Temperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming

District heating networks transport thermal energy from one or more sources to a plurality of consumers. Lowering the operating temperatures of district heating networks is a key research topic to reduce energy losses and unlock the potential of low-temperature heat sources, such as waste heat. With...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy (Oxford) Ročník 224; s. 120140
Hlavní autori: Hering, Dominik, Cansev, Mehmet Ege, Tamassia, Eugenio, Xhonneux, André, Müller, Dirk
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 01.06.2021
Elsevier BV
Predmet:
ISSN:0360-5442, 1873-6785
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract District heating networks transport thermal energy from one or more sources to a plurality of consumers. Lowering the operating temperatures of district heating networks is a key research topic to reduce energy losses and unlock the potential of low-temperature heat sources, such as waste heat. With an increasing share of uncontrolled heat sources in district heating networks, control strategies to coordinate energy supply and network operation become more important. This paper focuses on the modeling, control, and optimization of a low-temperature district heating network, presenting a case study with a high share of waste heat from high-performance computers. The network consists of heat pumps with temperature-dependent characteristics. In this paper, quadratic correlations are used to model temperature characteristics. Thus, a mixed-integer quadratically-constrained program is presented that optimizes the operation of heat pumps in combination with thermal energy storages and the operating temperatures of a pipe network. The network operation is optimized for three sample days. The presented optimization model uses the flexibility of the thermal energy storages and thermal inertia of the network by controlling its flow and return temperatures. The results show savings of electrical energy consumption of 1.55%–5.49%, depending on heat and cool demand. •MIQCP optimization model of low-temperature district heating is presented.•MIQCP formulation allows to regard temperature characteristics.•Good fit between simulation and optimization.•MPC with simulation and optimization shows improved operation.
AbstractList District heating networks transport thermal energy from one or more sources to a plurality of consumers. Lowering the operating temperatures of district heating networks is a key research topic to reduce energy losses and unlock the potential of low-temperature heat sources, such as waste heat. With an increasing share of uncontrolled heat sources in district heating networks, control strategies to coordinate energy supply and network operation become more important. This paper focuses on the modeling, control, and optimization of a low-temperature district heating network, presenting a case study with a high share of waste heat from high-performance computers. The network consists of heat pumps with temperature-dependent characteristics. In this paper, quadratic correlations are used to model temperature characteristics. Thus, a mixed-integer quadratically-constrained program is presented that optimizes the operation of heat pumps in combination with thermal energy storages and the operating temperatures of a pipe network. The network operation is optimized for three sample days. The presented optimization model uses the flexibility of the thermal energy storages and thermal inertia of the network by controlling its flow and return temperatures. The results show savings of electrical energy consumption of 1.55%–5.49%, depending on heat and cool demand.
District heating networks transport thermal energy from one or more sources to a plurality of consumers. Lowering the operating temperatures of district heating networks is a key research topic to reduce energy losses and unlock the potential of low-temperature heat sources, such as waste heat. With an increasing share of uncontrolled heat sources in district heating networks, control strategies to coordinate energy supply and network operation become more important. This paper focuses on the modeling, control, and optimization of a low-temperature district heating network, presenting a case study with a high share of waste heat from high-performance computers. The network consists of heat pumps with temperature-dependent characteristics. In this paper, quadratic correlations are used to model temperature characteristics. Thus, a mixed-integer quadratically-constrained program is presented that optimizes the operation of heat pumps in combination with thermal energy storages and the operating temperatures of a pipe network. The network operation is optimized for three sample days. The presented optimization model uses the flexibility of the thermal energy storages and thermal inertia of the network by controlling its flow and return temperatures. The results show savings of electrical energy consumption of 1.55%–5.49%, depending on heat and cool demand. •MIQCP optimization model of low-temperature district heating is presented.•MIQCP formulation allows to regard temperature characteristics.•Good fit between simulation and optimization.•MPC with simulation and optimization shows improved operation.
ArticleNumber 120140
Author Hering, Dominik
Müller, Dirk
Tamassia, Eugenio
Xhonneux, André
Cansev, Mehmet Ege
Author_xml – sequence: 1
  givenname: Dominik
  surname: Hering
  fullname: Hering, Dominik
  email: d.hering@fz-juelich.de
  organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
– sequence: 2
  givenname: Mehmet Ege
  surname: Cansev
  fullname: Cansev, Mehmet Ege
  organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
– sequence: 3
  givenname: Eugenio
  surname: Tamassia
  fullname: Tamassia, Eugenio
  organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
– sequence: 4
  givenname: André
  surname: Xhonneux
  fullname: Xhonneux, André
  organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
– sequence: 5
  givenname: Dirk
  surname: Müller
  fullname: Müller, Dirk
  organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
BookMark eNqFkctu1DAUhi1UJKaFN2BhiQ2bDHZ8ScICCY24VGoFSGVtOfbJ1ENiD7anwzxJX7eO0gXqAlZenO__dHz-c3TmgweEXlOypoTKd7s1eIjb07omNV3TmlBOnqEVbRtWyaYVZ2hFmCSV4Lx-gc5T2hFCRNt1K3R_A9Meos6HCNgEn2MYcRiwxmM4VvmvoXUpR2cyvgWdnd9iD_kY4i98dPkWXwcLI_4ewRbE3QHePLq0t_ja_QFbXfoMW4j4x0Hb4nRGj-Np5opXOw-2xMM26mkq9pfo-aDHBK8e3wv08_Onm83X6urbl8vNx6vKMNnkygpKhe0Eo0PfWKuZJZoL1kjOm472nA-CmY4JzSS3WrcNCNZLOfRt34qZv0BvF-8-ht8HSFlNLhkYR-0hHJKqhaSCtbKTBX3zBN2FQ_Rlu0LVnFPa0LpQ7xfKxJBShEEZl8tv53NoNypK1NyZ2qmlMzV3ppbOSpg_Ce-jm3Q8_S_2YYlBudSdg6iSceBNKSOCycoG92_BA2iRuBM
CitedBy_id crossref_primary_10_3390_en18051259
crossref_primary_10_1016_j_tsep_2023_101918
crossref_primary_10_1016_j_enconman_2022_116593
crossref_primary_10_1016_j_enbuild_2022_112445
crossref_primary_10_3390_en18112772
crossref_primary_10_1016_j_energy_2023_128595
crossref_primary_10_3390_buildings11070275
crossref_primary_10_1016_j_apenergy_2025_126342
crossref_primary_10_1016_j_applthermaleng_2021_117681
crossref_primary_10_1049_esi2_12174
crossref_primary_10_1016_j_enbuild_2024_114520
crossref_primary_10_2478_rtuect_2025_0018
crossref_primary_10_1038_s43247_024_01439_y
crossref_primary_10_1016_j_apenergy_2024_123732
crossref_primary_10_1016_j_energy_2023_126740
crossref_primary_10_1016_j_rser_2024_114729
crossref_primary_10_1016_j_applthermaleng_2023_120030
crossref_primary_10_1016_j_energy_2022_125835
crossref_primary_10_1016_j_cles_2022_100005
crossref_primary_10_1109_LCSYS_2025_3582614
crossref_primary_10_1186_s42162_025_00536_2
crossref_primary_10_1109_JESTIE_2025_3546680
crossref_primary_10_3389_fenrg_2023_1120184
crossref_primary_10_1016_j_enconman_2023_117652
crossref_primary_10_1016_j_energy_2024_131954
crossref_primary_10_3390_su152014908
crossref_primary_10_1016_j_apenergy_2024_124156
crossref_primary_10_1016_j_energy_2022_125071
crossref_primary_10_1016_j_enbuild_2023_113209
crossref_primary_10_1016_j_enbuild_2023_112858
crossref_primary_10_1016_j_epsr_2024_111046
crossref_primary_10_1016_j_energy_2022_123347
crossref_primary_10_1016_j_ymssp_2023_110114
crossref_primary_10_1016_j_apenergy_2024_122874
crossref_primary_10_3390_buildings12111879
crossref_primary_10_3390_app12073305
crossref_primary_10_1016_j_energy_2022_123766
crossref_primary_10_1016_j_jprocont_2024_103251
crossref_primary_10_1016_j_energy_2022_123988
Cites_doi 10.1016/j.applthermaleng.2016.05.193
10.11648/j.ijepe.20140305.13
10.1016/j.enbuild.2017.08.052
10.1016/j.energy.2012.03.056
10.1016/j.energy.2017.07.086
10.1016/j.apenergy.2010.11.020
10.1016/j.energy.2016.04.023
10.1016/j.renene.2014.10.055
10.1016/j.jprocont.2009.02.003
10.1016/j.egypro.2017.05.077
10.3390/en12020321
10.1016/j.enconman.2017.08.072
10.1016/j.energy.2017.06.107
10.1016/j.egypro.2012.11.097
10.18280/ijht.360140
10.1016/j.rser.2018.12.059
10.1016/j.renene.2013.10.021
10.1016/j.enbuild.2017.04.023
10.1016/j.energy.2018.03.034
10.1016/j.energy.2014.02.089
10.3390/ma12152465
10.1109/TSTE.2017.2718031
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jun 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 1, 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2021.120140
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2021_120140
S0360544221003893
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-d5115d9531fb7dda3d0a4537644791b44f53c935a364daa87e53b66fb8b85dda3
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640927500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Nov 09 14:33:37 EST 2025
Wed Aug 13 06:09:48 EDT 2025
Sat Nov 29 07:22:45 EST 2025
Tue Nov 18 21:51:39 EST 2025
Fri Feb 23 02:44:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Model predictive control
Low-temperature district heating
Software in the loop
Heat pump
Mixed-integer quadratically-constrained programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-d5115d9531fb7dda3d0a4537644791b44f53c935a364daa87e53b66fb8b85dda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2524411712
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2561538696
proquest_journals_2524411712
crossref_citationtrail_10_1016_j_energy_2021_120140
crossref_primary_10_1016_j_energy_2021_120140
elsevier_sciencedirect_doi_10_1016_j_energy_2021_120140
PublicationCentury 2000
PublicationDate 2021-06-01
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Basciotti, Judex, Olivier Pol, Schmidt (bib28) 2011
Waddicor, Fuentes, Azar, Salom (bib40) 2016; 106
Union (bib2) 2020
Kauko, Husevåg Kvalsvik, Rohde, Hafner, Nord (bib7) 2017; 139
Marco Cozzini, Simone Buffa, Ilyes Ben Hassine, and Jacopo Vivian. Low- and high-level controls for low temperature district heating and cooling networks: Fifth generation, low temperature, high Exergy district heating and cooling networks: FLEXYNETS.
Li, Svendsen (bib17) 2012; 45
Systemes (bib43)
(bib22) 2004
Guelpa, Barbero, Sciacovelli, Verda (bib26) 2017; 137
Claessens (bib33) 2018; 159
Gurobi Optimization (bib45)
Hering, Xhonneux, Müller (bib39) 2020
Bettanini, Gastaldello, Schibuola (bib41) 2003
Zimmerman, Kyprianidis, Lindberg (bib19) 2019; 12
Korpela, Kaivosoja, Majanne, Laakkonen, Nurmoranta, Vilkko (bib30) 2017; 116
(bib44) 2020
Bruce, McClenahan, Djebbar, Thornton, Wong, Jarrett Carriere, Kokko (bib13) 2012; 30
Chen, Finney, Li, Zhang, Zhou, Sharifi, Jim Swithenbank (bib16) 2012; 89
Vandermeulen, van der Heijde, Helsen (bib23) 2018; 151
Sandou, Font, Tebbani, Hiret, Mondon (bib4) 2005
(bib15) 2017; 146
Sartor, Thomas, Dewallef (bib3) 2018; 36
Samira (bib32) 2016
Dobos, Jäaschke, Abonyi, Skogestad (bib11) 2009; 37
van der Heijde, Fuchs, Ribas Tugores, Schweiger, Sartor, Basciotti, Müller, Nytsch-Geusen, Wetter, Helsen (bib38) 2017; 151
Thomas Nussbaumer, Stefan Thalmann, Andres Jenni, and Joachim Ködel. Planungshandbuch Fernwärme: Schlussbericht: Version 1.1.
Wasserfall, Powilleit, Kirschbaum, Gregor Wrobel (bib35) 2019
Hering, Xhonneux, Müller (bib34) 2019; 2–4
Lund, Werner, Wiltshire, Svendsen, Hvelplund, Vad Mathiesen (bib5) 2014; 68
Scattolini (bib20) 2009; 19
(bib21) 2017
Carpaneto, Lazzeroni, Repetto (bib29) 2015; 75
(bib31) 2017
Wojdyga (bib8) 2014; 3
Ianakiev, Jia, Garbett, Filer (bib12) 2017; 12
Vanhoudt, Geysen, Claessens, Leemans, Jespers, van Bael (bib27) 2014; 63
Fuchs, Teichmann, Lauster, Remmen, Streblow, Müller (bib36) 2016; 117
Müller, Lauster, Constantin, Fuchs, Remmen (bib37) 2016
Neirotti, Noussan, Riverso, Manganini (bib14) 2019; 12
(bib24) 2010
(bib1) 2019
Buffa, Cozzini, D’Antoni, Baratieri, Fedrizzi (bib6) 2019; 104
Wu, Gu, Jiang, Li, Cai, Li (bib10) 2018; 9
Patteeuw, Helsen (bib25) 2014
Kauko (10.1016/j.energy.2021.120140_bib7) 2017; 139
Bruce (10.1016/j.energy.2021.120140_bib13) 2012; 30
Hering (10.1016/j.energy.2021.120140_bib34) 2019; 2–4
Buffa (10.1016/j.energy.2021.120140_bib6) 2019; 104
Scattolini (10.1016/j.energy.2021.120140_bib20) 2009; 19
Sartor (10.1016/j.energy.2021.120140_bib3) 2018; 36
Fuchs (10.1016/j.energy.2021.120140_bib36) 2016; 117
Samira (10.1016/j.energy.2021.120140_bib32) 2016
Lund (10.1016/j.energy.2021.120140_bib5) 2014; 68
Dobos (10.1016/j.energy.2021.120140_bib11) 2009; 37
(10.1016/j.energy.2021.120140_bib24) 2010
Bettanini (10.1016/j.energy.2021.120140_bib41) 2003
van der Heijde (10.1016/j.energy.2021.120140_bib38) 2017; 151
Union (10.1016/j.energy.2021.120140_bib2) 2020
Wu (10.1016/j.energy.2021.120140_bib10) 2018; 9
Waddicor (10.1016/j.energy.2021.120140_bib40) 2016; 106
Carpaneto (10.1016/j.energy.2021.120140_bib29) 2015; 75
10.1016/j.energy.2021.120140_bib42
Wojdyga (10.1016/j.energy.2021.120140_bib8) 2014; 3
Korpela (10.1016/j.energy.2021.120140_bib30) 2017; 116
Ianakiev (10.1016/j.energy.2021.120140_bib12) 2017; 12
(10.1016/j.energy.2021.120140_bib15) 2017; 146
(10.1016/j.energy.2021.120140_bib22) 2004
(10.1016/j.energy.2021.120140_bib31) 2017
(10.1016/j.energy.2021.120140_bib21) 2017
Systemes (10.1016/j.energy.2021.120140_bib43)
Chen (10.1016/j.energy.2021.120140_bib16) 2012; 89
Zimmerman (10.1016/j.energy.2021.120140_bib19) 2019; 12
Vandermeulen (10.1016/j.energy.2021.120140_bib23) 2018; 151
Wasserfall (10.1016/j.energy.2021.120140_bib35) 2019
Li (10.1016/j.energy.2021.120140_bib17) 2012; 45
Guelpa (10.1016/j.energy.2021.120140_bib26) 2017; 137
Hering (10.1016/j.energy.2021.120140_bib39) 2020
(10.1016/j.energy.2021.120140_bib1) 2019
Neirotti (10.1016/j.energy.2021.120140_bib14) 2019; 12
Sandou (10.1016/j.energy.2021.120140_bib4) 2005
Müller (10.1016/j.energy.2021.120140_bib37) 2016
Gurobi Optimization (10.1016/j.energy.2021.120140_bib45)
Vanhoudt (10.1016/j.energy.2021.120140_bib27) 2014; 63
Claessens (10.1016/j.energy.2021.120140_bib33) 2018; 159
(10.1016/j.energy.2021.120140_bib44) 2020
Basciotti (10.1016/j.energy.2021.120140_bib28) 2011
Patteeuw (10.1016/j.energy.2021.120140_bib25) 2014
10.1016/j.energy.2021.120140_bib9
References_xml – volume: 30
  start-page: 856
  year: 2012
  end-page: 865
  ident: bib13
  article-title: The performance of a high solar fraction seasonal storage district heating system – five years of operation
  publication-title: Energy Procedia
– year: 2020
  ident: bib39
  article-title: Design optimization of a heating network with multiple heat pumps using Mixed Integer Quadratically Constrained Programming
  publication-title: Proceedings OF ecos 2020 - the 33RD international conference ON
– volume: 159
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib33
  article-title: Dirk Vanhoudt, johan desmedt, and frederik ruelens. Model-free control of thermostatically controlled loads connected to a district heating network
  publication-title: Energy Build
– start-page: 107
  year: 2003
  end-page: 114
  ident: bib41
  article-title: Simplified models to simulate part load performances of air conditioning equipments
  publication-title: Proc. IBPSA 8th Int. Conf. Building Simulation ’03
– reference: Marco Cozzini, Simone Buffa, Ilyes Ben Hassine, and Jacopo Vivian. Low- and high-level controls for low temperature district heating and cooling networks: Fifth generation, low temperature, high Exergy district heating and cooling networks: FLEXYNETS.
– volume: 9
  start-page: 118
  year: 2018
  end-page: 127
  ident: bib10
  article-title: Combined economic dispatch considering the time-delay of district heating network and multi-regional indoor temperature control
  publication-title: IEEE Transactions on Sustainable Energy
– year: 2017
  ident: bib31
  publication-title: Optimal control of district heating systems using dynamic simulation and mixed integer linear programming
– volume: 37
  start-page: 37
  year: 2009
  end-page: 49
  ident: bib11
  article-title: Dynamic model and control of heat exchanger networks for district heating
  publication-title: Hungarian Journal of Industrial Chemistry Veszprém
– volume: 139
  start-page: 289
  year: 2017
  end-page: 297
  ident: bib7
  article-title: Dynamic modelling of local low-temperature heating grids: a case study for Norway
  publication-title: Energy
– volume: 12
  start-page: 321
  year: 2019
  ident: bib14
  article-title: Analysis of different strategies for lowering the operation temperature in existing district heating networks
  publication-title: Energies
– start-page: 3
  year: 2016
  end-page: 9
  ident: bib37
  article-title: AixLib - an open-source Modelica library within the IEA - EBC annex 60 framework
  publication-title: Proceedings of the CESBP central European symposium on building physics and BauSIM 2016
– volume: 3
  start-page: 237
  year: 2014
  ident: bib8
  article-title: Predicting heat demand for a district heating systems
  publication-title: Int J Energy Power Eng
– year: 2010
  ident: bib24
  publication-title: Deployment of agent based load control in district heating systems
– volume: 63
  start-page: 531
  year: 2014
  end-page: 543
  ident: bib27
  article-title: An actively controlled residential heat pump: potential on peak shaving and maximization of self-consumption of renewable energy
  publication-title: Renew Energy
– start-page: 1195
  year: 2016
  end-page: 1200
  ident: bib32
  article-title: Farahani, Zofia Lukszo, Tamas Keviczky, Bart de Schutter, and Richard M. Murray. Robust model predictive control for an uncertain smart thermal grid
  publication-title: European control conference (ECC)
– volume: 151
  start-page: 103
  year: 2018
  end-page: 115
  ident: bib23
  article-title: Controlling district heating and cooling networks to unlock flexibility: a review
  publication-title: Energy
– ident: bib43
  article-title: FMPy
– volume: 12
  year: 2017
  ident: bib12
  article-title: Innovative system for delivery of low temperature district heating
  publication-title: International Journal of Sustainable Energy Planning and Management
– volume: 75
  start-page: 714
  year: 2015
  end-page: 721
  ident: bib29
  article-title: Optimal integration of solar energy in a district heating network
  publication-title: Renew Energy
– year: 2011
  ident: bib28
  article-title: Sensible heat storage in district heating networks: a novel control strategy using the network as storage
  publication-title: 6th international renewable energy storage conference and exhibition (IRES 2011)
– volume: 12
  year: 2019
  ident: bib19
  article-title: Achieving lower district heating network temperatures using feed-forward MPC
  publication-title: Materials
– year: 2004
  ident: bib22
  publication-title: Global modelling and simulation of a district heating network
– volume: 146
  start-page: 55
  year: 2017
  end-page: 64
  ident: bib15
  article-title: Model predictive control for demand response of domestic hot water preparation in ultra-low temperature district heating systems
  publication-title: Energy Build
– year: 2005
  ident: bib4
  article-title: Predictive control of a complex district heating network
  publication-title: Proceedings of the 44th IEEE conference on decision and control, and European control conference ECC05 december 12 - 15
– volume: 89
  start-page: 30
  year: 2012
  end-page: 36
  ident: bib16
  article-title: Condensing boiler applications in the process industry
  publication-title: Appl Energy
– volume: 19
  start-page: 723
  year: 2009
  end-page: 731
  ident: bib20
  article-title: Architectures for distributed and hierarchical model predictive control – a review
  publication-title: J Process Contr
– volume: 106
  start-page: 275
  year: 2016
  end-page: 285
  ident: bib40
  article-title: Partial load efficiency degradation of a water-to-water heat pump under fixed set-point control
  publication-title: Appl Therm Eng
– volume: 36
  start-page: 301
  year: 2018
  end-page: 308
  ident: bib3
  article-title: A comparative study for simulating heat transport in large district heating networks
  publication-title: International Journal of Heat and Technology
– volume: 137
  start-page: 706
  year: 2017
  end-page: 714
  ident: bib26
  article-title: Peak-shaving in district heating systems through optimal management of the thermal request of buildings
  publication-title: Energy
– year: 2020
  ident: bib44
  publication-title: BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. BDEW-Strompreisanalyse Januar
– volume: 2–4
  start-page: 3250
  year: 2019
  end-page: 3257
  ident: bib34
  article-title: Economic and ecologic evaluation of low temperature waste heat integration into existing district heating
  publication-title: Proceedings of the 16th IBPSA Conference Rome, Italy, Sept.
– volume: 116
  start-page: 310
  year: 2017
  end-page: 319
  ident: bib30
  article-title: Utilization of district heating networks to provide flexibility in CHP production
  publication-title: Energy Procedia
– volume: 68
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib5
  article-title: 4th generation district heating (4GDH)
  publication-title: Energy
– start-page: 953
  year: 2019
  end-page: 965
  ident: bib35
  article-title: Efficient formulation for optimizing temperature dependent energy systems with mixed-integer quadratically constrained programming
  publication-title: Proceedings of ECOS
– ident: bib45
  article-title: Gurobi optimizer reference manual
– volume: 151
  start-page: 158
  year: 2017
  end-page: 169
  ident: bib38
  article-title: Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems
  publication-title: Energy Convers Manag
– reference: Thomas Nussbaumer, Stefan Thalmann, Andres Jenni, and Joachim Ködel. Planungshandbuch Fernwärme: Schlussbericht: Version 1.1.
– volume: 104
  start-page: 504
  year: 2019
  end-page: 522
  ident: bib6
  article-title: 5th generation district heating and cooling systems: a review of existing cases in Europe
  publication-title: Renew Sustain Energy Rev
– volume: 45
  start-page: 237
  year: 2012
  end-page: 246
  ident: bib17
  article-title: Energy and exergy analysis of low temperature district heating network
  publication-title: Energy
– volume: 117
  start-page: 478
  year: 2016
  end-page: 484
  ident: bib36
  article-title: Workflow automation for combined modeling of buildings and district energy systems
  publication-title: Energy
– year: 2019
  ident: bib1
  article-title: The European green deal: communication from the commission to the European Parliament
– year: 2014
  ident: bib25
  article-title: Residential buildings with heat pumps, a verified bottom-up model for demand side management studies
  publication-title: Proceedings of the Ninth International Conference on System Simulation in Buildings - SSB
– year: 2017
  ident: bib21
  publication-title: Smart control of a district heating network with high share of low temperature waste heat
– year: 2020
  ident: bib2
  article-title: EU Energy in figures: Statistical pocketbook 2020
– volume: 106
  start-page: 275
  year: 2016
  ident: 10.1016/j.energy.2021.120140_bib40
  article-title: Partial load efficiency degradation of a water-to-water heat pump under fixed set-point control
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.05.193
– volume: 3
  start-page: 237
  issue: 5
  year: 2014
  ident: 10.1016/j.energy.2021.120140_bib8
  article-title: Predicting heat demand for a district heating systems
  publication-title: Int J Energy Power Eng
  doi: 10.11648/j.ijepe.20140305.13
– year: 2011
  ident: 10.1016/j.energy.2021.120140_bib28
  article-title: Sensible heat storage in district heating networks: a novel control strategy using the network as storage
– start-page: 1195
  year: 2016
  ident: 10.1016/j.energy.2021.120140_bib32
  article-title: Farahani, Zofia Lukszo, Tamas Keviczky, Bart de Schutter, and Richard M. Murray. Robust model predictive control for an uncertain smart thermal grid
– volume: 159
  start-page: 1
  year: 2018
  ident: 10.1016/j.energy.2021.120140_bib33
  article-title: Dirk Vanhoudt, johan desmedt, and frederik ruelens. Model-free control of thermostatically controlled loads connected to a district heating network
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.08.052
– volume: 45
  start-page: 237
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2021.120140_bib17
  article-title: Energy and exergy analysis of low temperature district heating network
  publication-title: Energy
  doi: 10.1016/j.energy.2012.03.056
– volume: 139
  start-page: 289
  year: 2017
  ident: 10.1016/j.energy.2021.120140_bib7
  article-title: Dynamic modelling of local low-temperature heating grids: a case study for Norway
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.086
– volume: 89
  start-page: 30
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2021.120140_bib16
  article-title: Condensing boiler applications in the process industry
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.11.020
– volume: 117
  start-page: 478
  year: 2016
  ident: 10.1016/j.energy.2021.120140_bib36
  article-title: Workflow automation for combined modeling of buildings and district energy systems
  publication-title: Energy
  doi: 10.1016/j.energy.2016.04.023
– volume: 75
  start-page: 714
  issue: 3
  year: 2015
  ident: 10.1016/j.energy.2021.120140_bib29
  article-title: Optimal integration of solar energy in a district heating network
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.10.055
– year: 2017
  ident: 10.1016/j.energy.2021.120140_bib31
– volume: 19
  start-page: 723
  issue: 5
  year: 2009
  ident: 10.1016/j.energy.2021.120140_bib20
  article-title: Architectures for distributed and hierarchical model predictive control – a review
  publication-title: J Process Contr
  doi: 10.1016/j.jprocont.2009.02.003
– year: 2010
  ident: 10.1016/j.energy.2021.120140_bib24
– start-page: 107
  year: 2003
  ident: 10.1016/j.energy.2021.120140_bib41
  article-title: Simplified models to simulate part load performances of air conditioning equipments
  publication-title: Proc. IBPSA 8th Int. Conf. Building Simulation ’03
– volume: 116
  start-page: 310
  year: 2017
  ident: 10.1016/j.energy.2021.120140_bib30
  article-title: Utilization of district heating networks to provide flexibility in CHP production
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.05.077
– year: 2014
  ident: 10.1016/j.energy.2021.120140_bib25
  article-title: Residential buildings with heat pumps, a verified bottom-up model for demand side management studies
  publication-title: Proceedings of the Ninth International Conference on System Simulation in Buildings - SSB
– volume: 12
  start-page: 321
  issue: 2
  year: 2019
  ident: 10.1016/j.energy.2021.120140_bib14
  article-title: Analysis of different strategies for lowering the operation temperature in existing district heating networks
  publication-title: Energies
  doi: 10.3390/en12020321
– volume: 151
  start-page: 158
  year: 2017
  ident: 10.1016/j.energy.2021.120140_bib38
  article-title: Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.08.072
– volume: 137
  start-page: 706
  issue: 12
  year: 2017
  ident: 10.1016/j.energy.2021.120140_bib26
  article-title: Peak-shaving in district heating systems through optimal management of the thermal request of buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.107
– year: 2019
  ident: 10.1016/j.energy.2021.120140_bib1
– volume: 37
  start-page: 37
  year: 2009
  ident: 10.1016/j.energy.2021.120140_bib11
  article-title: Dynamic model and control of heat exchanger networks for district heating
  publication-title: Hungarian Journal of Industrial Chemistry Veszprém
– ident: 10.1016/j.energy.2021.120140_bib42
– ident: 10.1016/j.energy.2021.120140_bib43
– volume: 12
  year: 2017
  ident: 10.1016/j.energy.2021.120140_bib12
  article-title: Innovative system for delivery of low temperature district heating
  publication-title: International Journal of Sustainable Energy Planning and Management
– volume: 30
  start-page: 856
  year: 2012
  ident: 10.1016/j.energy.2021.120140_bib13
  article-title: The performance of a high solar fraction seasonal storage district heating system – five years of operation
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2012.11.097
– year: 2004
  ident: 10.1016/j.energy.2021.120140_bib22
– year: 2020
  ident: 10.1016/j.energy.2021.120140_bib2
– volume: 36
  start-page: 301
  issue: 1
  year: 2018
  ident: 10.1016/j.energy.2021.120140_bib3
  article-title: A comparative study for simulating heat transport in large district heating networks
  publication-title: International Journal of Heat and Technology
  doi: 10.18280/ijht.360140
– year: 2017
  ident: 10.1016/j.energy.2021.120140_bib21
– start-page: 3
  year: 2016
  ident: 10.1016/j.energy.2021.120140_bib37
  article-title: AixLib - an open-source Modelica library within the IEA - EBC annex 60 framework
– year: 2005
  ident: 10.1016/j.energy.2021.120140_bib4
  article-title: Predictive control of a complex district heating network
– ident: 10.1016/j.energy.2021.120140_bib45
– volume: 104
  start-page: 504
  year: 2019
  ident: 10.1016/j.energy.2021.120140_bib6
  article-title: 5th generation district heating and cooling systems: a review of existing cases in Europe
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.12.059
– volume: 63
  start-page: 531
  issue: 4
  year: 2014
  ident: 10.1016/j.energy.2021.120140_bib27
  article-title: An actively controlled residential heat pump: potential on peak shaving and maximization of self-consumption of renewable energy
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2013.10.021
– year: 2020
  ident: 10.1016/j.energy.2021.120140_bib44
– volume: 2–4
  start-page: 3250
  year: 2019
  ident: 10.1016/j.energy.2021.120140_bib34
  article-title: Economic and ecologic evaluation of low temperature waste heat integration into existing district heating
  publication-title: Proceedings of the 16th IBPSA Conference Rome, Italy, Sept.
– volume: 146
  start-page: 55
  year: 2017
  ident: 10.1016/j.energy.2021.120140_bib15
  article-title: Model predictive control for demand response of domestic hot water preparation in ultra-low temperature district heating systems
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.04.023
– volume: 151
  start-page: 103
  year: 2018
  ident: 10.1016/j.energy.2021.120140_bib23
  article-title: Controlling district heating and cooling networks to unlock flexibility: a review
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.034
– volume: 68
  start-page: 1
  year: 2014
  ident: 10.1016/j.energy.2021.120140_bib5
  article-title: 4th generation district heating (4GDH)
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.089
– year: 2020
  ident: 10.1016/j.energy.2021.120140_bib39
  article-title: Design optimization of a heating network with multiple heat pumps using Mixed Integer Quadratically Constrained Programming
– ident: 10.1016/j.energy.2021.120140_bib9
– volume: 12
  issue: 15
  year: 2019
  ident: 10.1016/j.energy.2021.120140_bib19
  article-title: Achieving lower district heating network temperatures using feed-forward MPC
  publication-title: Materials
  doi: 10.3390/ma12152465
– start-page: 953
  year: 2019
  ident: 10.1016/j.energy.2021.120140_bib35
  article-title: Efficient formulation for optimizing temperature dependent energy systems with mixed-integer quadratically constrained programming
  publication-title: Proceedings of ECOS
– volume: 9
  start-page: 118
  issue: 1
  year: 2018
  ident: 10.1016/j.energy.2021.120140_bib10
  article-title: Combined economic dispatch considering the time-delay of district heating network and multi-regional indoor temperature control
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2017.2718031
SSID ssj0005899
Score 2.5249176
Snippet District heating networks transport thermal energy from one or more sources to a plurality of consumers. Lowering the operating temperatures of district...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120140
SubjectTerms case studies
Computers
District heating
electric power
Energy conservation
Energy consumption
Heat
Heat exchangers
Heat pump
Heat pumps
Heat sources
Heating
Low temperature
Low-temperature district heating
Mixed integer
Mixed-integer quadratically-constrained programming
Model predictive control
Networks
Operating temperature
Optimization
Predictive control
Software in the loop
temperature
Temperature control
Temperature dependence
Thermal energy
Waste heat
Title Temperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming
URI https://dx.doi.org/10.1016/j.energy.2021.120140
https://www.proquest.com/docview/2524411712
https://www.proquest.com/docview/2561538696
Volume 224
WOSCitedRecordID wos000640927500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKhwQvCAbTCgMZCfGCXDVxEseP05RpoGqA1KG-RW5ss05tWtZ09J_wv_hF-Npxmo2PwQMvUZU4ieV76nt9c841Qq-E5iJmWpMBLxQx66-QcBpIInQQCiG0DrkVCg_Z6Wk6HvMPnc53r4W5mrGyTDcbvvyvpjbnjLFBOvsP5m4eak6Y38bo5mjMbo5_Z3hlImFXKbkholsR5GzxlVStixJq5k6LCoJFS34uHSXc5WZhk7QZMDTk1E6JoA20z7LMjOlGSQLZRBANf1wLCUAy5oZiyRBxwsYTysoQgP019_7RfwJwgkOodLpx5PomHXFiSyO60B7KnjRCoiPjU81QQP5Wnc9V9Sb73GByJOZmDeBov9najIwjl8Gl8TkwedYbT950xIB2riNscbJcAq4R4XxqTZM0GZA4cjW6-spN4ymjxLjhuD3Ph2HUmqmDX_oPl8q46Cs7Dn3oQz8IYRW69ZeeI3D6Pj8-Gw7zUTYevV5-IbCTGXzxr7d1uYN2QhbztIt2Dt9m43db4lFqdzVt-u0FnZZ1-POLfxcw3QgdbDw0eoge1AsZfOgA-Ah1VLmL7nmd-2oX7WVbDaVpWDuR1WP0rYVQXCMULzQW-AZCsUcorhGKa4RiQCi2CMVbhOIaodggFF9DKL6GUNxCKG4h9Ak6O85GRyek3h-EFDRhFZFmsRBLbryInjApBZUDEUF5oihiPJhEkY5pwWksaBJJIVKmYjpJEj1JJ2kM7fdQt1yUah9hRo2b1zKIdaoiOii4KmIGlpJM8TSIeoh6I-RFXTwfOjrLPUvyInemy8F0uTNdD5HmrqUrHnNLe-btm9cBsAtsc4PPW-488HDI67lolYexid2DgAVhD71sLhv3Ad8ERakWa2gDK7404cnTPz_iGbq__UceoG51uVbP0d3iqpquLl_UGP8BECXu3w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+control+of+a+low-temperature+district+heating+network+with+Model+Predictive+Control+and+Mixed-Integer+Quadratically+Constrained+Programming&rft.jtitle=Energy+%28Oxford%29&rft.au=Hering%2C+Dominik&rft.au=Cansev%2C+Mehmet+Ege&rft.au=Tamassia%2C+Eugenio&rft.au=Xhonneux%2C+Andr%C3%A9&rft.date=2021-06-01&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=224&rft.spage=1&rft_id=info:doi/10.1016%2Fj.energy.2021.120140&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon