gLaSDI: Parametric physics-informed greedy latent space dynamics identification
A parametric adaptive physics-informed greedy Latent Space Dynamics Identification (gLaSDI) method is proposed for accurate, efficient, and robust data-driven reduced-order modeling of high-dimensional nonlinear dynamical systems. In the proposed gLaSDI framework, an autoencoder discovers intrinsic...
Saved in:
| Published in: | Journal of computational physics Vol. 489; p. 112267 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
15.09.2023
Elsevier |
| Subjects: | |
| ISSN: | 0021-9991, 1090-2716 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A parametric adaptive physics-informed greedy Latent Space Dynamics Identification (gLaSDI) method is proposed for accurate, efficient, and robust data-driven reduced-order modeling of high-dimensional nonlinear dynamical systems. In the proposed gLaSDI framework, an autoencoder discovers intrinsic nonlinear latent representations of high-dimensional data, while dynamics identification (DI) models capture local latent-space dynamics. An interactive training algorithm is adopted for the autoencoder and local DI models, which enables identification of simple latent-space dynamics and enhances accuracy and efficiency of data-driven reduced-order modeling. To maximize and accelerate the exploration of the parameter space for the optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed residual-based error indicator and random-subset evaluation is introduced to search for the optimal training samples on the fly. Further, to exploit local latent-space dynamics captured by the local DI models for an improved modeling accuracy with a minimum number of local DI models in the parameter space, a k-nearest neighbor convex interpolation scheme is employed. The effectiveness of the proposed framework is demonstrated by modeling various nonlinear dynamical problems, including Burgers equations, nonlinear heat conduction, and radial advection. The proposed adaptive greedy sampling outperforms the conventional predefined uniform sampling in terms of accuracy. Compared with the high-fidelity models, gLaSDI achieves 17 to 2,658× speed-up with 1 to 5% relative errors.
•Non-intrusive reduced-order modeling based on physics-informed greedy latent-space dynamics identification is proposed.•An autoencoder and parametric models are trained interactively to identify intrinsic and simple latent-space dynamics.•A physics-informed adaptive greedy sampling algorithm is introduced to search for optimal training samples on the fly.•A kNN convex interpolation scheme is applied to exploit local latent-space dynamics for enhanced generalization.•The proposed method achieves 17-2,658x speed-up and 1-5% relative errors for various nonlinear dynamical problems. |
|---|---|
| AbstractList | A parametric adaptive physics-informed greedy Latent Space Dynamics Identification (gLaSDI) method is proposed for accurate, efficient, and robust data-driven reduced-order modeling of high-dimensional nonlinear dynamical systems. In the proposed gLaSDI framework, an autoencoder discovers intrinsic nonlinear latent representations of high-dimensional data, while dynamics identification (DI) models capture local latent-space dynamics. Here, an interactive training algorithm is adopted for the autoencoder and local DI models, which enables identification of simple latent-space dynamics and enhances accuracy and efficiency of data-driven reduced-order modeling. To maximize and accelerate the exploration of the parameter space for the optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed residual-based error indicator and random-subset evaluation is introduced to search for the optimal training samples on the fly. Further, to exploit local latent-space dynamics captured by the local DI models for an improved modeling accuracy with a minimum number of local DI models in the parameter space, a <emk -nearest neighbor convex interpolation scheme is employed. The effectiveness of the proposed framework is demonstrated by modeling various nonlinear dynamical problems, including Burgers equations, nonlinear heat conduction, and radial advection. The proposed adaptive greedy sampling outperforms the conventional predefined uniform sampling in terms of accuracy. Compared with the high-fidelity models, gLaSDI achieves 17 to 2,658× speed-up with 1 to 5% relative errors. A parametric adaptive physics-informed greedy Latent Space Dynamics Identification (gLaSDI) method is proposed for accurate, efficient, and robust data-driven reduced-order modeling of high-dimensional nonlinear dynamical systems. In the proposed gLaSDI framework, an autoencoder discovers intrinsic nonlinear latent representations of high-dimensional data, while dynamics identification (DI) models capture local latent-space dynamics. An interactive training algorithm is adopted for the autoencoder and local DI models, which enables identification of simple latent-space dynamics and enhances accuracy and efficiency of data-driven reduced-order modeling. To maximize and accelerate the exploration of the parameter space for the optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed residual-based error indicator and random-subset evaluation is introduced to search for the optimal training samples on the fly. Further, to exploit local latent-space dynamics captured by the local DI models for an improved modeling accuracy with a minimum number of local DI models in the parameter space, a k-nearest neighbor convex interpolation scheme is employed. The effectiveness of the proposed framework is demonstrated by modeling various nonlinear dynamical problems, including Burgers equations, nonlinear heat conduction, and radial advection. The proposed adaptive greedy sampling outperforms the conventional predefined uniform sampling in terms of accuracy. Compared with the high-fidelity models, gLaSDI achieves 17 to 2,658× speed-up with 1 to 5% relative errors. •Non-intrusive reduced-order modeling based on physics-informed greedy latent-space dynamics identification is proposed.•An autoencoder and parametric models are trained interactively to identify intrinsic and simple latent-space dynamics.•A physics-informed adaptive greedy sampling algorithm is introduced to search for optimal training samples on the fly.•A kNN convex interpolation scheme is applied to exploit local latent-space dynamics for enhanced generalization.•The proposed method achieves 17-2,658x speed-up and 1-5% relative errors for various nonlinear dynamical problems. |
| ArticleNumber | 112267 |
| Author | Fries, William D. Belof, Jonathan L. Chen, Jiun-Shyan He, Xiaolong Choi, Youngsoo |
| Author_xml | – sequence: 1 givenname: Xiaolong orcidid: 0000-0002-5307-0681 surname: He fullname: He, Xiaolong email: xih251@eng.ucsd.edu organization: Department of Structural Engineering, University of California, San Diego, La Jolla, CA, 92093, USA – sequence: 2 givenname: Youngsoo surname: Choi fullname: Choi, Youngsoo organization: Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA – sequence: 3 givenname: William D. surname: Fries fullname: Fries, William D. organization: Applied Mathematics, School of Mathematical Sciences, University of Arizona, Tucson, AZ, 85721, USA – sequence: 4 givenname: Jonathan L. surname: Belof fullname: Belof, Jonathan L. organization: Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA – sequence: 5 givenname: Jiun-Shyan surname: Chen fullname: Chen, Jiun-Shyan organization: Department of Structural Engineering, University of California, San Diego, La Jolla, CA, 92093, USA |
| BackLink | https://www.osti.gov/servlets/purl/1999976$$D View this record in Osti.gov |
| BookMark | eNp9kE9LAzEQxYNUsFU_gLfF-9ZMtrvZ1ZPUf4VCBXsP6eykTWmzJQlCv72p68lDTwOP9xveeyM2cJ0jxu6Aj4FD9bAdb_EwFlwUYwAhKnnBhsAbngsJ1YANOReQN00DV2wUwpZzXpeTesgW67n-epk9Zp_a6z1FbzE7bI7BYsitM53fU5utPVF7zHY6kotZOGikrD06vU-uzLZJtMaijrZzN-zS6F2g2797zZZvr8vpRz5fvM-mz_Mci0rGHFviGttGrGRhJiVWq1LwupamXhkoyrqACsCIstaiWmlZghQFJR1Kw7HA4prd92-7EK0KaCPhBjvnCKOC1LORVTLJ3oS-C8GTUcn3mzJ6bXcKuDptp7YqbadO26l-u0TCP_Lg7V7741nmqWco1f625E-xyCG11p9StZ09Q_8Akf-ItQ |
| CitedBy_id | crossref_primary_10_1016_j_cma_2025_117799 crossref_primary_10_1016_j_cma_2025_117920 crossref_primary_10_1002_nme_7634 crossref_primary_10_1016_j_cma_2024_117144 crossref_primary_10_1007_s10483_025_3295_6 crossref_primary_10_1109_TCI_2024_3434541 crossref_primary_10_1007_s00193_024_01177_2 crossref_primary_10_1016_j_tsep_2025_103381 crossref_primary_10_1007_s11004_025_10223_3 crossref_primary_10_1016_j_apenergy_2024_122914 crossref_primary_10_1016_j_cma_2023_116535 crossref_primary_10_1016_j_cma_2025_117807 crossref_primary_10_1016_j_cma_2024_116998 crossref_primary_10_1016_j_egyai_2025_100567 crossref_primary_10_1016_j_cma_2024_116978 crossref_primary_10_1088_2632_2153_add23a |
| Cites_doi | 10.1016/j.cma.2021.113997 10.1002/num.21835 10.1016/j.jcp.2020.109845 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N 10.1073/pnas.1906995116 10.1002/nme.4743 10.1016/j.jmps.2021.104385 10.1016/j.jcp.2018.05.019 10.1109/9.29399 10.1126/science.290.5500.2323 10.1137/17M1140571 10.1016/j.cma.2022.115436 10.1115/1.2179459 10.1002/fld.4998 10.1098/rsta.2021.0206 10.1002/nme.4797 10.1002/nme.2746 10.1016/j.compfluid.2018.07.021 10.3389/fmats.2019.00110 10.1038/s43588-021-00171-3 10.1002/nme.4552 10.1016/j.jcp.2021.110841 10.1016/j.jcp.2020.109787 10.1073/pnas.1517384113 10.1016/j.cma.2020.113433 10.1002/nme.6516 10.1016/j.physd.2020.132401 10.1007/s00466-018-1611-8 10.1007/s00158-019-02393-6 10.3390/math7080757 10.1137/19M1242963 10.1016/j.cma.2021.113813 10.1137/17M1120531 10.1016/j.cma.2019.112791 10.1186/s40323-021-00213-5 10.1016/j.camwa.2016.01.032 10.1016/j.jcp.2020.109229 10.1002/nme.1798 10.1016/j.camwa.2020.06.009 10.1016/j.cma.2021.114341 10.1016/j.ast.2012.01.006 10.1016/j.cma.2021.114296 10.1007/s10915-014-9976-0 10.3390/math9141690 10.1016/j.cma.2016.03.025 10.1080/03036758.2020.1863237 10.1146/annurev.fl.25.010193.002543 10.1017/jfm.2016.803 10.1016/j.jmsy.2020.06.017 10.1115/1.2754324 10.1016/j.jcp.2019.108973 10.1007/s00466-014-1011-7 10.1126/science.1165893 10.1126/science.1127647 10.1016/j.cirpj.2020.02.002 10.12989/imm.2013.6.4.395 10.1103/PhysRevD.97.014021 10.1016/j.cma.2021.114034 10.1137/19M1292448 10.1007/s00170-017-1045-z 10.1007/BF00175355 10.1615/JMachLearnModelComput.2021036132 10.1016/j.advwatres.2021.104098 10.1016/j.cma.2021.114259 10.2514/1.J058943 10.1016/j.compfluid.2018.01.035 10.2514/1.J051354 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Inc. |
| Copyright_xml | – notice: 2023 Elsevier Inc. |
| CorporateAuthor | Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
| CorporateAuthor_xml | – name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
| DBID | AAYXX CITATION OIOZB OTOTI |
| DOI | 10.1016/j.jcp.2023.112267 |
| DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1090-2716 |
| ExternalDocumentID | 1999976 10_1016_j_jcp_2023_112267 S0021999123003625 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS EJD FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SHN SPG T9H UQL WUQ ZY4 ~HD OIOZB OTOTI RIG |
| ID | FETCH-LOGICAL-c367t-cde0acd92b73f45c6b520887f8bf135831611f258a26ba751723e35815f0c3c3 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001033012800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9991 |
| IngestDate | Tue Jun 25 16:20:42 EDT 2024 Tue Nov 18 21:49:57 EST 2025 Sat Nov 29 03:10:40 EST 2025 Fri Feb 23 02:36:11 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Physics-informed greedy algorithm Nonlinear dynamical systems Adaptive sampling Reduced order model Autoencoders Regression-based dynamics identification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-cde0acd92b73f45c6b520887f8bf135831611f258a26ba751723e35815f0c3c3 |
| Notes | AC52-07NA27344; LLNL-JRNL-834220; 21-FS-042; 21-SI-006 USDOE Laboratory Directed Research and Development (LDRD) Program USDOE National Nuclear Security Administration (NNSA) LLNL-JRNL-834220 |
| ORCID | 0000-0002-5307-0681 0000000253070681 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1999976 |
| ParticipantIDs | osti_scitechconnect_1999976 crossref_citationtrail_10_1016_j_jcp_2023_112267 crossref_primary_10_1016_j_jcp_2023_112267 elsevier_sciencedirect_doi_10_1016_j_jcp_2023_112267 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-15 |
| PublicationDateYYYYMMDD | 2023-09-15 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Kaneko, Wei, He, Chen, Yoshimura (br0350) 2021; 151 Safonov, Chiang (br0110) 1989; 34 Kadeethum, O'Malley, Fuhg, Choi, Lee, Viswanathan, Bouklas (br0570) 2021; 1 Mojgani, Balajewicz (br0430) 2017 Choi, Carlberg (br0230) 2019; 41 Babuška, Melenk (br0930) 1997; 40 Lee, Chen (br0330) 2013; 96 Tapia, Khairallah, Matthews, King, Elwany (br0470) 2018; 94 Patera, Rozza (br0100) 2007 Lee, Carlberg (br0160) 2020; 404 Iliescu, Wang (br0280) 2014; 30 Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, Lerer (br0910) 2017 Schmidt, Lipson (br0660) 2009; 324 Bai, Peng (br0770) 2021; 8 Biros, Ghattas, Heinkenschloss, Keyes, Mallick, Tenorio, van Bloemen Waanders, Willcox, Marzouk, Biegler (br0070) 2011 Han, Görtz, Zimmermann (br0500) 2013; 25 Mirhoseini, Zahr (br0450) 2021 Kadeethum, Ballarin, Choi, O'Malley, Yoon, Bouklas (br0590) 2022 He, Chen (br0980) 2020; 363 Kim, Choi, Widemann, Zohdi (br0150) 2020 Khodabakhshi, Willcox (br0860) 2022; 389 He, Chen, Marodon (br0320) 2019; 63 Lee, Chen (br0340) 2013; 6 Peherstorfer, Willcox (br0680) 2016; 306 Kingma, Ba (br1000) 2014 McLaughlin, Peterson, Ye (br0250) 2016; 71 DeMers, Cottrell (br0120) 1993 Lu, Tartakovsky (br0420) 2020; 407 Kadeethum, O'Malley, Choi, Viswanathan, Bouklas, Yoon (br0580) 2021 Gogu (br0360) 2015; 101 McQuarrie, Khodabakhshi, Willcox (br0810) 2021 Peherstorfer (br0850) 2020; 42 Hoang, Choi, Carlberg (br0170) 2021; 384 Kutz (br0530) 2017; 814 Swischuk, Kramer, Huang, Willcox (br0820) 2020; 58 Cranmer, Sanchez Gonzalez, Battaglia, Xu, Cranmer, Spergel, Ho (br0710) 2020; 33 Hoang, Chowdhary, Lee, Ray (br0640) 2022; 389 Wang, Sturler, Paulino (br0030) 2007; 69 Cheung, Choi, Copeland, Huynh (br0190) 2022 Xie, Zhang, Webster (br0630) 2019; 7 Geelen, Wright, Willcox (br0780) 2022 Hughes, Buchan (br0290) 2020; 121 Choi, Oxberry, White, Kirchdoerfer (br0370) 2019 Huang, Wang, Yang (br0490) 2015 Choi, Boncoraglio, Anderson, Amsallem, Farhat (br0390) 2020; 423 Copeland, Cheung, Huynh, Choi (br0180) 2022; 388 Champion, Lusch, Kutz, Brunton (br0760) 2019; 116 Melville, Mooney (br0900) 2004 Chen, Marodon, Hu (br0310) 2015; 102 Lu, Tartakovsky (br0410) 2021; 2 Issan, Kramer (br0880) 2022 Roweis, Saul (br0970) 2000; 290 Kim, Azevedo, Thuerey, Kim, Gross, Solenthaler (br0620) 2019; vol. 38 McQuarrie, Huang, Willcox (br0840) 2021; 51 Kim, Wang, Choi (br0260) 2021; 9 Fries, He, Choi (br0400) 2022; 399 Paganini, de Oliveira, Nachman (br0540) 2018; 97 Settles (br0890) 2009 Berkooz, Holmes, Lumley (br0090) 1993; 25 Hinton, Salakhutdinov (br0130) 2006; 313 Stabile, Rozza (br0270) 2018; 173 Lauzon, Cheung, Shin, Choi, Copeland, Huynh (br0200) 2022 Morton, Jameson, Kochenderfer, Witherden (br0560) 2018; 31 Marjavaara, Lundström, Goel, Mack, Shyy (br0480) 2007; 129 Kim, Choi, Widemann, Zohdi (br0140) 2022; 451 Jain, McQuarrie, Kramer (br0830) 2021 He, He, Chen (br0960) 2021; 385 Yıldız, Goyal, Benner, Karasözen (br0870) 2021; 93 Bock, Aydin, Cyron, Huber, Kalidindi, Klusemann (br0520) 2019; 6 Elsken, Metzen, Hutter (br1020) 2019; 20 He, Kang, Wang (br0950) 2014; 54 Shepard (br0920) 1968 Qian, Seepersad, Joseph, Allen, Wu (br0460) 2006; 128 Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (br0990) 2016 Jones, Snider, Nassehi, Yon, Hicks (br0010) 2020; 29 Reiss, Schulze, Sesterhenn, Mehrmann (br0440) 2018; 40 Koza (br0650) 1994; 4 Carlberg, Choi, Sargsyan (br0240) 2018; 371 Li, Fan, Singh, Riley (br0750) 2019 Smith (br0060) 2013 McBane, Choi (br0380) 2021; 381 Fritzen, Haasdonk, Ryckelynck, Schöps (br0210) 2018; 23 Galbally, Fidkowski, Willcox, Ghattas (br0080) 2010; 81 Min, Lee, Yoon (br0550) 2017; 18 Choi, Brown, Arrighi, Anderson, Huynh (br0300) 2021; 424 Brunton, Proctor, Kutz (br0670) 2016; 113 Kadeethum, Ballarin, O'Malley, Choi, Bouklas, Yoon (br0600) 2022 Choi, Farhat, Murray, Saunders (br0050) 2015; 65 Guo, McQuarrie, Willcox (br0790) 2022 Swischuk, Mainini, Peherstorfer, Willcox (br0610) 2019; 179 Cranmer (br0720) 2020 Benner, Goyal, Kramer, Peherstorfer, Willcox (br0700) 2020; 372 Anderson, Andrej, Barker, Bramwell, Camier, Cerveny, Dobrev, Dudouit, Fisher, Kolev (br1010) 2021; 81 Liu, Fang, Dong, Xu (br0020) 2021; 58 Sahoo, Lampert, Martius (br0730) 2018 Wendland (br0940) 2004 White, Choi, Kudo (br0040) 2020; 61 Geelen, Willcox (br0800) 2022; 380 Han, Görtz (br0510) 2012; 50 Qian, Kramer, Peherstorfer, Willcox (br0690) 2020; 406 Choi, Coombs, Anderson (br0220) 2020; 42 Kusner, Paige, Hernández-Lobato (br0740) 2017 Carlberg (10.1016/j.jcp.2023.112267_br0240) 2018; 371 Smith (10.1016/j.jcp.2023.112267_br0060) 2013 Jain (10.1016/j.jcp.2023.112267_br0830) 2021 Roweis (10.1016/j.jcp.2023.112267_br0970) 2000; 290 Kim (10.1016/j.jcp.2023.112267_br0140) 2022; 451 Choi (10.1016/j.jcp.2023.112267_br0370) He (10.1016/j.jcp.2023.112267_br0950) 2014; 54 Babuška (10.1016/j.jcp.2023.112267_br0930) 1997; 40 Liu (10.1016/j.jcp.2023.112267_br0020) 2021; 58 Huang (10.1016/j.jcp.2023.112267_br0490) 2015 Geelen (10.1016/j.jcp.2023.112267_br0800) 2022; 380 Benner (10.1016/j.jcp.2023.112267_br0700) 2020; 372 Cheung (10.1016/j.jcp.2023.112267_br0190) Bock (10.1016/j.jcp.2023.112267_br0520) 2019; 6 Marjavaara (10.1016/j.jcp.2023.112267_br0480) 2007; 129 Hoang (10.1016/j.jcp.2023.112267_br0640) 2022; 389 Khodabakhshi (10.1016/j.jcp.2023.112267_br0860) 2022; 389 Guo (10.1016/j.jcp.2023.112267_br0790) Paszke (10.1016/j.jcp.2023.112267_br0910) 2017 Lee (10.1016/j.jcp.2023.112267_br0160) 2020; 404 Choi (10.1016/j.jcp.2023.112267_br0220) 2020; 42 Lee (10.1016/j.jcp.2023.112267_br0340) 2013; 6 Mojgani (10.1016/j.jcp.2023.112267_br0430) Issan (10.1016/j.jcp.2023.112267_br0880) Choi (10.1016/j.jcp.2023.112267_br0300) 2021; 424 Fritzen (10.1016/j.jcp.2023.112267_br0210) 2018; 23 Lauzon (10.1016/j.jcp.2023.112267_br0200) Sahoo (10.1016/j.jcp.2023.112267_br0730) 2018 Shepard (10.1016/j.jcp.2023.112267_br0920) 1968 He (10.1016/j.jcp.2023.112267_br0960) 2021; 385 Koza (10.1016/j.jcp.2023.112267_br0650) 1994; 4 Peherstorfer (10.1016/j.jcp.2023.112267_br0680) 2016; 306 Yıldız (10.1016/j.jcp.2023.112267_br0870) 2021; 93 Gogu (10.1016/j.jcp.2023.112267_br0360) 2015; 101 Cranmer (10.1016/j.jcp.2023.112267_br0710) 2020; 33 Galbally (10.1016/j.jcp.2023.112267_br0080) 2010; 81 Anderson (10.1016/j.jcp.2023.112267_br1010) 2021; 81 Berkooz (10.1016/j.jcp.2023.112267_br0090) 1993; 25 Chen (10.1016/j.jcp.2023.112267_br0310) 2015; 102 Hinton (10.1016/j.jcp.2023.112267_br0130) 2006; 313 Patera (10.1016/j.jcp.2023.112267_br0100) 2007 Choi (10.1016/j.jcp.2023.112267_br0390) 2020; 423 Kutz (10.1016/j.jcp.2023.112267_br0530) 2017; 814 Hoang (10.1016/j.jcp.2023.112267_br0170) 2021; 384 Cranmer (10.1016/j.jcp.2023.112267_br0720) 2020 Peherstorfer (10.1016/j.jcp.2023.112267_br0850) 2020; 42 McQuarrie (10.1016/j.jcp.2023.112267_br0810) Xie (10.1016/j.jcp.2023.112267_br0630) 2019; 7 Choi (10.1016/j.jcp.2023.112267_br0230) 2019; 41 Li (10.1016/j.jcp.2023.112267_br0750) Bai (10.1016/j.jcp.2023.112267_br0770) 2021; 8 Lu (10.1016/j.jcp.2023.112267_br0420) 2020; 407 Wendland (10.1016/j.jcp.2023.112267_br0940) 2004 Kingma (10.1016/j.jcp.2023.112267_br1000) Fries (10.1016/j.jcp.2023.112267_br0400) 2022; 399 Swischuk (10.1016/j.jcp.2023.112267_br0820) 2020; 58 Elsken (10.1016/j.jcp.2023.112267_br1020) 2019; 20 Choi (10.1016/j.jcp.2023.112267_br0050) 2015; 65 Qian (10.1016/j.jcp.2023.112267_br0460) 2006; 128 Qian (10.1016/j.jcp.2023.112267_br0690) 2020; 406 Lee (10.1016/j.jcp.2023.112267_br0330) 2013; 96 Stabile (10.1016/j.jcp.2023.112267_br0270) 2018; 173 Kadeethum (10.1016/j.jcp.2023.112267_br0600) Copeland (10.1016/j.jcp.2023.112267_br0180) 2022; 388 Abadi (10.1016/j.jcp.2023.112267_br0990) 2016 Champion (10.1016/j.jcp.2023.112267_br0760) 2019; 116 Kusner (10.1016/j.jcp.2023.112267_br0740) 2017 Wang (10.1016/j.jcp.2023.112267_br0030) 2007; 69 Kim (10.1016/j.jcp.2023.112267_br0260) 2021; 9 Morton (10.1016/j.jcp.2023.112267_br0560) 2018; 31 Kaneko (10.1016/j.jcp.2023.112267_br0350) 2021; 151 Tapia (10.1016/j.jcp.2023.112267_br0470) 2018; 94 Jones (10.1016/j.jcp.2023.112267_br0010) 2020; 29 Safonov (10.1016/j.jcp.2023.112267_br0110) 1989; 34 McQuarrie (10.1016/j.jcp.2023.112267_br0840) 2021; 51 Paganini (10.1016/j.jcp.2023.112267_br0540) 2018; 97 Kadeethum (10.1016/j.jcp.2023.112267_br0580) Iliescu (10.1016/j.jcp.2023.112267_br0280) 2014; 30 Schmidt (10.1016/j.jcp.2023.112267_br0660) 2009; 324 Biros (10.1016/j.jcp.2023.112267_br0070) 2011 DeMers (10.1016/j.jcp.2023.112267_br0120) 1993 Kadeethum (10.1016/j.jcp.2023.112267_br0590) 2022 Min (10.1016/j.jcp.2023.112267_br0550) 2017; 18 Hughes (10.1016/j.jcp.2023.112267_br0290) 2020; 121 Mirhoseini (10.1016/j.jcp.2023.112267_br0450) Kadeethum (10.1016/j.jcp.2023.112267_br0570) 2021; 1 Swischuk (10.1016/j.jcp.2023.112267_br0610) 2019; 179 Geelen (10.1016/j.jcp.2023.112267_br0780) McBane (10.1016/j.jcp.2023.112267_br0380) 2021; 381 Reiss (10.1016/j.jcp.2023.112267_br0440) 2018; 40 He (10.1016/j.jcp.2023.112267_br0980) 2020; 363 Han (10.1016/j.jcp.2023.112267_br0500) 2013; 25 Settles (10.1016/j.jcp.2023.112267_br0890) 2009 Han (10.1016/j.jcp.2023.112267_br0510) 2012; 50 McLaughlin (10.1016/j.jcp.2023.112267_br0250) 2016; 71 Kim (10.1016/j.jcp.2023.112267_br0620) 2019; vol. 38 Brunton (10.1016/j.jcp.2023.112267_br0670) 2016; 113 Lu (10.1016/j.jcp.2023.112267_br0410) 2021; 2 Melville (10.1016/j.jcp.2023.112267_br0900) 2004 Kim (10.1016/j.jcp.2023.112267_br0150) White (10.1016/j.jcp.2023.112267_br0040) 2020; 61 He (10.1016/j.jcp.2023.112267_br0320) 2019; 63 |
| References_xml | – volume: 121 start-page: 5647 year: 2020 end-page: 5666 ident: br0290 article-title: A discontinuous and adaptive reduced order model for the angular discretization of the Boltzmann transport equation publication-title: Int. J. Numer. Methods Eng. – volume: 128 start-page: 668 year: 2006 end-page: 677 ident: br0460 article-title: Building surrogate models based on detailed and approximate simulations publication-title: J. Mech. Des. – volume: 93 start-page: 2803 year: 2021 end-page: 2821 ident: br0870 article-title: Learning reduced-order dynamics for parametrized shallow water equations from data publication-title: Int. J. Numer. Methods Fluids – start-page: 74 year: 2004 ident: br0900 article-title: Diverse ensembles for active learning publication-title: Proceedings of the Twenty-First International Conference on Machine Learning – volume: 41 start-page: A26 year: 2019 end-page: A58 ident: br0230 article-title: Space–time least-squares Petrov–Galerkin projection for nonlinear model reduction publication-title: SIAM J. Sci. Comput. – volume: 97 year: 2018 ident: br0540 article-title: Calogan: simulating 3d high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks publication-title: Phys. Rev. D – volume: 29 start-page: 36 year: 2020 end-page: 52 ident: br0010 article-title: Characterising the digital twin: a systematic literature review publication-title: CIRP J. Manuf. Sci. Technol. – volume: 116 start-page: 22445 year: 2019 end-page: 22451 ident: br0760 article-title: Data-driven discovery of coordinates and governing equations publication-title: Proc. Natl. Acad. Sci. – volume: 81 start-page: 42 year: 2021 end-page: 74 ident: br1010 article-title: Mfem: a modular finite element methods library publication-title: Comput. Math. Appl. – volume: 25 start-page: 177 year: 2013 end-page: 189 ident: br0500 article-title: Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function publication-title: Aerosp. Sci. Technol. – start-page: 4442 year: 2018 end-page: 4450 ident: br0730 article-title: Learning equations for extrapolation and control publication-title: International Conference on Machine Learning – volume: 71 start-page: 2407 year: 2016 end-page: 2420 ident: br0250 article-title: Stabilized reduced order models for the advection–diffusion–reaction equation using operator splitting publication-title: Comput. Math. Appl. – volume: 65 start-page: 576 year: 2015 end-page: 597 ident: br0050 article-title: A practical factorization of a Schur complement for pde-constrained distributed optimal control publication-title: J. Sci. Comput. – start-page: 1945 year: 2017 end-page: 1954 ident: br0740 article-title: Grammar variational autoencoder publication-title: International Conference on Machine Learning – volume: 20 start-page: 1997 year: 2019 end-page: 2017 ident: br1020 article-title: Neural architecture search: a survey publication-title: J. Mach. Learn. Res. – year: 2022 ident: br0600 article-title: Reduced order modeling for flow and transport problems with barlow twins self-supervised learning – volume: 113 start-page: 3932 year: 2016 end-page: 3937 ident: br0670 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. – year: 2021 ident: br0810 article-title: Non-intrusive reduced-order models for parametric partial differential equations via data-driven operator inference – volume: 30 start-page: 641 year: 2014 end-page: 663 ident: br0280 article-title: Variational multiscale proper orthogonal decomposition: Navier-Stokes equations publication-title: Numer. Methods Partial Differ. Equ. – year: 2017 ident: br0910 article-title: Automatic differentiation in PyTorch – volume: 96 start-page: 599 year: 2013 end-page: 627 ident: br0330 article-title: Proper orthogonal decomposition-based model order reduction via radial basis functions for molecular dynamics systems publication-title: Int. J. Numer. Methods Eng. – year: 2021 ident: br0580 article-title: Continuous conditional generative adversarial networks for data-driven solutions of poroelasticity with heterogeneous material properties – volume: 399 year: 2022 ident: br0400 article-title: LaSDI: parametric latent space dynamics identification publication-title: Comput. Methods Appl. Mech. Eng. – volume: 389 year: 2022 ident: br0640 article-title: Projection-based model reduction of dynamical systems using space–time subspace and machine learning publication-title: Comput. Methods Appl. Mech. Eng. – volume: 384 year: 2021 ident: br0170 article-title: Domain-decomposition least-squares Petrov–Galerkin (dd-lspg) nonlinear model reduction publication-title: Comput. Methods Appl. Mech. Eng. – year: 2020 ident: br0720 article-title: Pysr: Fast & parallelized symbolic regression in Python/Julia – volume: 6 start-page: 395 year: 2013 end-page: 409 ident: br0340 article-title: Rbf-pod reduced-order modeling of DNA molecules under stretching and bending publication-title: Interact. Multiscale Mech. – volume: 40 start-page: A1322 year: 2018 end-page: A1344 ident: br0440 article-title: The shifted proper orthogonal decomposition: a mode decomposition for multiple transport phenomena publication-title: SIAM J. Sci. Comput. – volume: 50 start-page: 1885 year: 2012 end-page: 1896 ident: br0510 article-title: Hierarchical Kriging model for variable-fidelity surrogate modeling publication-title: AIAA J. – year: 2022 ident: br0790 article-title: Bayesian operator inference for data-driven reduced order modeling – volume: 34 start-page: 729 year: 1989 end-page: 733 ident: br0110 article-title: A Schur method for balanced-truncation model reduction publication-title: IEEE Trans. Autom. Control – year: 2021 ident: br0450 article-title: Model reduction of convection-dominated partial differential equations via optimization-based implicit feature tracking – volume: 424 year: 2021 ident: br0300 article-title: Space–time reduced order model for large-scale linear dynamical systems with application to Boltzmann transport problems publication-title: J. Comput. Phys. – volume: 363 year: 2020 ident: br0980 article-title: A physics-constrained data-driven approach based on locally convex reconstruction for noisy database publication-title: Comput. Methods Appl. Mech. Eng. – start-page: 3633 year: 2021 ident: br0830 article-title: Performance comparison of data-driven reduced models for a single-injector combustion process publication-title: AIAA Propulsion and Energy 2021 Forum – year: 2019 ident: br0370 article-title: Accelerating design optimization using reduced order models – volume: 42 start-page: A3489 year: 2020 end-page: A3515 ident: br0850 article-title: Sampling low-dimensional markovian dynamics for preasymptotically recovering reduced models from data with operator inference publication-title: SIAM J. Sci. Comput. – volume: 61 start-page: 749 year: 2020 end-page: 762 ident: br0040 article-title: A dual mesh method with adaptivity for stress-constrained topology optimization publication-title: Struct. Multidiscip. Optim. – volume: 324 start-page: 81 year: 2009 end-page: 85 ident: br0660 article-title: Distilling free-form natural laws from experimental data publication-title: Science – year: 2022 ident: br0200 article-title: S-OPT: a points selection algorithm for hyper-reduction in reduced order models – volume: 9 start-page: 1690 year: 2021 ident: br0260 article-title: Efficient space–time reduced order model for linear dynamical systems in python using less than 120 lines of code publication-title: Mathematics – volume: 404 year: 2020 ident: br0160 article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders publication-title: J. Comput. Phys. – start-page: 265 year: 2016 end-page: 283 ident: br0990 article-title: tensorflow: a system for large-scale machine learning publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) – year: 2009 ident: br0890 article-title: Active learning literature survey – year: 2020 ident: br0150 article-title: Efficient nonlinear manifold reduced order model – volume: 54 start-page: 629 year: 2014 end-page: 644 ident: br0950 article-title: A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation publication-title: Comput. Mech. – volume: 31 year: 2018 ident: br0560 article-title: Deep dynamical modeling and control of unsteady fluid flows publication-title: Adv. Neural Inf. Process. Syst. – start-page: 517 year: 1968 end-page: 524 ident: br0920 article-title: A two-dimensional interpolation function for irregularly-spaced data publication-title: Proceedings of the 1968 23rd ACM National Conference – volume: 69 start-page: 2441 year: 2007 end-page: 2468 ident: br0030 article-title: Large-scale topology optimization using preconditioned Krylov subspace methods with recycling publication-title: Int. J. Numer. Methods Eng. – volume: 18 start-page: 851 year: 2017 end-page: 869 ident: br0550 article-title: Deep learning in bioinformatics publication-title: Brief. Bioinform. – volume: 423 year: 2020 ident: br0390 article-title: Gradient-based constrained optimization using a database of linear reduced-order models publication-title: J. Comput. Phys. – volume: 6 start-page: 110 year: 2019 ident: br0520 article-title: A review of the application of machine learning and data mining approaches in continuum materials mechanics publication-title: Frontiers Mater. – volume: 1 start-page: 819 year: 2021 end-page: 829 ident: br0570 article-title: A framework for data-driven solution and parameter estimation of pdes using conditional generative adversarial networks publication-title: Nat. Comput. Sci. – volume: 372 year: 2020 ident: br0700 article-title: Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms publication-title: Comput. Methods Appl. Mech. Eng. – volume: 42 start-page: A1116 year: 2020 end-page: A1146 ident: br0220 article-title: Sns: a solution-based nonlinear subspace method for time-dependent model order reduction publication-title: SIAM J. Sci. Comput. – volume: 58 start-page: 2658 year: 2020 end-page: 2672 ident: br0820 article-title: Learning physics-based reduced-order models for a single-injector combustion process publication-title: AIAA J. – volume: 25 start-page: 539 year: 1993 end-page: 575 ident: br0090 article-title: The proper orthogonal decomposition in the analysis of turbulent flows publication-title: Annu. Rev. Fluid Mech. – year: 2022 ident: br0190 article-title: Local Lagrangian reduced-order modeling for Rayleigh-Taylor instability by solution manifold decomposition – volume: 151 year: 2021 ident: br0350 article-title: A hyper-reduction computational method for accelerated modeling of thermal cycling-induced plastic deformations publication-title: J. Mech. Phys. Solids – volume: 4 start-page: 87 year: 1994 end-page: 112 ident: br0650 article-title: Genetic programming as a means for programming computers by natural selection publication-title: Stat. Comput. – year: 2022 ident: br0880 article-title: Predicting solar wind streams from the inner-heliosphere to Earth via shifted operator inference – year: 2022 ident: br0590 article-title: Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: comparison with linear subspace techniques publication-title: Adv. Water Resour. – volume: 406 year: 2020 ident: br0690 article-title: Lift & learn: physics-informed machine learning for large-scale nonlinear dynamical systems publication-title: Physica D – volume: 451 year: 2022 ident: br0140 article-title: A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder publication-title: J. Comput. Phys. – volume: 8 start-page: 1 year: 2021 end-page: 24 ident: br0770 article-title: Non-intrusive nonlinear model reduction via machine learning approximations to low-dimensional operators publication-title: Adv. Model. Simul. Eng. Sci. – start-page: 580 year: 1993 end-page: 587 ident: br0120 article-title: Non-linear dimensionality reduction publication-title: Advances in Neural Information Processing Systems – volume: 63 start-page: 593 year: 2019 end-page: 614 ident: br0320 article-title: A decomposed subspace reduction for fracture mechanics based on the meshfree integrated singular basis function method publication-title: Comput. Mech. – volume: 380 year: 2022 ident: br0800 article-title: Localized non-intrusive reduced-order modeling in the operator inference framework publication-title: Philos. Trans. R. Soc., A – year: 2015 ident: br0490 article-title: Hull form optimization for reduced drag and improved seakeeping using a surrogate-based method publication-title: The Twenty-Fifth International Ocean and Polar Engineering Conference – volume: 290 start-page: 2323 year: 2000 end-page: 2326 ident: br0970 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science – year: 2014 ident: br1000 article-title: Adam: a method for stochastic optimization – volume: 58 start-page: 346 year: 2021 end-page: 361 ident: br0020 article-title: Review of digital twin about concepts, technologies, and industrial applications publication-title: J. Manuf. Syst. – year: 2011 ident: br0070 article-title: Large-Scale Inverse Problems and Quantification of Uncertainty – volume: 371 start-page: 280 year: 2018 end-page: 314 ident: br0240 article-title: Conservative model reduction for finite-volume models publication-title: J. Comput. Phys. – volume: 407 year: 2020 ident: br0420 article-title: Lagrangian dynamic mode decomposition for construction of reduced-order models of advection-dominated phenomena publication-title: J. Comput. Phys. – volume: 389 year: 2022 ident: br0860 article-title: Non-intrusive data-driven model reduction for differential–algebraic equations derived from lifting transformations publication-title: Comput. Methods Appl. Mech. Eng. – volume: 129 start-page: 1228 year: 2007 end-page: 1240 ident: br0480 article-title: Hydraulic turbine diffuser shape optimization by multiple surrogate model approximations of Pareto fronts publication-title: J. Fluids Eng. – volume: 173 start-page: 273 year: 2018 end-page: 284 ident: br0270 article-title: Finite volume pod-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations publication-title: Comput. Fluids – volume: 102 start-page: 1211 year: 2015 end-page: 1237 ident: br0310 article-title: Model order reduction for meshfree solution of Poisson singularity problems publication-title: Int. J. Numer. Methods Eng. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: br0130 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 306 start-page: 196 year: 2016 end-page: 215 ident: br0680 article-title: Data-driven operator inference for nonintrusive projection-based model reduction publication-title: Comput. Methods Appl. Mech. Eng. – volume: 388 year: 2022 ident: br0180 article-title: Reduced order models for lagrangian hydrodynamics publication-title: Comput. Methods Appl. Mech. Eng. – volume: vol. 38 start-page: 59 year: 2019 end-page: 70 ident: br0620 article-title: Deep fluids: a generative network for parameterized fluid simulations publication-title: Computer Graphics Forum – volume: 94 start-page: 3591 year: 2018 end-page: 3603 ident: br0470 article-title: Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316l stainless steel publication-title: Int. J. Adv. Manuf. Technol. – volume: 179 start-page: 704 year: 2019 end-page: 717 ident: br0610 article-title: Projection-based model reduction: formulations for physics-based machine learning publication-title: Comput. Fluids – year: 2022 ident: br0780 article-title: Operator inference for non-intrusive model reduction with nonlinear manifolds – volume: 7 start-page: 757 year: 2019 ident: br0630 article-title: Non-intrusive inference reduced order model for fluids using deep multistep neural network publication-title: Mathematics – volume: 33 start-page: 17429 year: 2020 end-page: 17442 ident: br0710 article-title: Discovering symbolic models from deep learning with inductive biases publication-title: Adv. Neural Inf. Process. Syst. – volume: 101 start-page: 281 year: 2015 end-page: 304 ident: br0360 article-title: Improving the efficiency of large scale topology optimization through on-the-fly reduced order model construction publication-title: Int. J. Numer. Methods Eng. – volume: 814 start-page: 1 year: 2017 end-page: 4 ident: br0530 article-title: Deep learning in fluid dynamics publication-title: J. Fluid Mech. – volume: 385 year: 2021 ident: br0960 article-title: Deep autoencoders for physics-constrained data-driven nonlinear materials modeling publication-title: Comput. Methods Appl. Mech. Eng. – year: 2019 ident: br0750 article-title: Neural-guided symbolic regression with asymptotic constraints – volume: 51 start-page: 194 year: 2021 end-page: 211 ident: br0840 article-title: Data-driven reduced-order models via regularised operator inference for a single-injector combustion process publication-title: J. R. Soc. N.Z. – volume: 81 start-page: 1581 year: 2010 end-page: 1608 ident: br0080 article-title: Non-linear model reduction for uncertainty quantification in large-scale inverse problems publication-title: Int. J. Numer. Methods Eng. – volume: 381 year: 2021 ident: br0380 article-title: Component-wise reduced order model lattice-type structure design publication-title: Comput. Methods Appl. Mech. Eng. – year: 2017 ident: br0430 article-title: Lagrangian basis method for dimensionality reduction of convection dominated nonlinear flows – year: 2007 ident: br0100 article-title: Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations – volume: 40 start-page: 727 year: 1997 end-page: 758 ident: br0930 article-title: The partition of unity method publication-title: Int. J. Numer. Methods Eng. – year: 2013 ident: br0060 article-title: Uncertainty Quantification: Theory, Implementation, and Applications, vol. 12 – volume: 23 start-page: 8 year: 2018 ident: br0210 article-title: An algorithmic comparison of the hyper-reduction and the discrete empirical interpolation method for a nonlinear thermal problem publication-title: Math. Comput. Appl. – year: 2004 ident: br0940 article-title: Scattered Data Approximation, vol. 17 – volume: 2 year: 2021 ident: br0410 article-title: Dynamic mode decomposition for construction of reduced-order models of hyperbolic problems with shocks publication-title: J. Mach. Learn. Model. Comput. – volume: 384 year: 2021 ident: 10.1016/j.jcp.2023.112267_br0170 article-title: Domain-decomposition least-squares Petrov–Galerkin (dd-lspg) nonlinear model reduction publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113997 – volume: 30 start-page: 641 issue: 2 year: 2014 ident: 10.1016/j.jcp.2023.112267_br0280 article-title: Variational multiscale proper orthogonal decomposition: Navier-Stokes equations publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.21835 – start-page: 517 year: 1968 ident: 10.1016/j.jcp.2023.112267_br0920 article-title: A two-dimensional interpolation function for irregularly-spaced data – volume: 424 year: 2021 ident: 10.1016/j.jcp.2023.112267_br0300 article-title: Space–time reduced order model for large-scale linear dynamical systems with application to Boltzmann transport problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109845 – volume: 40 start-page: 727 issue: 4 year: 1997 ident: 10.1016/j.jcp.2023.112267_br0930 article-title: The partition of unity method publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N – volume: 116 start-page: 22445 issue: 45 year: 2019 ident: 10.1016/j.jcp.2023.112267_br0760 article-title: Data-driven discovery of coordinates and governing equations publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1906995116 – volume: 102 start-page: 1211 issue: 5 year: 2015 ident: 10.1016/j.jcp.2023.112267_br0310 article-title: Model order reduction for meshfree solution of Poisson singularity problems publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4743 – ident: 10.1016/j.jcp.2023.112267_br1000 – ident: 10.1016/j.jcp.2023.112267_br0810 – year: 2009 ident: 10.1016/j.jcp.2023.112267_br0890 – volume: 151 year: 2021 ident: 10.1016/j.jcp.2023.112267_br0350 article-title: A hyper-reduction computational method for accelerated modeling of thermal cycling-induced plastic deformations publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2021.104385 – ident: 10.1016/j.jcp.2023.112267_br0150 – year: 2011 ident: 10.1016/j.jcp.2023.112267_br0070 – volume: 371 start-page: 280 year: 2018 ident: 10.1016/j.jcp.2023.112267_br0240 article-title: Conservative model reduction for finite-volume models publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.05.019 – volume: 34 start-page: 729 issue: 7 year: 1989 ident: 10.1016/j.jcp.2023.112267_br0110 article-title: A Schur method for balanced-truncation model reduction publication-title: IEEE Trans. Autom. Control doi: 10.1109/9.29399 – volume: 290 start-page: 2323 issue: 5500 year: 2000 ident: 10.1016/j.jcp.2023.112267_br0970 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – start-page: 1945 year: 2017 ident: 10.1016/j.jcp.2023.112267_br0740 article-title: Grammar variational autoencoder – volume: 40 start-page: A1322 issue: 3 year: 2018 ident: 10.1016/j.jcp.2023.112267_br0440 article-title: The shifted proper orthogonal decomposition: a mode decomposition for multiple transport phenomena publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1140571 – ident: 10.1016/j.jcp.2023.112267_br0450 – volume: 399 year: 2022 ident: 10.1016/j.jcp.2023.112267_br0400 article-title: LaSDI: parametric latent space dynamics identification publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2022.115436 – volume: 128 start-page: 668 issue: 4 year: 2006 ident: 10.1016/j.jcp.2023.112267_br0460 article-title: Building surrogate models based on detailed and approximate simulations publication-title: J. Mech. Des. doi: 10.1115/1.2179459 – volume: 93 start-page: 2803 issue: 8 year: 2021 ident: 10.1016/j.jcp.2023.112267_br0870 article-title: Learning reduced-order dynamics for parametrized shallow water equations from data publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.4998 – year: 2004 ident: 10.1016/j.jcp.2023.112267_br0940 – year: 2015 ident: 10.1016/j.jcp.2023.112267_br0490 article-title: Hull form optimization for reduced drag and improved seakeeping using a surrogate-based method – volume: 380 issue: 2229 year: 2022 ident: 10.1016/j.jcp.2023.112267_br0800 article-title: Localized non-intrusive reduced-order modeling in the operator inference framework publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2021.0206 – volume: 101 start-page: 281 issue: 4 year: 2015 ident: 10.1016/j.jcp.2023.112267_br0360 article-title: Improving the efficiency of large scale topology optimization through on-the-fly reduced order model construction publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4797 – volume: 81 start-page: 1581 issue: 12 year: 2010 ident: 10.1016/j.jcp.2023.112267_br0080 article-title: Non-linear model reduction for uncertainty quantification in large-scale inverse problems publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.2746 – volume: 179 start-page: 704 year: 2019 ident: 10.1016/j.jcp.2023.112267_br0610 article-title: Projection-based model reduction: formulations for physics-based machine learning publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2018.07.021 – volume: 6 start-page: 110 year: 2019 ident: 10.1016/j.jcp.2023.112267_br0520 article-title: A review of the application of machine learning and data mining approaches in continuum materials mechanics publication-title: Frontiers Mater. doi: 10.3389/fmats.2019.00110 – volume: 1 start-page: 819 issue: 12 year: 2021 ident: 10.1016/j.jcp.2023.112267_br0570 article-title: A framework for data-driven solution and parameter estimation of pdes using conditional generative adversarial networks publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-021-00171-3 – year: 2017 ident: 10.1016/j.jcp.2023.112267_br0910 – start-page: 4442 year: 2018 ident: 10.1016/j.jcp.2023.112267_br0730 article-title: Learning equations for extrapolation and control – ident: 10.1016/j.jcp.2023.112267_br0780 – volume: 96 start-page: 599 issue: 10 year: 2013 ident: 10.1016/j.jcp.2023.112267_br0330 article-title: Proper orthogonal decomposition-based model order reduction via radial basis functions for molecular dynamics systems publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4552 – volume: 451 year: 2022 ident: 10.1016/j.jcp.2023.112267_br0140 article-title: A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110841 – volume: 423 year: 2020 ident: 10.1016/j.jcp.2023.112267_br0390 article-title: Gradient-based constrained optimization using a database of linear reduced-order models publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109787 – volume: 113 start-page: 3932 issue: 15 year: 2016 ident: 10.1016/j.jcp.2023.112267_br0670 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1517384113 – ident: 10.1016/j.jcp.2023.112267_br0580 – volume: 372 year: 2020 ident: 10.1016/j.jcp.2023.112267_br0700 article-title: Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113433 – start-page: 265 year: 2016 ident: 10.1016/j.jcp.2023.112267_br0990 article-title: tensorflow: a system for large-scale machine learning – volume: 121 start-page: 5647 issue: 24 year: 2020 ident: 10.1016/j.jcp.2023.112267_br0290 article-title: A discontinuous and adaptive reduced order model for the angular discretization of the Boltzmann transport equation publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.6516 – volume: 406 year: 2020 ident: 10.1016/j.jcp.2023.112267_br0690 article-title: Lift & learn: physics-informed machine learning for large-scale nonlinear dynamical systems publication-title: Physica D doi: 10.1016/j.physd.2020.132401 – volume: 63 start-page: 593 issue: 3 year: 2019 ident: 10.1016/j.jcp.2023.112267_br0320 article-title: A decomposed subspace reduction for fracture mechanics based on the meshfree integrated singular basis function method publication-title: Comput. Mech. doi: 10.1007/s00466-018-1611-8 – volume: 61 start-page: 749 issue: 2 year: 2020 ident: 10.1016/j.jcp.2023.112267_br0040 article-title: A dual mesh method with adaptivity for stress-constrained topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-019-02393-6 – ident: 10.1016/j.jcp.2023.112267_br0600 – volume: 7 start-page: 757 issue: 8 year: 2019 ident: 10.1016/j.jcp.2023.112267_br0630 article-title: Non-intrusive inference reduced order model for fluids using deep multistep neural network publication-title: Mathematics doi: 10.3390/math7080757 – volume: 42 start-page: A1116 issue: 2 year: 2020 ident: 10.1016/j.jcp.2023.112267_br0220 article-title: Sns: a solution-based nonlinear subspace method for time-dependent model order reduction publication-title: SIAM J. Sci. Comput. doi: 10.1137/19M1242963 – volume: 381 year: 2021 ident: 10.1016/j.jcp.2023.112267_br0380 article-title: Component-wise reduced order model lattice-type structure design publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113813 – volume: 41 start-page: A26 issue: 1 year: 2019 ident: 10.1016/j.jcp.2023.112267_br0230 article-title: Space–time least-squares Petrov–Galerkin projection for nonlinear model reduction publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1120531 – volume: 363 year: 2020 ident: 10.1016/j.jcp.2023.112267_br0980 article-title: A physics-constrained data-driven approach based on locally convex reconstruction for noisy database publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.112791 – volume: 8 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.jcp.2023.112267_br0770 article-title: Non-intrusive nonlinear model reduction via machine learning approximations to low-dimensional operators publication-title: Adv. Model. Simul. Eng. Sci. doi: 10.1186/s40323-021-00213-5 – ident: 10.1016/j.jcp.2023.112267_br0430 – volume: 23 start-page: 8 issue: 1 year: 2018 ident: 10.1016/j.jcp.2023.112267_br0210 article-title: An algorithmic comparison of the hyper-reduction and the discrete empirical interpolation method for a nonlinear thermal problem publication-title: Math. Comput. Appl. – volume: 71 start-page: 2407 issue: 11 year: 2016 ident: 10.1016/j.jcp.2023.112267_br0250 article-title: Stabilized reduced order models for the advection–diffusion–reaction equation using operator splitting publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.01.032 – volume: 407 year: 2020 ident: 10.1016/j.jcp.2023.112267_br0420 article-title: Lagrangian dynamic mode decomposition for construction of reduced-order models of advection-dominated phenomena publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109229 – volume: 69 start-page: 2441 issue: 12 year: 2007 ident: 10.1016/j.jcp.2023.112267_br0030 article-title: Large-scale topology optimization using preconditioned Krylov subspace methods with recycling publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1798 – volume: 81 start-page: 42 year: 2021 ident: 10.1016/j.jcp.2023.112267_br1010 article-title: Mfem: a modular finite element methods library publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2020.06.009 – volume: 33 start-page: 17429 year: 2020 ident: 10.1016/j.jcp.2023.112267_br0710 article-title: Discovering symbolic models from deep learning with inductive biases publication-title: Adv. Neural Inf. Process. Syst. – volume: 389 year: 2022 ident: 10.1016/j.jcp.2023.112267_br0640 article-title: Projection-based model reduction of dynamical systems using space–time subspace and machine learning publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114341 – year: 2020 ident: 10.1016/j.jcp.2023.112267_br0720 – start-page: 74 year: 2004 ident: 10.1016/j.jcp.2023.112267_br0900 article-title: Diverse ensembles for active learning – volume: 18 start-page: 851 issue: 5 year: 2017 ident: 10.1016/j.jcp.2023.112267_br0550 article-title: Deep learning in bioinformatics publication-title: Brief. Bioinform. – volume: 31 year: 2018 ident: 10.1016/j.jcp.2023.112267_br0560 article-title: Deep dynamical modeling and control of unsteady fluid flows publication-title: Adv. Neural Inf. Process. Syst. – volume: 25 start-page: 177 issue: 1 year: 2013 ident: 10.1016/j.jcp.2023.112267_br0500 article-title: Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2012.01.006 – volume: 389 year: 2022 ident: 10.1016/j.jcp.2023.112267_br0860 article-title: Non-intrusive data-driven model reduction for differential–algebraic equations derived from lifting transformations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114296 – volume: 65 start-page: 576 issue: 2 year: 2015 ident: 10.1016/j.jcp.2023.112267_br0050 article-title: A practical factorization of a Schur complement for pde-constrained distributed optimal control publication-title: J. Sci. Comput. doi: 10.1007/s10915-014-9976-0 – ident: 10.1016/j.jcp.2023.112267_br0200 – ident: 10.1016/j.jcp.2023.112267_br0370 – volume: 9 start-page: 1690 issue: 14 year: 2021 ident: 10.1016/j.jcp.2023.112267_br0260 article-title: Efficient space–time reduced order model for linear dynamical systems in python using less than 120 lines of code publication-title: Mathematics doi: 10.3390/math9141690 – volume: 306 start-page: 196 year: 2016 ident: 10.1016/j.jcp.2023.112267_br0680 article-title: Data-driven operator inference for nonintrusive projection-based model reduction publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.03.025 – volume: 51 start-page: 194 issue: 2 year: 2021 ident: 10.1016/j.jcp.2023.112267_br0840 article-title: Data-driven reduced-order models via regularised operator inference for a single-injector combustion process publication-title: J. R. Soc. N.Z. doi: 10.1080/03036758.2020.1863237 – volume: 25 start-page: 539 issue: 1 year: 1993 ident: 10.1016/j.jcp.2023.112267_br0090 article-title: The proper orthogonal decomposition in the analysis of turbulent flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.25.010193.002543 – volume: 814 start-page: 1 year: 2017 ident: 10.1016/j.jcp.2023.112267_br0530 article-title: Deep learning in fluid dynamics publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.803 – volume: 58 start-page: 346 year: 2021 ident: 10.1016/j.jcp.2023.112267_br0020 article-title: Review of digital twin about concepts, technologies, and industrial applications publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.06.017 – volume: 129 start-page: 1228 issue: 9 year: 2007 ident: 10.1016/j.jcp.2023.112267_br0480 article-title: Hydraulic turbine diffuser shape optimization by multiple surrogate model approximations of Pareto fronts publication-title: J. Fluids Eng. doi: 10.1115/1.2754324 – volume: 404 year: 2020 ident: 10.1016/j.jcp.2023.112267_br0160 article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.108973 – start-page: 3633 year: 2021 ident: 10.1016/j.jcp.2023.112267_br0830 article-title: Performance comparison of data-driven reduced models for a single-injector combustion process – volume: 54 start-page: 629 issue: 3 year: 2014 ident: 10.1016/j.jcp.2023.112267_br0950 article-title: A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation publication-title: Comput. Mech. doi: 10.1007/s00466-014-1011-7 – volume: 324 start-page: 81 issue: 5923 year: 2009 ident: 10.1016/j.jcp.2023.112267_br0660 article-title: Distilling free-form natural laws from experimental data publication-title: Science doi: 10.1126/science.1165893 – ident: 10.1016/j.jcp.2023.112267_br0750 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.jcp.2023.112267_br0130 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 29 start-page: 36 year: 2020 ident: 10.1016/j.jcp.2023.112267_br0010 article-title: Characterising the digital twin: a systematic literature review publication-title: CIRP J. Manuf. Sci. Technol. doi: 10.1016/j.cirpj.2020.02.002 – volume: 6 start-page: 395 issue: 4 year: 2013 ident: 10.1016/j.jcp.2023.112267_br0340 article-title: Rbf-pod reduced-order modeling of DNA molecules under stretching and bending publication-title: Interact. Multiscale Mech. doi: 10.12989/imm.2013.6.4.395 – volume: 97 issue: 1 year: 2018 ident: 10.1016/j.jcp.2023.112267_br0540 article-title: Calogan: simulating 3d high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.014021 – volume: 385 year: 2021 ident: 10.1016/j.jcp.2023.112267_br0960 article-title: Deep autoencoders for physics-constrained data-driven nonlinear materials modeling publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114034 – start-page: 580 year: 1993 ident: 10.1016/j.jcp.2023.112267_br0120 article-title: Non-linear dimensionality reduction – volume: 42 start-page: A3489 issue: 5 year: 2020 ident: 10.1016/j.jcp.2023.112267_br0850 article-title: Sampling low-dimensional markovian dynamics for preasymptotically recovering reduced models from data with operator inference publication-title: SIAM J. Sci. Comput. doi: 10.1137/19M1292448 – volume: 94 start-page: 3591 issue: 9 year: 2018 ident: 10.1016/j.jcp.2023.112267_br0470 article-title: Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316l stainless steel publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-1045-z – volume: 4 start-page: 87 issue: 2 year: 1994 ident: 10.1016/j.jcp.2023.112267_br0650 article-title: Genetic programming as a means for programming computers by natural selection publication-title: Stat. Comput. doi: 10.1007/BF00175355 – ident: 10.1016/j.jcp.2023.112267_br0880 – volume: vol. 38 start-page: 59 year: 2019 ident: 10.1016/j.jcp.2023.112267_br0620 article-title: Deep fluids: a generative network for parameterized fluid simulations – volume: 2 issue: 1 year: 2021 ident: 10.1016/j.jcp.2023.112267_br0410 article-title: Dynamic mode decomposition for construction of reduced-order models of hyperbolic problems with shocks publication-title: J. Mach. Learn. Model. Comput. doi: 10.1615/JMachLearnModelComput.2021036132 – year: 2022 ident: 10.1016/j.jcp.2023.112267_br0590 article-title: Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: comparison with linear subspace techniques publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2021.104098 – year: 2007 ident: 10.1016/j.jcp.2023.112267_br0100 – volume: 20 start-page: 1997 issue: 1 year: 2019 ident: 10.1016/j.jcp.2023.112267_br1020 article-title: Neural architecture search: a survey publication-title: J. Mach. Learn. Res. – volume: 388 year: 2022 ident: 10.1016/j.jcp.2023.112267_br0180 article-title: Reduced order models for lagrangian hydrodynamics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114259 – volume: 58 start-page: 2658 issue: 6 year: 2020 ident: 10.1016/j.jcp.2023.112267_br0820 article-title: Learning physics-based reduced-order models for a single-injector combustion process publication-title: AIAA J. doi: 10.2514/1.J058943 – year: 2013 ident: 10.1016/j.jcp.2023.112267_br0060 – ident: 10.1016/j.jcp.2023.112267_br0190 – volume: 173 start-page: 273 year: 2018 ident: 10.1016/j.jcp.2023.112267_br0270 article-title: Finite volume pod-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2018.01.035 – ident: 10.1016/j.jcp.2023.112267_br0790 – volume: 50 start-page: 1885 issue: 9 year: 2012 ident: 10.1016/j.jcp.2023.112267_br0510 article-title: Hierarchical Kriging model for variable-fidelity surrogate modeling publication-title: AIAA J. doi: 10.2514/1.J051354 |
| SSID | ssj0008548 |
| Score | 2.5902393 |
| Snippet | A parametric adaptive physics-informed greedy Latent Space Dynamics Identification (gLaSDI) method is proposed for accurate, efficient, and robust data-driven... |
| SourceID | osti crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 112267 |
| SubjectTerms | Adaptive sampling Autoencoders MATHEMATICS AND COMPUTING Nonlinear dynamical systems Physics-informed greedy algorithm Reduced order model Regression-based dynamics identification |
| Title | gLaSDI: Parametric physics-informed greedy latent space dynamics identification |
| URI | https://dx.doi.org/10.1016/j.jcp.2023.112267 https://www.osti.gov/servlets/purl/1999976 |
| Volume | 489 |
| WOSCitedRecordID | wos001033012800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect (Freedom Collection) customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg48CFb7QxmHzgRJQqtePY4TaxTRuaxiR66C1KnBi1qpJpKWh_Pu_lOWnpRAWHXawqrZPK75ff-_Dze4x9tIkrnSqSMClxm1FP4jAFPQ2DMQWoszIVeddsQl9dmdksvfah7LZrJ6Dr2tzdpTcPKmq4BsLGo7P_Ie7hpnABPoPQYQSxw_hPgv9xmX8_uUBP_zrHzCsswe8DGG1IdVLByAQ3G_g1WIKpWa8CoBV4v0vqTt8G89LnEK3Fdt9-tV0_iD6W6B-wDq2i7GbzHLjV68Yuh6Dpkgc6immbZgAP-utdth9Ff4KT8RAmqJaN2wzzB5fjzUiFkJhWQWc1KXzmdf0mHWN-SErtusYVMXCURqHQdACzp-iY2gzdo3uKPCzGC4ulR4XEA1GC2ntsVdHGagtgeT1me0KrFBh87_jidPZ1UNpGxaS0_T_qN8C7VMCt2__NhBk1wMob1sn0BXvmxcKPCQ4v2aOqfsWeexeDewJvX7NvhI7PfI0Nvo0NTtjghA3eYYP32OB_YuMNm56dTr-ch76nRmhlolehLasot_AGFlq6WNmkUAIVjTOFm0hlJHgAEyeUyUVS5FqBfSsrrJGnXGSllW_ZqG7qap_xHByNVObaVuBBOGGMjWOs4YVbrWh1HrCoX6XM-nrz2PZkmfWJhYsMFjbDhc1oYQ_Yp2HKDRVb2fXjuF_6zFuLZAVmgI5d0w5RTDgFqyRbTCeDOR4f73Z-e8iernH9no1Wtz-rD-yJ_bWat7dHHlK_AYF9jt0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=gLaSDI%3A+Parametric+physics-informed+greedy+latent+space+dynamics+identification&rft.jtitle=Journal+of+computational+physics&rft.au=He%2C+Xiaolong&rft.au=Choi%2C+Youngsoo&rft.au=Fries%2C+William+D.&rft.au=Belof%2C+Jonathan+L.&rft.date=2023-09-15&rft.pub=Elsevier&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=489&rft_id=info:doi/10.1016%2Fj.jcp.2023.112267&rft.externalDocID=1999976 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |