Temperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming
District heating networks transport thermal energy from one or more sources to a plurality of consumers. Lowering the operating temperatures of district heating networks is a key research topic to reduce energy losses and unlock the potential of low-temperature heat sources, such as waste heat. With...
Uložené v:
| Vydané v: | Energy (Oxford) Ročník 224; s. 120140 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Elsevier Ltd
01.06.2021
Elsevier BV |
| Predmet: | |
| ISSN: | 0360-5442, 1873-6785 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | District heating networks transport thermal energy from one or more sources to a plurality of consumers. Lowering the operating temperatures of district heating networks is a key research topic to reduce energy losses and unlock the potential of low-temperature heat sources, such as waste heat. With an increasing share of uncontrolled heat sources in district heating networks, control strategies to coordinate energy supply and network operation become more important. This paper focuses on the modeling, control, and optimization of a low-temperature district heating network, presenting a case study with a high share of waste heat from high-performance computers. The network consists of heat pumps with temperature-dependent characteristics. In this paper, quadratic correlations are used to model temperature characteristics. Thus, a mixed-integer quadratically-constrained program is presented that optimizes the operation of heat pumps in combination with thermal energy storages and the operating temperatures of a pipe network. The network operation is optimized for three sample days. The presented optimization model uses the flexibility of the thermal energy storages and thermal inertia of the network by controlling its flow and return temperatures. The results show savings of electrical energy consumption of 1.55%–5.49%, depending on heat and cool demand.
•MIQCP optimization model of low-temperature district heating is presented.•MIQCP formulation allows to regard temperature characteristics.•Good fit between simulation and optimization.•MPC with simulation and optimization shows improved operation. |
|---|---|
| AbstractList | District heating networks transport thermal energy from one or more sources to a plurality of consumers. Lowering the operating temperatures of district heating networks is a key research topic to reduce energy losses and unlock the potential of low-temperature heat sources, such as waste heat. With an increasing share of uncontrolled heat sources in district heating networks, control strategies to coordinate energy supply and network operation become more important. This paper focuses on the modeling, control, and optimization of a low-temperature district heating network, presenting a case study with a high share of waste heat from high-performance computers. The network consists of heat pumps with temperature-dependent characteristics. In this paper, quadratic correlations are used to model temperature characteristics. Thus, a mixed-integer quadratically-constrained program is presented that optimizes the operation of heat pumps in combination with thermal energy storages and the operating temperatures of a pipe network. The network operation is optimized for three sample days. The presented optimization model uses the flexibility of the thermal energy storages and thermal inertia of the network by controlling its flow and return temperatures. The results show savings of electrical energy consumption of 1.55%–5.49%, depending on heat and cool demand. District heating networks transport thermal energy from one or more sources to a plurality of consumers. Lowering the operating temperatures of district heating networks is a key research topic to reduce energy losses and unlock the potential of low-temperature heat sources, such as waste heat. With an increasing share of uncontrolled heat sources in district heating networks, control strategies to coordinate energy supply and network operation become more important. This paper focuses on the modeling, control, and optimization of a low-temperature district heating network, presenting a case study with a high share of waste heat from high-performance computers. The network consists of heat pumps with temperature-dependent characteristics. In this paper, quadratic correlations are used to model temperature characteristics. Thus, a mixed-integer quadratically-constrained program is presented that optimizes the operation of heat pumps in combination with thermal energy storages and the operating temperatures of a pipe network. The network operation is optimized for three sample days. The presented optimization model uses the flexibility of the thermal energy storages and thermal inertia of the network by controlling its flow and return temperatures. The results show savings of electrical energy consumption of 1.55%–5.49%, depending on heat and cool demand. •MIQCP optimization model of low-temperature district heating is presented.•MIQCP formulation allows to regard temperature characteristics.•Good fit between simulation and optimization.•MPC with simulation and optimization shows improved operation. |
| ArticleNumber | 120140 |
| Author | Hering, Dominik Müller, Dirk Tamassia, Eugenio Xhonneux, André Cansev, Mehmet Ege |
| Author_xml | – sequence: 1 givenname: Dominik surname: Hering fullname: Hering, Dominik email: d.hering@fz-juelich.de organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany – sequence: 2 givenname: Mehmet Ege surname: Cansev fullname: Cansev, Mehmet Ege organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany – sequence: 3 givenname: Eugenio surname: Tamassia fullname: Tamassia, Eugenio organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany – sequence: 4 givenname: André surname: Xhonneux fullname: Xhonneux, André organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany – sequence: 5 givenname: Dirk surname: Müller fullname: Müller, Dirk organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany |
| BookMark | eNqFkctu1DAUhi1UJKaFN2BhiQ2bDHZ8ScICCY24VGoFSGVtOfbJ1ENiD7anwzxJX7eO0gXqAlZenO__dHz-c3TmgweEXlOypoTKd7s1eIjb07omNV3TmlBOnqEVbRtWyaYVZ2hFmCSV4Lx-gc5T2hFCRNt1K3R_A9Meos6HCNgEn2MYcRiwxmM4VvmvoXUpR2cyvgWdnd9iD_kY4i98dPkWXwcLI_4ewRbE3QHePLq0t_ja_QFbXfoMW4j4x0Hb4nRGj-Np5opXOw-2xMM26mkq9pfo-aDHBK8e3wv08_Onm83X6urbl8vNx6vKMNnkygpKhe0Eo0PfWKuZJZoL1kjOm472nA-CmY4JzSS3WrcNCNZLOfRt34qZv0BvF-8-ht8HSFlNLhkYR-0hHJKqhaSCtbKTBX3zBN2FQ_Rlu0LVnFPa0LpQ7xfKxJBShEEZl8tv53NoNypK1NyZ2qmlMzV3ppbOSpg_Ce-jm3Q8_S_2YYlBudSdg6iSceBNKSOCycoG92_BA2iRuBM |
| CitedBy_id | crossref_primary_10_3390_en18051259 crossref_primary_10_1016_j_tsep_2023_101918 crossref_primary_10_1016_j_enconman_2022_116593 crossref_primary_10_1016_j_enbuild_2022_112445 crossref_primary_10_3390_en18112772 crossref_primary_10_1016_j_energy_2023_128595 crossref_primary_10_3390_buildings11070275 crossref_primary_10_1016_j_apenergy_2025_126342 crossref_primary_10_1016_j_applthermaleng_2021_117681 crossref_primary_10_1049_esi2_12174 crossref_primary_10_1016_j_enbuild_2024_114520 crossref_primary_10_2478_rtuect_2025_0018 crossref_primary_10_1038_s43247_024_01439_y crossref_primary_10_1016_j_apenergy_2024_123732 crossref_primary_10_1016_j_energy_2023_126740 crossref_primary_10_1016_j_rser_2024_114729 crossref_primary_10_1016_j_applthermaleng_2023_120030 crossref_primary_10_1016_j_energy_2022_125835 crossref_primary_10_1016_j_cles_2022_100005 crossref_primary_10_1109_LCSYS_2025_3582614 crossref_primary_10_1186_s42162_025_00536_2 crossref_primary_10_1109_JESTIE_2025_3546680 crossref_primary_10_3389_fenrg_2023_1120184 crossref_primary_10_1016_j_enconman_2023_117652 crossref_primary_10_1016_j_energy_2024_131954 crossref_primary_10_3390_su152014908 crossref_primary_10_1016_j_apenergy_2024_124156 crossref_primary_10_1016_j_energy_2022_125071 crossref_primary_10_1016_j_enbuild_2023_113209 crossref_primary_10_1016_j_enbuild_2023_112858 crossref_primary_10_1016_j_epsr_2024_111046 crossref_primary_10_1016_j_energy_2022_123347 crossref_primary_10_1016_j_ymssp_2023_110114 crossref_primary_10_1016_j_apenergy_2024_122874 crossref_primary_10_3390_buildings12111879 crossref_primary_10_3390_app12073305 crossref_primary_10_1016_j_energy_2022_123766 crossref_primary_10_1016_j_jprocont_2024_103251 crossref_primary_10_1016_j_energy_2022_123988 |
| Cites_doi | 10.1016/j.applthermaleng.2016.05.193 10.11648/j.ijepe.20140305.13 10.1016/j.enbuild.2017.08.052 10.1016/j.energy.2012.03.056 10.1016/j.energy.2017.07.086 10.1016/j.apenergy.2010.11.020 10.1016/j.energy.2016.04.023 10.1016/j.renene.2014.10.055 10.1016/j.jprocont.2009.02.003 10.1016/j.egypro.2017.05.077 10.3390/en12020321 10.1016/j.enconman.2017.08.072 10.1016/j.energy.2017.06.107 10.1016/j.egypro.2012.11.097 10.18280/ijht.360140 10.1016/j.rser.2018.12.059 10.1016/j.renene.2013.10.021 10.1016/j.enbuild.2017.04.023 10.1016/j.energy.2018.03.034 10.1016/j.energy.2014.02.089 10.3390/ma12152465 10.1109/TSTE.2017.2718031 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jun 1, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jun 1, 2021 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2021.120140 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | 10_1016_j_energy_2021_120140 S0360544221003893 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-d5115d9531fb7dda3d0a4537644791b44f53c935a364daa87e53b66fb8b85dda3 |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640927500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Nov 09 14:33:37 EST 2025 Wed Aug 13 06:09:48 EDT 2025 Sat Nov 29 07:22:45 EST 2025 Tue Nov 18 21:51:39 EST 2025 Fri Feb 23 02:44:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Model predictive control Low-temperature district heating Software in the loop Heat pump Mixed-integer quadratically-constrained programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-d5115d9531fb7dda3d0a4537644791b44f53c935a364daa87e53b66fb8b85dda3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2524411712 |
| PQPubID | 2045484 |
| ParticipantIDs | proquest_miscellaneous_2561538696 proquest_journals_2524411712 crossref_citationtrail_10_1016_j_energy_2021_120140 crossref_primary_10_1016_j_energy_2021_120140 elsevier_sciencedirect_doi_10_1016_j_energy_2021_120140 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 2021-06-00 20210601 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Basciotti, Judex, Olivier Pol, Schmidt (bib28) 2011 Waddicor, Fuentes, Azar, Salom (bib40) 2016; 106 Union (bib2) 2020 Kauko, Husevåg Kvalsvik, Rohde, Hafner, Nord (bib7) 2017; 139 Marco Cozzini, Simone Buffa, Ilyes Ben Hassine, and Jacopo Vivian. Low- and high-level controls for low temperature district heating and cooling networks: Fifth generation, low temperature, high Exergy district heating and cooling networks: FLEXYNETS. Li, Svendsen (bib17) 2012; 45 Systemes (bib43) (bib22) 2004 Guelpa, Barbero, Sciacovelli, Verda (bib26) 2017; 137 Claessens (bib33) 2018; 159 Gurobi Optimization (bib45) Hering, Xhonneux, Müller (bib39) 2020 Bettanini, Gastaldello, Schibuola (bib41) 2003 Zimmerman, Kyprianidis, Lindberg (bib19) 2019; 12 Korpela, Kaivosoja, Majanne, Laakkonen, Nurmoranta, Vilkko (bib30) 2017; 116 (bib44) 2020 Bruce, McClenahan, Djebbar, Thornton, Wong, Jarrett Carriere, Kokko (bib13) 2012; 30 Chen, Finney, Li, Zhang, Zhou, Sharifi, Jim Swithenbank (bib16) 2012; 89 Vandermeulen, van der Heijde, Helsen (bib23) 2018; 151 Sandou, Font, Tebbani, Hiret, Mondon (bib4) 2005 (bib15) 2017; 146 Sartor, Thomas, Dewallef (bib3) 2018; 36 Samira (bib32) 2016 Dobos, Jäaschke, Abonyi, Skogestad (bib11) 2009; 37 van der Heijde, Fuchs, Ribas Tugores, Schweiger, Sartor, Basciotti, Müller, Nytsch-Geusen, Wetter, Helsen (bib38) 2017; 151 Thomas Nussbaumer, Stefan Thalmann, Andres Jenni, and Joachim Ködel. Planungshandbuch Fernwärme: Schlussbericht: Version 1.1. Wasserfall, Powilleit, Kirschbaum, Gregor Wrobel (bib35) 2019 Hering, Xhonneux, Müller (bib34) 2019; 2–4 Lund, Werner, Wiltshire, Svendsen, Hvelplund, Vad Mathiesen (bib5) 2014; 68 Scattolini (bib20) 2009; 19 (bib21) 2017 Carpaneto, Lazzeroni, Repetto (bib29) 2015; 75 (bib31) 2017 Wojdyga (bib8) 2014; 3 Ianakiev, Jia, Garbett, Filer (bib12) 2017; 12 Vanhoudt, Geysen, Claessens, Leemans, Jespers, van Bael (bib27) 2014; 63 Fuchs, Teichmann, Lauster, Remmen, Streblow, Müller (bib36) 2016; 117 Müller, Lauster, Constantin, Fuchs, Remmen (bib37) 2016 Neirotti, Noussan, Riverso, Manganini (bib14) 2019; 12 (bib24) 2010 (bib1) 2019 Buffa, Cozzini, D’Antoni, Baratieri, Fedrizzi (bib6) 2019; 104 Wu, Gu, Jiang, Li, Cai, Li (bib10) 2018; 9 Patteeuw, Helsen (bib25) 2014 Kauko (10.1016/j.energy.2021.120140_bib7) 2017; 139 Bruce (10.1016/j.energy.2021.120140_bib13) 2012; 30 Hering (10.1016/j.energy.2021.120140_bib34) 2019; 2–4 Buffa (10.1016/j.energy.2021.120140_bib6) 2019; 104 Scattolini (10.1016/j.energy.2021.120140_bib20) 2009; 19 Sartor (10.1016/j.energy.2021.120140_bib3) 2018; 36 Fuchs (10.1016/j.energy.2021.120140_bib36) 2016; 117 Samira (10.1016/j.energy.2021.120140_bib32) 2016 Lund (10.1016/j.energy.2021.120140_bib5) 2014; 68 Dobos (10.1016/j.energy.2021.120140_bib11) 2009; 37 (10.1016/j.energy.2021.120140_bib24) 2010 Bettanini (10.1016/j.energy.2021.120140_bib41) 2003 van der Heijde (10.1016/j.energy.2021.120140_bib38) 2017; 151 Union (10.1016/j.energy.2021.120140_bib2) 2020 Wu (10.1016/j.energy.2021.120140_bib10) 2018; 9 Waddicor (10.1016/j.energy.2021.120140_bib40) 2016; 106 Carpaneto (10.1016/j.energy.2021.120140_bib29) 2015; 75 10.1016/j.energy.2021.120140_bib42 Wojdyga (10.1016/j.energy.2021.120140_bib8) 2014; 3 Korpela (10.1016/j.energy.2021.120140_bib30) 2017; 116 Ianakiev (10.1016/j.energy.2021.120140_bib12) 2017; 12 (10.1016/j.energy.2021.120140_bib15) 2017; 146 (10.1016/j.energy.2021.120140_bib22) 2004 (10.1016/j.energy.2021.120140_bib31) 2017 (10.1016/j.energy.2021.120140_bib21) 2017 Systemes (10.1016/j.energy.2021.120140_bib43) Chen (10.1016/j.energy.2021.120140_bib16) 2012; 89 Zimmerman (10.1016/j.energy.2021.120140_bib19) 2019; 12 Vandermeulen (10.1016/j.energy.2021.120140_bib23) 2018; 151 Wasserfall (10.1016/j.energy.2021.120140_bib35) 2019 Li (10.1016/j.energy.2021.120140_bib17) 2012; 45 Guelpa (10.1016/j.energy.2021.120140_bib26) 2017; 137 Hering (10.1016/j.energy.2021.120140_bib39) 2020 (10.1016/j.energy.2021.120140_bib1) 2019 Neirotti (10.1016/j.energy.2021.120140_bib14) 2019; 12 Sandou (10.1016/j.energy.2021.120140_bib4) 2005 Müller (10.1016/j.energy.2021.120140_bib37) 2016 Gurobi Optimization (10.1016/j.energy.2021.120140_bib45) Vanhoudt (10.1016/j.energy.2021.120140_bib27) 2014; 63 Claessens (10.1016/j.energy.2021.120140_bib33) 2018; 159 (10.1016/j.energy.2021.120140_bib44) 2020 Basciotti (10.1016/j.energy.2021.120140_bib28) 2011 Patteeuw (10.1016/j.energy.2021.120140_bib25) 2014 10.1016/j.energy.2021.120140_bib9 |
| References_xml | – volume: 30 start-page: 856 year: 2012 end-page: 865 ident: bib13 article-title: The performance of a high solar fraction seasonal storage district heating system – five years of operation publication-title: Energy Procedia – year: 2020 ident: bib39 article-title: Design optimization of a heating network with multiple heat pumps using Mixed Integer Quadratically Constrained Programming publication-title: Proceedings OF ecos 2020 - the 33RD international conference ON – volume: 159 start-page: 1 year: 2018 end-page: 10 ident: bib33 article-title: Dirk Vanhoudt, johan desmedt, and frederik ruelens. Model-free control of thermostatically controlled loads connected to a district heating network publication-title: Energy Build – start-page: 107 year: 2003 end-page: 114 ident: bib41 article-title: Simplified models to simulate part load performances of air conditioning equipments publication-title: Proc. IBPSA 8th Int. Conf. Building Simulation ’03 – reference: Marco Cozzini, Simone Buffa, Ilyes Ben Hassine, and Jacopo Vivian. Low- and high-level controls for low temperature district heating and cooling networks: Fifth generation, low temperature, high Exergy district heating and cooling networks: FLEXYNETS. – volume: 9 start-page: 118 year: 2018 end-page: 127 ident: bib10 article-title: Combined economic dispatch considering the time-delay of district heating network and multi-regional indoor temperature control publication-title: IEEE Transactions on Sustainable Energy – year: 2017 ident: bib31 publication-title: Optimal control of district heating systems using dynamic simulation and mixed integer linear programming – volume: 37 start-page: 37 year: 2009 end-page: 49 ident: bib11 article-title: Dynamic model and control of heat exchanger networks for district heating publication-title: Hungarian Journal of Industrial Chemistry Veszprém – volume: 139 start-page: 289 year: 2017 end-page: 297 ident: bib7 article-title: Dynamic modelling of local low-temperature heating grids: a case study for Norway publication-title: Energy – volume: 12 start-page: 321 year: 2019 ident: bib14 article-title: Analysis of different strategies for lowering the operation temperature in existing district heating networks publication-title: Energies – start-page: 3 year: 2016 end-page: 9 ident: bib37 article-title: AixLib - an open-source Modelica library within the IEA - EBC annex 60 framework publication-title: Proceedings of the CESBP central European symposium on building physics and BauSIM 2016 – volume: 3 start-page: 237 year: 2014 ident: bib8 article-title: Predicting heat demand for a district heating systems publication-title: Int J Energy Power Eng – year: 2010 ident: bib24 publication-title: Deployment of agent based load control in district heating systems – volume: 63 start-page: 531 year: 2014 end-page: 543 ident: bib27 article-title: An actively controlled residential heat pump: potential on peak shaving and maximization of self-consumption of renewable energy publication-title: Renew Energy – start-page: 1195 year: 2016 end-page: 1200 ident: bib32 article-title: Farahani, Zofia Lukszo, Tamas Keviczky, Bart de Schutter, and Richard M. Murray. Robust model predictive control for an uncertain smart thermal grid publication-title: European control conference (ECC) – volume: 151 start-page: 103 year: 2018 end-page: 115 ident: bib23 article-title: Controlling district heating and cooling networks to unlock flexibility: a review publication-title: Energy – ident: bib43 article-title: FMPy – volume: 12 year: 2017 ident: bib12 article-title: Innovative system for delivery of low temperature district heating publication-title: International Journal of Sustainable Energy Planning and Management – volume: 75 start-page: 714 year: 2015 end-page: 721 ident: bib29 article-title: Optimal integration of solar energy in a district heating network publication-title: Renew Energy – year: 2011 ident: bib28 article-title: Sensible heat storage in district heating networks: a novel control strategy using the network as storage publication-title: 6th international renewable energy storage conference and exhibition (IRES 2011) – volume: 12 year: 2019 ident: bib19 article-title: Achieving lower district heating network temperatures using feed-forward MPC publication-title: Materials – year: 2004 ident: bib22 publication-title: Global modelling and simulation of a district heating network – volume: 146 start-page: 55 year: 2017 end-page: 64 ident: bib15 article-title: Model predictive control for demand response of domestic hot water preparation in ultra-low temperature district heating systems publication-title: Energy Build – year: 2005 ident: bib4 article-title: Predictive control of a complex district heating network publication-title: Proceedings of the 44th IEEE conference on decision and control, and European control conference ECC05 december 12 - 15 – volume: 89 start-page: 30 year: 2012 end-page: 36 ident: bib16 article-title: Condensing boiler applications in the process industry publication-title: Appl Energy – volume: 19 start-page: 723 year: 2009 end-page: 731 ident: bib20 article-title: Architectures for distributed and hierarchical model predictive control – a review publication-title: J Process Contr – volume: 106 start-page: 275 year: 2016 end-page: 285 ident: bib40 article-title: Partial load efficiency degradation of a water-to-water heat pump under fixed set-point control publication-title: Appl Therm Eng – volume: 36 start-page: 301 year: 2018 end-page: 308 ident: bib3 article-title: A comparative study for simulating heat transport in large district heating networks publication-title: International Journal of Heat and Technology – volume: 137 start-page: 706 year: 2017 end-page: 714 ident: bib26 article-title: Peak-shaving in district heating systems through optimal management of the thermal request of buildings publication-title: Energy – year: 2020 ident: bib44 publication-title: BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. BDEW-Strompreisanalyse Januar – volume: 2–4 start-page: 3250 year: 2019 end-page: 3257 ident: bib34 article-title: Economic and ecologic evaluation of low temperature waste heat integration into existing district heating publication-title: Proceedings of the 16th IBPSA Conference Rome, Italy, Sept. – volume: 116 start-page: 310 year: 2017 end-page: 319 ident: bib30 article-title: Utilization of district heating networks to provide flexibility in CHP production publication-title: Energy Procedia – volume: 68 start-page: 1 year: 2014 end-page: 11 ident: bib5 article-title: 4th generation district heating (4GDH) publication-title: Energy – start-page: 953 year: 2019 end-page: 965 ident: bib35 article-title: Efficient formulation for optimizing temperature dependent energy systems with mixed-integer quadratically constrained programming publication-title: Proceedings of ECOS – ident: bib45 article-title: Gurobi optimizer reference manual – volume: 151 start-page: 158 year: 2017 end-page: 169 ident: bib38 article-title: Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems publication-title: Energy Convers Manag – reference: Thomas Nussbaumer, Stefan Thalmann, Andres Jenni, and Joachim Ködel. Planungshandbuch Fernwärme: Schlussbericht: Version 1.1. – volume: 104 start-page: 504 year: 2019 end-page: 522 ident: bib6 article-title: 5th generation district heating and cooling systems: a review of existing cases in Europe publication-title: Renew Sustain Energy Rev – volume: 45 start-page: 237 year: 2012 end-page: 246 ident: bib17 article-title: Energy and exergy analysis of low temperature district heating network publication-title: Energy – volume: 117 start-page: 478 year: 2016 end-page: 484 ident: bib36 article-title: Workflow automation for combined modeling of buildings and district energy systems publication-title: Energy – year: 2019 ident: bib1 article-title: The European green deal: communication from the commission to the European Parliament – year: 2014 ident: bib25 article-title: Residential buildings with heat pumps, a verified bottom-up model for demand side management studies publication-title: Proceedings of the Ninth International Conference on System Simulation in Buildings - SSB – year: 2017 ident: bib21 publication-title: Smart control of a district heating network with high share of low temperature waste heat – year: 2020 ident: bib2 article-title: EU Energy in figures: Statistical pocketbook 2020 – volume: 106 start-page: 275 year: 2016 ident: 10.1016/j.energy.2021.120140_bib40 article-title: Partial load efficiency degradation of a water-to-water heat pump under fixed set-point control publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.05.193 – volume: 3 start-page: 237 issue: 5 year: 2014 ident: 10.1016/j.energy.2021.120140_bib8 article-title: Predicting heat demand for a district heating systems publication-title: Int J Energy Power Eng doi: 10.11648/j.ijepe.20140305.13 – year: 2011 ident: 10.1016/j.energy.2021.120140_bib28 article-title: Sensible heat storage in district heating networks: a novel control strategy using the network as storage – start-page: 1195 year: 2016 ident: 10.1016/j.energy.2021.120140_bib32 article-title: Farahani, Zofia Lukszo, Tamas Keviczky, Bart de Schutter, and Richard M. Murray. Robust model predictive control for an uncertain smart thermal grid – volume: 159 start-page: 1 year: 2018 ident: 10.1016/j.energy.2021.120140_bib33 article-title: Dirk Vanhoudt, johan desmedt, and frederik ruelens. Model-free control of thermostatically controlled loads connected to a district heating network publication-title: Energy Build doi: 10.1016/j.enbuild.2017.08.052 – volume: 45 start-page: 237 issue: 1 year: 2012 ident: 10.1016/j.energy.2021.120140_bib17 article-title: Energy and exergy analysis of low temperature district heating network publication-title: Energy doi: 10.1016/j.energy.2012.03.056 – volume: 139 start-page: 289 year: 2017 ident: 10.1016/j.energy.2021.120140_bib7 article-title: Dynamic modelling of local low-temperature heating grids: a case study for Norway publication-title: Energy doi: 10.1016/j.energy.2017.07.086 – volume: 89 start-page: 30 issue: 1 year: 2012 ident: 10.1016/j.energy.2021.120140_bib16 article-title: Condensing boiler applications in the process industry publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.11.020 – volume: 117 start-page: 478 year: 2016 ident: 10.1016/j.energy.2021.120140_bib36 article-title: Workflow automation for combined modeling of buildings and district energy systems publication-title: Energy doi: 10.1016/j.energy.2016.04.023 – volume: 75 start-page: 714 issue: 3 year: 2015 ident: 10.1016/j.energy.2021.120140_bib29 article-title: Optimal integration of solar energy in a district heating network publication-title: Renew Energy doi: 10.1016/j.renene.2014.10.055 – year: 2017 ident: 10.1016/j.energy.2021.120140_bib31 – volume: 19 start-page: 723 issue: 5 year: 2009 ident: 10.1016/j.energy.2021.120140_bib20 article-title: Architectures for distributed and hierarchical model predictive control – a review publication-title: J Process Contr doi: 10.1016/j.jprocont.2009.02.003 – year: 2010 ident: 10.1016/j.energy.2021.120140_bib24 – start-page: 107 year: 2003 ident: 10.1016/j.energy.2021.120140_bib41 article-title: Simplified models to simulate part load performances of air conditioning equipments publication-title: Proc. IBPSA 8th Int. Conf. Building Simulation ’03 – volume: 116 start-page: 310 year: 2017 ident: 10.1016/j.energy.2021.120140_bib30 article-title: Utilization of district heating networks to provide flexibility in CHP production publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.05.077 – year: 2014 ident: 10.1016/j.energy.2021.120140_bib25 article-title: Residential buildings with heat pumps, a verified bottom-up model for demand side management studies publication-title: Proceedings of the Ninth International Conference on System Simulation in Buildings - SSB – volume: 12 start-page: 321 issue: 2 year: 2019 ident: 10.1016/j.energy.2021.120140_bib14 article-title: Analysis of different strategies for lowering the operation temperature in existing district heating networks publication-title: Energies doi: 10.3390/en12020321 – volume: 151 start-page: 158 year: 2017 ident: 10.1016/j.energy.2021.120140_bib38 article-title: Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.08.072 – volume: 137 start-page: 706 issue: 12 year: 2017 ident: 10.1016/j.energy.2021.120140_bib26 article-title: Peak-shaving in district heating systems through optimal management of the thermal request of buildings publication-title: Energy doi: 10.1016/j.energy.2017.06.107 – year: 2019 ident: 10.1016/j.energy.2021.120140_bib1 – volume: 37 start-page: 37 year: 2009 ident: 10.1016/j.energy.2021.120140_bib11 article-title: Dynamic model and control of heat exchanger networks for district heating publication-title: Hungarian Journal of Industrial Chemistry Veszprém – ident: 10.1016/j.energy.2021.120140_bib42 – ident: 10.1016/j.energy.2021.120140_bib43 – volume: 12 year: 2017 ident: 10.1016/j.energy.2021.120140_bib12 article-title: Innovative system for delivery of low temperature district heating publication-title: International Journal of Sustainable Energy Planning and Management – volume: 30 start-page: 856 year: 2012 ident: 10.1016/j.energy.2021.120140_bib13 article-title: The performance of a high solar fraction seasonal storage district heating system – five years of operation publication-title: Energy Procedia doi: 10.1016/j.egypro.2012.11.097 – year: 2004 ident: 10.1016/j.energy.2021.120140_bib22 – year: 2020 ident: 10.1016/j.energy.2021.120140_bib2 – volume: 36 start-page: 301 issue: 1 year: 2018 ident: 10.1016/j.energy.2021.120140_bib3 article-title: A comparative study for simulating heat transport in large district heating networks publication-title: International Journal of Heat and Technology doi: 10.18280/ijht.360140 – year: 2017 ident: 10.1016/j.energy.2021.120140_bib21 – start-page: 3 year: 2016 ident: 10.1016/j.energy.2021.120140_bib37 article-title: AixLib - an open-source Modelica library within the IEA - EBC annex 60 framework – year: 2005 ident: 10.1016/j.energy.2021.120140_bib4 article-title: Predictive control of a complex district heating network – ident: 10.1016/j.energy.2021.120140_bib45 – volume: 104 start-page: 504 year: 2019 ident: 10.1016/j.energy.2021.120140_bib6 article-title: 5th generation district heating and cooling systems: a review of existing cases in Europe publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.12.059 – volume: 63 start-page: 531 issue: 4 year: 2014 ident: 10.1016/j.energy.2021.120140_bib27 article-title: An actively controlled residential heat pump: potential on peak shaving and maximization of self-consumption of renewable energy publication-title: Renew Energy doi: 10.1016/j.renene.2013.10.021 – year: 2020 ident: 10.1016/j.energy.2021.120140_bib44 – volume: 2–4 start-page: 3250 year: 2019 ident: 10.1016/j.energy.2021.120140_bib34 article-title: Economic and ecologic evaluation of low temperature waste heat integration into existing district heating publication-title: Proceedings of the 16th IBPSA Conference Rome, Italy, Sept. – volume: 146 start-page: 55 year: 2017 ident: 10.1016/j.energy.2021.120140_bib15 article-title: Model predictive control for demand response of domestic hot water preparation in ultra-low temperature district heating systems publication-title: Energy Build doi: 10.1016/j.enbuild.2017.04.023 – volume: 151 start-page: 103 year: 2018 ident: 10.1016/j.energy.2021.120140_bib23 article-title: Controlling district heating and cooling networks to unlock flexibility: a review publication-title: Energy doi: 10.1016/j.energy.2018.03.034 – volume: 68 start-page: 1 year: 2014 ident: 10.1016/j.energy.2021.120140_bib5 article-title: 4th generation district heating (4GDH) publication-title: Energy doi: 10.1016/j.energy.2014.02.089 – year: 2020 ident: 10.1016/j.energy.2021.120140_bib39 article-title: Design optimization of a heating network with multiple heat pumps using Mixed Integer Quadratically Constrained Programming – ident: 10.1016/j.energy.2021.120140_bib9 – volume: 12 issue: 15 year: 2019 ident: 10.1016/j.energy.2021.120140_bib19 article-title: Achieving lower district heating network temperatures using feed-forward MPC publication-title: Materials doi: 10.3390/ma12152465 – start-page: 953 year: 2019 ident: 10.1016/j.energy.2021.120140_bib35 article-title: Efficient formulation for optimizing temperature dependent energy systems with mixed-integer quadratically constrained programming publication-title: Proceedings of ECOS – volume: 9 start-page: 118 issue: 1 year: 2018 ident: 10.1016/j.energy.2021.120140_bib10 article-title: Combined economic dispatch considering the time-delay of district heating network and multi-regional indoor temperature control publication-title: IEEE Transactions on Sustainable Energy doi: 10.1109/TSTE.2017.2718031 |
| SSID | ssj0005899 |
| Score | 2.5249176 |
| Snippet | District heating networks transport thermal energy from one or more sources to a plurality of consumers. Lowering the operating temperatures of district... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 120140 |
| SubjectTerms | case studies Computers District heating electric power Energy conservation Energy consumption Heat Heat exchangers Heat pump Heat pumps Heat sources Heating Low temperature Low-temperature district heating Mixed integer Mixed-integer quadratically-constrained programming Model predictive control Networks Operating temperature Optimization Predictive control Software in the loop temperature Temperature control Temperature dependence Thermal energy Waste heat |
| Title | Temperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming |
| URI | https://dx.doi.org/10.1016/j.energy.2021.120140 https://www.proquest.com/docview/2524411712 https://www.proquest.com/docview/2561538696 |
| Volume | 224 |
| WOSCitedRecordID | wos000640927500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKhwQvCAbTCgMZCfGCXDVxEseP05RpoGqA1KG-RW5ss05tWtZ09J_wv_hF-Npxmo2PwQMvUZU4ieV76nt9c841Qq-E5iJmWpMBLxQx66-QcBpIInQQCiG0DrkVCg_Z6Wk6HvMPnc53r4W5mrGyTDcbvvyvpjbnjLFBOvsP5m4eak6Y38bo5mjMbo5_Z3hlImFXKbkholsR5GzxlVStixJq5k6LCoJFS34uHSXc5WZhk7QZMDTk1E6JoA20z7LMjOlGSQLZRBANf1wLCUAy5oZiyRBxwsYTysoQgP019_7RfwJwgkOodLpx5PomHXFiSyO60B7KnjRCoiPjU81QQP5Wnc9V9Sb73GByJOZmDeBov9najIwjl8Gl8TkwedYbT950xIB2riNscbJcAq4R4XxqTZM0GZA4cjW6-spN4ymjxLjhuD3Ph2HUmqmDX_oPl8q46Cs7Dn3oQz8IYRW69ZeeI3D6Pj8-Gw7zUTYevV5-IbCTGXzxr7d1uYN2QhbztIt2Dt9m43db4lFqdzVt-u0FnZZ1-POLfxcw3QgdbDw0eoge1AsZfOgA-Ah1VLmL7nmd-2oX7WVbDaVpWDuR1WP0rYVQXCMULzQW-AZCsUcorhGKa4RiQCi2CMVbhOIaodggFF9DKL6GUNxCKG4h9Ak6O85GRyek3h-EFDRhFZFmsRBLbryInjApBZUDEUF5oihiPJhEkY5pwWksaBJJIVKmYjpJEj1JJ2kM7fdQt1yUah9hRo2b1zKIdaoiOii4KmIGlpJM8TSIeoh6I-RFXTwfOjrLPUvyInemy8F0uTNdD5HmrqUrHnNLe-btm9cBsAtsc4PPW-488HDI67lolYexid2DgAVhD71sLhv3Ad8ERakWa2gDK7404cnTPz_iGbq__UceoG51uVbP0d3iqpquLl_UGP8BECXu3w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+control+of+a+low-temperature+district+heating+network+with+Model+Predictive+Control+and+Mixed-Integer+Quadratically+Constrained+Programming&rft.jtitle=Energy+%28Oxford%29&rft.au=Hering%2C+Dominik&rft.au=Cansev%2C+Mehmet+Ege&rft.au=Tamassia%2C+Eugenio&rft.au=Xhonneux%2C+Andr%C3%A9&rft.date=2021-06-01&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=224&rft.spage=1&rft_id=info:doi/10.1016%2Fj.energy.2021.120140&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |