When Is a Decision Automated? A Taxonomy for a Fundamental Rights Analysis

This Article addresses the pressing issues surrounding the use of automated systems in public decision-making, specifically focusing on migration, asylum, and mobility. Drawing on empirical data, this Article examines the potential and limitations of the General Data Protection Regulation and the Ar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:German law journal Ročník 25; číslo 2; s. 210 - 236
Hlavní autor: Palmiotto, Francesca
Médium: Journal Article
Jazyk:angličtina
Vydáno: Toronto Cambridge University Press 01.03.2024
Témata:
ISSN:2071-8322, 2071-8322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This Article addresses the pressing issues surrounding the use of automated systems in public decision-making, specifically focusing on migration, asylum, and mobility. Drawing on empirical data, this Article examines the potential and limitations of the General Data Protection Regulation and the Artificial Intelligence Act in effectively addressing the challenges posed by automated decision-making (ADM). The Article argues that the current legal definitions and categorizations of ADM fail to capture the complexity and diversity of real-life applications where automated systems assist human decision-makers rather than replace them entirely. To bridge the gap between ADM in law and practice, this Article proposes to move beyond the concept of “automated decisions” and complement the legal protection in the GDPR and AI Act with a taxonomy that can inform a fundamental rights analysis. This taxonomy enhances our understanding of ADM and allows to identify the fundamental rights at stake and the sector-specific legislation applicable to ADM. The Article calls for empirical observations and input from experts in other areas of public law to enrich and refine the proposed taxonomy, thus ensuring clearer conceptual frameworks to safeguard individuals in our increasingly algorithmic society.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2071-8322
2071-8322
DOI:10.1017/glj.2023.112