7FVpRtBODkJx048KXauHiUneKwChUegWteEIxgkOTEGnO5w4DtBJ50QveiMPyelmb_V9e8dc7Et8T6FaWmG4rpu7b5XYqIYUc0442dfk15A-LGf2K067idPWOO13nJZXSP-DBl_qszGUBH7ejsoNmqtPWGH6u2oL9QnTCo0p
CitedBy_id crossref_primary_10_3390_fi12100164
Cites_doi 10.1109/DSN.2012.6263921
10.1063/1.4981999
10.1145/2485732.2485752
10.1080/00029890.1978.11994646
10.1145/176979.176981
10.5121/ijdps.2012.3501
10.1109/CSCloud.2017.20
10.1016/j.disc.2007.12.043
10.1109/TPDS.2013.19
10.1109/MASCOTS.2013.45
10.1109/DSN.2015.46
10.14778/2535573.2488339
10.1109/MSST.2012.6232371
10.1109/PRDC.2013.20
10.1007/978-3-319-22264-6_14
10.1109/SRDS.2011.18
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10586-019-02941-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7543
EndPage 492
ExternalDocumentID 10_1007_s10586_019_02941_1
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61806171
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29B
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
ADKFA
AFDZB
AFFHD
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c367t-da8b3c27196d7eb48cf03167aa28e284e891ea9b21a07a585ef1eca53bb262693
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549737600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-7857
IngestDate Wed Nov 26 14:55:08 EST 2025
Sat Nov 29 05:40:14 EST 2025
Tue Nov 18 22:30:13 EST 2025
Fri Feb 21 02:36:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords NP-hard
Big data
Boolean satisfiability problem
Data reliability
N-queens
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-da8b3c27196d7eb48cf03167aa28e284e891ea9b21a07a585ef1eca53bb262693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918271569
PQPubID 2043865
PageCount 10
ParticipantIDs proquest_journals_2918271569
crossref_primary_10_1007_s10586_019_02941_1
crossref_citationtrail_10_1007_s10586_019_02941_1
springer_journals_10_1007_s10586_019_02941_1
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References WuXXuYYuenCA tag encoding scheme against pollution attack to linear network codingIEEE Trans. Parallel Distrib. Syst.2014251334210.1109/TPDS.2013.19
Pris, J.F., Long, D.D.E., Litwin, W.: Three-dimensional redundancy codes for archival storage. In: Proceedings of the 2013 IEEE 21st International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), IEEE. pp. 328–332 (2013)
Li, T., Mehta, A., Yang, P.: Security Analysis of Email systems. In: Proceedings of the 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud). IEEE, pp. 91–96 (2017)
SathiamoorthyMAsterisMPapailiopoulosDXoring elephants: novel erasure codes for big dataProc. VLDB Endow.20136532533610.14778/2535573.2488339
LiuXFanLWangLMultiobjective reliable cloud storage with its particle swarm optimization algorithmMath. Probl. Eng.201620161435903401400.68068
Rozier, E.W.D., Zhou, P., Divine, D.: Building intelligence for software defined data centers: modeling usage patterns. In: International Systems & Storage Conference (2013)
ZhaoHXuYXiangLScaling up of E-Msr codes based distributed storage systems with fixed number of redundancy nodesInt. J. Distrib. Parallel Syst.201235110.5121/ijdps.2012.3501
Huang, C., Li, J., Chen, M.: On optimizing XOR-based codes for fault-tolerant storage applications. In: Information Theory Workshop, 2007. ITW’07. IEEE. IEEE, pp. 218–223 (2007)
Bayram, U., Divine, D., Zhou, P., et al.: Improving reliability with dynamic syndrome allocation in intelligent software defined data centers. In: Proceedings of the 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, pp. 219–230 (2015)
Gong, W., Zhou, X.: A survey of SAT solver. In: AIP Conference Proceedings, vol. 1836, No. 1, p. 020059. AIP Publishing (2017)
McCartyCPQueen squaresAm. Math. Monthly1978857578580153876710.1080/00029890.1978.11994646
http://spatialhadoop.cs.umn.edu/datasets.html
Rozier, E.W.D., Sanders, W.H., Zhou, P., et al.: Modeling the fault tolerance consequences of deduplication. In: Reliable Distributed Systems. IEEE (2011)
SchroederBGibsonGADisk failures in the real world: what does an mttf of 1,000,000 hours mean to you?FAST200771116
BellJStevensBA survey of known results and research areas for n-queensDiscrete Math.20093091131247499710.1016/j.disc.2007.12.043
https://economictimes.indiatimes.com/tech/internet/global-data-to-increase-10x-by-2025-data-age-2025/articleshow/58004862.cms
GutirreznaranjoMAMartnezdelamorMAPrezhurtadoISolving the N-queens puzzle with P systemsRosa M Gutirrez Escudero2012199210
Rozier, E.W.D., Sanders, W.H.: A framework for efficient evaluation of the fault tolerance of deduplicated storage systems. In: Proceedings of the IEEE/IFIP International Conference on Dependable Systems & Networks. IEEE Computer Society (2012)
Bayram, U., Rozier, K.Y., Rozier, E.W.D.: Characterizing data dependence constraints for dynamic reliability using N-queens attack domains. In: Proceedings of the International Conference on Quantitative Evaluation of Systems. Springer, Cham, pp. 211–227 (2015)
Zhu, Y., Lee, P.P.C., Hu, Y., et al.: On the speedup of single-disk failure recovery in xor-coded storage systems: Theory and practice. In: Proceedings of the 2012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST). IEEE, pp. 1–12 (2012)
http://minisat.se
KeedwellADDnesJLatin squares and their applications2015AmsterdamElsevier
Utard, G., Vernois, A.: Data durability in peer to peer storage systems. In: CCGrid 2004 IEEE International Symposium on Cluster Computing and the Grid, 2004. IEEE, pp. 90-97 (2004)
https://www.seagate.com/our-story/data-age-2025
ChenPMLeeEKGibsonGARAID: high-performance, reliable secondary storageACM Comput. Surv. (CSUR)199426214518510.1145/176979.176981
Rozier, E.W., Rozier, K.Y.: SMT-driven intelligent storage for big data. In: Proceedings of the Ninth International Workshop on Constraints in Formal Verification (CFV 2015), Austin, Texas, USA (2015)
Schwarz, S.J.T., Long, D.D.E., Paris, J.F.: Reliability of disk arrays with double parity. In: Proceedings of the 2013 IEEE 19th Pacific Rim International Symposium on Dependable Computing (PRDC). IEEE, pp. 108–117 (2013)
Corbett, P., English, B., Goel, A., et al.: Row-diagonal parity for double disk failure correction. In: Proceedings of the 3rd USENIX Conference on File and Storage Technologies. USENIX Association Berkeley, CA, USA, 1–14 (2004)
TurnerVGantzJFReinselDThe digital universe of opportunities: rich data and the increasing value of the internet of thingsIDC Anal. Fut.201416110
AD Keedwell (2941_CR26) 2015
H Zhao (2941_CR3) 2012; 3
PM Chen (2941_CR8) 1994; 26
2941_CR17
2941_CR18
CP McCarty (2941_CR21) 1978; 85
2941_CR19
2941_CR14
2941_CR15
2941_CR12
J Bell (2941_CR20) 2009; 309
X Liu (2941_CR7) 2016; 2016
V Turner (2941_CR13) 2014; 16
2941_CR28
2941_CR29
2941_CR2
2941_CR24
2941_CR25
2941_CR4
B Schroeder (2941_CR10) 2007; 7
2941_CR5
2941_CR6
M Sathiamoorthy (2941_CR11) 2013; 6
X Wu (2941_CR16) 2014; 25
2941_CR22
2941_CR9
2941_CR23
MA Gutirreznaranjo (2941_CR27) 2012; 1
2941_CR1
References_xml – reference: SathiamoorthyMAsterisMPapailiopoulosDXoring elephants: novel erasure codes for big dataProc. VLDB Endow.20136532533610.14778/2535573.2488339
– reference: Utard, G., Vernois, A.: Data durability in peer to peer storage systems. In: CCGrid 2004 IEEE International Symposium on Cluster Computing and the Grid, 2004. IEEE, pp. 90-97 (2004)
– reference: BellJStevensBA survey of known results and research areas for n-queensDiscrete Math.20093091131247499710.1016/j.disc.2007.12.043
– reference: Bayram, U., Rozier, K.Y., Rozier, E.W.D.: Characterizing data dependence constraints for dynamic reliability using N-queens attack domains. In: Proceedings of the International Conference on Quantitative Evaluation of Systems. Springer, Cham, pp. 211–227 (2015)
– reference: Corbett, P., English, B., Goel, A., et al.: Row-diagonal parity for double disk failure correction. In: Proceedings of the 3rd USENIX Conference on File and Storage Technologies. USENIX Association Berkeley, CA, USA, 1–14 (2004)
– reference: Rozier, E.W.D., Zhou, P., Divine, D.: Building intelligence for software defined data centers: modeling usage patterns. In: International Systems & Storage Conference (2013)
– reference: Bayram, U., Divine, D., Zhou, P., et al.: Improving reliability with dynamic syndrome allocation in intelligent software defined data centers. In: Proceedings of the 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, pp. 219–230 (2015)
– reference: GutirreznaranjoMAMartnezdelamorMAPrezhurtadoISolving the N-queens puzzle with P systemsRosa M Gutirrez Escudero2012199210
– reference: Huang, C., Li, J., Chen, M.: On optimizing XOR-based codes for fault-tolerant storage applications. In: Information Theory Workshop, 2007. ITW’07. IEEE. IEEE, pp. 218–223 (2007)
– reference: Zhu, Y., Lee, P.P.C., Hu, Y., et al.: On the speedup of single-disk failure recovery in xor-coded storage systems: Theory and practice. In: Proceedings of the 2012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST). IEEE, pp. 1–12 (2012)
– reference: ChenPMLeeEKGibsonGARAID: high-performance, reliable secondary storageACM Comput. Surv. (CSUR)199426214518510.1145/176979.176981
– reference: Schwarz, S.J.T., Long, D.D.E., Paris, J.F.: Reliability of disk arrays with double parity. In: Proceedings of the 2013 IEEE 19th Pacific Rim International Symposium on Dependable Computing (PRDC). IEEE, pp. 108–117 (2013)
– reference: Rozier, E.W.D., Sanders, W.H.: A framework for efficient evaluation of the fault tolerance of deduplicated storage systems. In: Proceedings of the IEEE/IFIP International Conference on Dependable Systems & Networks. IEEE Computer Society (2012)
– reference: http://minisat.se/
– reference: McCartyCPQueen squaresAm. Math. Monthly1978857578580153876710.1080/00029890.1978.11994646
– reference: Rozier, E.W., Rozier, K.Y.: SMT-driven intelligent storage for big data. In: Proceedings of the Ninth International Workshop on Constraints in Formal Verification (CFV 2015), Austin, Texas, USA (2015)
– reference: SchroederBGibsonGADisk failures in the real world: what does an mttf of 1,000,000 hours mean to you?FAST200771116
– reference: TurnerVGantzJFReinselDThe digital universe of opportunities: rich data and the increasing value of the internet of thingsIDC Anal. Fut.201416110
– reference: WuXXuYYuenCA tag encoding scheme against pollution attack to linear network codingIEEE Trans. Parallel Distrib. Syst.2014251334210.1109/TPDS.2013.19
– reference: ZhaoHXuYXiangLScaling up of E-Msr codes based distributed storage systems with fixed number of redundancy nodesInt. J. Distrib. Parallel Syst.201235110.5121/ijdps.2012.3501
– reference: Li, T., Mehta, A., Yang, P.: Security Analysis of Email systems. In: Proceedings of the 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud). IEEE, pp. 91–96 (2017)
– reference: Pris, J.F., Long, D.D.E., Litwin, W.: Three-dimensional redundancy codes for archival storage. In: Proceedings of the 2013 IEEE 21st International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), IEEE. pp. 328–332 (2013)
– reference: Gong, W., Zhou, X.: A survey of SAT solver. In: AIP Conference Proceedings, vol. 1836, No. 1, p. 020059. AIP Publishing (2017)
– reference: LiuXFanLWangLMultiobjective reliable cloud storage with its particle swarm optimization algorithmMath. Probl. Eng.201620161435903401400.68068
– reference: Rozier, E.W.D., Sanders, W.H., Zhou, P., et al.: Modeling the fault tolerance consequences of deduplication. In: Reliable Distributed Systems. IEEE (2011)
– reference: http://spatialhadoop.cs.umn.edu/datasets.html
– reference: https://www.seagate.com/our-story/data-age-2025
– reference: KeedwellADDnesJLatin squares and their applications2015AmsterdamElsevier
– reference: https://economictimes.indiatimes.com/tech/internet/global-data-to-increase-10x-by-2025-data-age-2025/articleshow/58004862.cms
– ident: 2941_CR29
– volume: 7
  start-page: 1
  issue: 1
  year: 2007
  ident: 2941_CR10
  publication-title: FAST
– ident: 2941_CR1
– volume: 1
  start-page: 99
  year: 2012
  ident: 2941_CR27
  publication-title: Rosa M Gutirrez Escudero
– ident: 2941_CR4
  doi: 10.1109/DSN.2012.6263921
– ident: 2941_CR18
  doi: 10.1063/1.4981999
– ident: 2941_CR15
  doi: 10.1145/2485732.2485752
– volume: 85
  start-page: 578
  issue: 7
  year: 1978
  ident: 2941_CR21
  publication-title: Am. Math. Monthly
  doi: 10.1080/00029890.1978.11994646
– ident: 2941_CR22
– volume: 26
  start-page: 145
  issue: 2
  year: 1994
  ident: 2941_CR8
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/176979.176981
– ident: 2941_CR14
– volume: 3
  start-page: 1
  issue: 5
  year: 2012
  ident: 2941_CR3
  publication-title: Int. J. Distrib. Parallel Syst.
  doi: 10.5121/ijdps.2012.3501
– ident: 2941_CR12
  doi: 10.1109/CSCloud.2017.20
– volume: 309
  start-page: 1
  issue: 1
  year: 2009
  ident: 2941_CR20
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2007.12.043
– volume: 25
  start-page: 33
  issue: 1
  year: 2014
  ident: 2941_CR16
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2013.19
– volume: 2016
  start-page: 14
  year: 2016
  ident: 2941_CR7
  publication-title: Math. Probl. Eng.
– ident: 2941_CR2
– ident: 2941_CR9
– ident: 2941_CR28
  doi: 10.1109/MASCOTS.2013.45
– ident: 2941_CR5
  doi: 10.1109/DSN.2015.46
– volume: 6
  start-page: 325
  issue: 5
  year: 2013
  ident: 2941_CR11
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2535573.2488339
– ident: 2941_CR25
  doi: 10.1109/MSST.2012.6232371
– ident: 2941_CR17
– ident: 2941_CR23
– ident: 2941_CR24
  doi: 10.1109/PRDC.2013.20
– volume: 16
  start-page: 1
  year: 2014
  ident: 2941_CR13
  publication-title: IDC Anal. Fut.
– ident: 2941_CR6
  doi: 10.1007/978-3-319-22264-6_14
– ident: 2941_CR19
  doi: 10.1109/SRDS.2011.18
– volume-title: Latin squares and their applications
  year: 2015
  ident: 2941_CR26
SSID ssj0009729
Score 2.1882684
Snippet Disk reliability is a serious problem in the big data foundation environment. Although the reliability of disk drives has greatly improved over the past few...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 483
SubjectTerms Artificial intelligence
Big Data
Boolean
Catastrophic failure analysis
Computer Communication Networks
Computer Science
Data integrity
Data storage
Disk drives
Disks
Failure
Greedy algorithms
Hardware
Operating Systems
Processor Architectures
RAID
Storage systems
System reliability
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAc2sKjzqH0TAkTFgCoGkLpFtnOBSlUCLSDx77FdpxFIdGF2Yjn57Hv57j5CTlFZm14XkqHQOUugDwxMrhlAGgsT5RrnLfPvxXAoRyN4CAG3WUirrGWiF9R5ZVyM_CICawkL623A5esbc6xR7nY1UGiskjUeWSHsLmUFa5ruCs9SxmPZZ0KmIhTNhNK5VDpfGlgvgoQz_lMxNdbmrwtSr3cG7f-ueItsBouTXs23yDZZwXKHtGs2BxoO9y5Bz485LqxNSrF8cbvBRQ6p58qh1ralevxMXUYpdRmVVg7RKU7G8z7fX9Spw5xWJb2uqgmqks583cRiPDDX7JGnwe3jzR0LJAzMxH3xznIldWzsd0A_F6gTaYqeq55XKpJodRtK4KhAR1z1hLLOBxYcjUpjrSPrLEG8T1plVeIBoRYiSFKlC0is6DBSqkTHIA3vqRgtCh3CawQyEzqUO6KMSdb0VnaoZRa1zKOW8Q45W7zzOu_PsfTpbg1VFs7qLGtw6pDzGuxm-O_ZDpfPdkQ2Iuec-5BNl7Tepx94TNbNp_370xO_U78BncPuOw
  priority: 102
  providerName: ProQuest
Title Classified enhancement model for big data storage reliability based on Boolean satisfiability problem
URI https://link.springer.com/article/10.1007/s10586-019-02941-1
https://www.proquest.com/docview/2918271569
Volume 23
WOSCitedRecordID wos000549737600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: P5Z
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: K7-
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: BENPR
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: RSV
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7aevDiW3yWHLxpoMnumuRoxSIopfiieFmS7KwWylZaFfz3TtLdVkUFvewlD7IzSWa-JPMNIQdg0Ke3uWIgbcZifayZdpllWieRdCKzMKHMv5Sdjur1dLcMChtXr92rK8mwU38IdkuUR7-aNYWOOUPMU08824zH6Nd3M6pdGXKT8QhrS5XIMlTm-z4-m6OZj_nlWjRYm_by_8a5QpZK75KeTKbDKpmDYo0sV5kbaLmQ1wmEXJj9HP1PCsWj17w_JaQhLw5FP5ba_gP1r0epfz2Jew4dwaA_4fR-o970ZXRY0NZwOABT0HGIkZiWl1lqNsht--zm9JyVCReYi47lM8uMspETEldlJsHGyuVNHylvjFCAdgyU5mC0Fdw0pUGgATkHZ5LIWoHASEebpFYMC9gilAv898TYXMe4TTilTGwjrRxvmghQLtuEV3JPXclG7pNiDNIZj7KXY4pyTIMcU75NDqdtniZcHL_W3qvUmZbrcpwKjXhKImbFARxV6psV_9zbzt-q75JF4YF5OK7ZI7Xn0QvskwX3itoYNUi9ddbpXjXI_IVk-O0m940wh98BsbTn4A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VWyS4UD7FQgs-wAks1s6H7QOqWmjVqsuqQkXqLdjOBFZaJWW3gPqn-I0dJ04jkOitB85OLCXz_Pz8MfMAXqIlTe8qzVG5kqcmN9z40nFjskR5WTrsSuZP1WymT0_N8Rr87nNhwrXKnhNboi4bH_bI30pDSljRasNsn33nwTUqnK72FhodLI7w4hct2VbvDj9QfF9Jub938v6AR1cB7pNcnfPSapd46srkpUKXal9NQjq4tVIjkTVqI9AaJ4WdKEtqGiuB3maJc5LUfyi-RJS_niZpno1gfXdvdvxpKPOrWl80keicK52pmKYTk_UyHVbvhk-kSQUXf06Fg77960i2nen2N_63f3QP7kZNzXa6QXAf1rB-ABu9XwWL9PUQsHUAnVekuhnW3wLew94oa92AGKl35uZfWbgzy8KdUWJatsTFvKtkfsHChF-ypma7TbNAW7NVmxly1R69eR7B5xv52McwqpsanwATkiKbWVeZlMjRa21TlxjtxcQmSFEfg-gjXvhYgz1YgSyKoXp0QElBKClalBRiDK-v3jnrKpBc-_RmD40istGqGHAxhjc9uIbmf_f29PreXsDtg5OP02J6ODt6Bndk2IpoN6g2YXS-_IFbcMv_pEgsn8dxwuDLTcPuEjgGTSE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iIl5cn_hYNQdvGtykrUmOvhZFWcQX3kqSTnVh6cq6Cv57J2nrqqggnpOGdCbJzJfMfEPIFhj06W2uGEibsVjvaaZdZpnWSSSdyCyUlPnnstNRd3f64kMWf4h2r58ky5wGz9JUDHcfs3z3Q-JbojwS1qwldMwZ4p-JGJGMD-q6vLod0e7KUKeMR9hbqkRWaTPfj_HZNI38zS9PpMHytBv_n_Msmam8TrpfLpM5MgbFPGnUFR1otcEXCIQamd0c_VIKxYNfEf72kIZ6ORT9W2q799RHlVIfVYlnER1Ar1tyfb9SbxIz2i_oQb_fA1PQp5A78d5eVa9ZJDft4-vDE1YVYmAu2pNDlhllIyck7tZMgo2Vy1s-g94YoQDtGyjNwWgruGlJgwAEcg7OJJG1AgGTjpbIeNEvYJlQLvDfE2NzHePx4ZQysY20crxlIkC5rBBe6yB1FUu5L5bRS0f8yl6OKcoxDXJM-QrZfv_mseTo-LV3s1ZtWu3Xp1RoxFkSsSxOYKdW5aj559FW_9Z9k0xdHLXT89PO2RqZFh67hxudJhkfDp5hnUy6F1TMYCMs4zeni_A-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classified+enhancement+model+for+big+data+storage+reliability+based+on+Boolean+satisfiability+problem&rft.jtitle=Cluster+computing&rft.au=Huang%2C+Hong&rft.au=Khan%2C+Latifur&rft.au=Zhou%2C+Shaohua&rft.date=2020-06-01&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=23&rft.issue=2&rft.spage=483&rft.epage=492&rft_id=info:doi/10.1007%2Fs10586-019-02941-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10586_019_02941_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon