gLaSDI: Parametric physics-informed greedy latent space dynamics identification

A parametric adaptive physics-informed greedy Latent Space Dynamics Identification (gLaSDI) method is proposed for accurate, efficient, and robust data-driven reduced-order modeling of high-dimensional nonlinear dynamical systems. In the proposed gLaSDI framework, an autoencoder discovers intrinsic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics Vol. 489; p. 112267
Main Authors: He, Xiaolong, Choi, Youngsoo, Fries, William D., Belof, Jonathan L., Chen, Jiun-Shyan
Format: Journal Article
Language:English
Published: United States Elsevier Inc 15.09.2023
Elsevier
Subjects:
ISSN:0021-9991, 1090-2716
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A parametric adaptive physics-informed greedy Latent Space Dynamics Identification (gLaSDI) method is proposed for accurate, efficient, and robust data-driven reduced-order modeling of high-dimensional nonlinear dynamical systems. In the proposed gLaSDI framework, an autoencoder discovers intrinsic nonlinear latent representations of high-dimensional data, while dynamics identification (DI) models capture local latent-space dynamics. An interactive training algorithm is adopted for the autoencoder and local DI models, which enables identification of simple latent-space dynamics and enhances accuracy and efficiency of data-driven reduced-order modeling. To maximize and accelerate the exploration of the parameter space for the optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed residual-based error indicator and random-subset evaluation is introduced to search for the optimal training samples on the fly. Further, to exploit local latent-space dynamics captured by the local DI models for an improved modeling accuracy with a minimum number of local DI models in the parameter space, a k-nearest neighbor convex interpolation scheme is employed. The effectiveness of the proposed framework is demonstrated by modeling various nonlinear dynamical problems, including Burgers equations, nonlinear heat conduction, and radial advection. The proposed adaptive greedy sampling outperforms the conventional predefined uniform sampling in terms of accuracy. Compared with the high-fidelity models, gLaSDI achieves 17 to 2,658× speed-up with 1 to 5% relative errors. •Non-intrusive reduced-order modeling based on physics-informed greedy latent-space dynamics identification is proposed.•An autoencoder and parametric models are trained interactively to identify intrinsic and simple latent-space dynamics.•A physics-informed adaptive greedy sampling algorithm is introduced to search for optimal training samples on the fly.•A kNN convex interpolation scheme is applied to exploit local latent-space dynamics for enhanced generalization.•The proposed method achieves 17-2,658x speed-up and 1-5% relative errors for various nonlinear dynamical problems.
AbstractList A parametric adaptive physics-informed greedy Latent Space Dynamics Identification (gLaSDI) method is proposed for accurate, efficient, and robust data-driven reduced-order modeling of high-dimensional nonlinear dynamical systems. In the proposed gLaSDI framework, an autoencoder discovers intrinsic nonlinear latent representations of high-dimensional data, while dynamics identification (DI) models capture local latent-space dynamics. Here, an interactive training algorithm is adopted for the autoencoder and local DI models, which enables identification of simple latent-space dynamics and enhances accuracy and efficiency of data-driven reduced-order modeling. To maximize and accelerate the exploration of the parameter space for the optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed residual-based error indicator and random-subset evaluation is introduced to search for the optimal training samples on the fly. Further, to exploit local latent-space dynamics captured by the local DI models for an improved modeling accuracy with a minimum number of local DI models in the parameter space, a <emk -nearest neighbor convex interpolation scheme is employed. The effectiveness of the proposed framework is demonstrated by modeling various nonlinear dynamical problems, including Burgers equations, nonlinear heat conduction, and radial advection. The proposed adaptive greedy sampling outperforms the conventional predefined uniform sampling in terms of accuracy. Compared with the high-fidelity models, gLaSDI achieves 17 to 2,658× speed-up with 1 to 5% relative errors.
A parametric adaptive physics-informed greedy Latent Space Dynamics Identification (gLaSDI) method is proposed for accurate, efficient, and robust data-driven reduced-order modeling of high-dimensional nonlinear dynamical systems. In the proposed gLaSDI framework, an autoencoder discovers intrinsic nonlinear latent representations of high-dimensional data, while dynamics identification (DI) models capture local latent-space dynamics. An interactive training algorithm is adopted for the autoencoder and local DI models, which enables identification of simple latent-space dynamics and enhances accuracy and efficiency of data-driven reduced-order modeling. To maximize and accelerate the exploration of the parameter space for the optimal model performance, an adaptive greedy sampling algorithm integrated with a physics-informed residual-based error indicator and random-subset evaluation is introduced to search for the optimal training samples on the fly. Further, to exploit local latent-space dynamics captured by the local DI models for an improved modeling accuracy with a minimum number of local DI models in the parameter space, a k-nearest neighbor convex interpolation scheme is employed. The effectiveness of the proposed framework is demonstrated by modeling various nonlinear dynamical problems, including Burgers equations, nonlinear heat conduction, and radial advection. The proposed adaptive greedy sampling outperforms the conventional predefined uniform sampling in terms of accuracy. Compared with the high-fidelity models, gLaSDI achieves 17 to 2,658× speed-up with 1 to 5% relative errors. •Non-intrusive reduced-order modeling based on physics-informed greedy latent-space dynamics identification is proposed.•An autoencoder and parametric models are trained interactively to identify intrinsic and simple latent-space dynamics.•A physics-informed adaptive greedy sampling algorithm is introduced to search for optimal training samples on the fly.•A kNN convex interpolation scheme is applied to exploit local latent-space dynamics for enhanced generalization.•The proposed method achieves 17-2,658x speed-up and 1-5% relative errors for various nonlinear dynamical problems.
ArticleNumber 112267
Author Fries, William D.
Belof, Jonathan L.
Chen, Jiun-Shyan
He, Xiaolong
Choi, Youngsoo
Author_xml – sequence: 1
  givenname: Xiaolong
  orcidid: 0000-0002-5307-0681
  surname: He
  fullname: He, Xiaolong
  email: xih251@eng.ucsd.edu
  organization: Department of Structural Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
– sequence: 2
  givenname: Youngsoo
  surname: Choi
  fullname: Choi, Youngsoo
  organization: Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
– sequence: 3
  givenname: William D.
  surname: Fries
  fullname: Fries, William D.
  organization: Applied Mathematics, School of Mathematical Sciences, University of Arizona, Tucson, AZ, 85721, USA
– sequence: 4
  givenname: Jonathan L.
  surname: Belof
  fullname: Belof, Jonathan L.
  organization: Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
– sequence: 5
  givenname: Jiun-Shyan
  surname: Chen
  fullname: Chen, Jiun-Shyan
  organization: Department of Structural Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
BackLink https://www.osti.gov/servlets/purl/1999976$$D View this record in Osti.gov
BookMark eNp9kE9LAzEQxYNUsFU_gLfF-9ZMtrvZ1ZPUf4VCBXsP6eykTWmzJQlCv72p68lDTwOP9xveeyM2cJ0jxu6Aj4FD9bAdb_EwFlwUYwAhKnnBhsAbngsJ1YANOReQN00DV2wUwpZzXpeTesgW67n-epk9Zp_a6z1FbzE7bI7BYsitM53fU5utPVF7zHY6kotZOGikrD06vU-uzLZJtMaijrZzN-zS6F2g2797zZZvr8vpRz5fvM-mz_Mci0rGHFviGttGrGRhJiVWq1LwupamXhkoyrqACsCIstaiWmlZghQFJR1Kw7HA4prd92-7EK0KaCPhBjvnCKOC1LORVTLJ3oS-C8GTUcn3mzJ6bXcKuDptp7YqbadO26l-u0TCP_Lg7V7741nmqWco1f625E-xyCG11p9StZ09Q_8Akf-ItQ
CitedBy_id crossref_primary_10_1016_j_cma_2025_117799
crossref_primary_10_1016_j_cma_2025_117920
crossref_primary_10_1002_nme_7634
crossref_primary_10_1016_j_cma_2024_117144
crossref_primary_10_1007_s10483_025_3295_6
crossref_primary_10_1109_TCI_2024_3434541
crossref_primary_10_1007_s00193_024_01177_2
crossref_primary_10_1016_j_tsep_2025_103381
crossref_primary_10_1007_s11004_025_10223_3
crossref_primary_10_1016_j_apenergy_2024_122914
crossref_primary_10_1016_j_cma_2023_116535
crossref_primary_10_1016_j_cma_2025_117807
crossref_primary_10_1016_j_cma_2024_116998
crossref_primary_10_1016_j_egyai_2025_100567
crossref_primary_10_1016_j_cma_2024_116978
crossref_primary_10_1088_2632_2153_add23a
Cites_doi 10.1016/j.cma.2021.113997
10.1002/num.21835
10.1016/j.jcp.2020.109845
10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
10.1073/pnas.1906995116
10.1002/nme.4743
10.1016/j.jmps.2021.104385
10.1016/j.jcp.2018.05.019
10.1109/9.29399
10.1126/science.290.5500.2323
10.1137/17M1140571
10.1016/j.cma.2022.115436
10.1115/1.2179459
10.1002/fld.4998
10.1098/rsta.2021.0206
10.1002/nme.4797
10.1002/nme.2746
10.1016/j.compfluid.2018.07.021
10.3389/fmats.2019.00110
10.1038/s43588-021-00171-3
10.1002/nme.4552
10.1016/j.jcp.2021.110841
10.1016/j.jcp.2020.109787
10.1073/pnas.1517384113
10.1016/j.cma.2020.113433
10.1002/nme.6516
10.1016/j.physd.2020.132401
10.1007/s00466-018-1611-8
10.1007/s00158-019-02393-6
10.3390/math7080757
10.1137/19M1242963
10.1016/j.cma.2021.113813
10.1137/17M1120531
10.1016/j.cma.2019.112791
10.1186/s40323-021-00213-5
10.1016/j.camwa.2016.01.032
10.1016/j.jcp.2020.109229
10.1002/nme.1798
10.1016/j.camwa.2020.06.009
10.1016/j.cma.2021.114341
10.1016/j.ast.2012.01.006
10.1016/j.cma.2021.114296
10.1007/s10915-014-9976-0
10.3390/math9141690
10.1016/j.cma.2016.03.025
10.1080/03036758.2020.1863237
10.1146/annurev.fl.25.010193.002543
10.1017/jfm.2016.803
10.1016/j.jmsy.2020.06.017
10.1115/1.2754324
10.1016/j.jcp.2019.108973
10.1007/s00466-014-1011-7
10.1126/science.1165893
10.1126/science.1127647
10.1016/j.cirpj.2020.02.002
10.12989/imm.2013.6.4.395
10.1103/PhysRevD.97.014021
10.1016/j.cma.2021.114034
10.1137/19M1292448
10.1007/s00170-017-1045-z
10.1007/BF00175355
10.1615/JMachLearnModelComput.2021036132
10.1016/j.advwatres.2021.104098
10.1016/j.cma.2021.114259
10.2514/1.J058943
10.1016/j.compfluid.2018.01.035
10.2514/1.J051354
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
CorporateAuthor Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1016/j.jcp.2023.112267
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
ExternalDocumentID 1999976
10_1016_j_jcp_2023_112267
S0021999123003625
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
OIOZB
OTOTI
RIG
ID FETCH-LOGICAL-c367t-cde0acd92b73f45c6b520887f8bf135831611f258a26ba751723e35815f0c3c3
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001033012800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Tue Jun 25 16:20:42 EDT 2024
Tue Nov 18 21:49:57 EST 2025
Sat Nov 29 03:10:40 EST 2025
Fri Feb 23 02:36:11 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Physics-informed greedy algorithm
Nonlinear dynamical systems
Adaptive sampling
Reduced order model
Autoencoders
Regression-based dynamics identification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-cde0acd92b73f45c6b520887f8bf135831611f258a26ba751723e35815f0c3c3
Notes AC52-07NA27344; LLNL-JRNL-834220; 21-FS-042; 21-SI-006
USDOE Laboratory Directed Research and Development (LDRD) Program
USDOE National Nuclear Security Administration (NNSA)
LLNL-JRNL-834220
ORCID 0000-0002-5307-0681
0000000253070681
OpenAccessLink https://www.osti.gov/servlets/purl/1999976
ParticipantIDs osti_scitechconnect_1999976
crossref_citationtrail_10_1016_j_jcp_2023_112267
crossref_primary_10_1016_j_jcp_2023_112267
elsevier_sciencedirect_doi_10_1016_j_jcp_2023_112267
PublicationCentury 2000
PublicationDate 2023-09-15
PublicationDateYYYYMMDD 2023-09-15
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of computational physics
PublicationYear 2023
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Kaneko, Wei, He, Chen, Yoshimura (br0350) 2021; 151
Safonov, Chiang (br0110) 1989; 34
Kadeethum, O'Malley, Fuhg, Choi, Lee, Viswanathan, Bouklas (br0570) 2021; 1
Mojgani, Balajewicz (br0430) 2017
Choi, Carlberg (br0230) 2019; 41
Babuška, Melenk (br0930) 1997; 40
Lee, Chen (br0330) 2013; 96
Tapia, Khairallah, Matthews, King, Elwany (br0470) 2018; 94
Patera, Rozza (br0100) 2007
Lee, Carlberg (br0160) 2020; 404
Iliescu, Wang (br0280) 2014; 30
Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, Lerer (br0910) 2017
Schmidt, Lipson (br0660) 2009; 324
Bai, Peng (br0770) 2021; 8
Biros, Ghattas, Heinkenschloss, Keyes, Mallick, Tenorio, van Bloemen Waanders, Willcox, Marzouk, Biegler (br0070) 2011
Han, Görtz, Zimmermann (br0500) 2013; 25
Mirhoseini, Zahr (br0450) 2021
Kadeethum, Ballarin, Choi, O'Malley, Yoon, Bouklas (br0590) 2022
He, Chen (br0980) 2020; 363
Kim, Choi, Widemann, Zohdi (br0150) 2020
Khodabakhshi, Willcox (br0860) 2022; 389
He, Chen, Marodon (br0320) 2019; 63
Lee, Chen (br0340) 2013; 6
Peherstorfer, Willcox (br0680) 2016; 306
Kingma, Ba (br1000) 2014
McLaughlin, Peterson, Ye (br0250) 2016; 71
DeMers, Cottrell (br0120) 1993
Lu, Tartakovsky (br0420) 2020; 407
Kadeethum, O'Malley, Choi, Viswanathan, Bouklas, Yoon (br0580) 2021
Gogu (br0360) 2015; 101
McQuarrie, Khodabakhshi, Willcox (br0810) 2021
Peherstorfer (br0850) 2020; 42
Hoang, Choi, Carlberg (br0170) 2021; 384
Kutz (br0530) 2017; 814
Swischuk, Kramer, Huang, Willcox (br0820) 2020; 58
Cranmer, Sanchez Gonzalez, Battaglia, Xu, Cranmer, Spergel, Ho (br0710) 2020; 33
Hoang, Chowdhary, Lee, Ray (br0640) 2022; 389
Wang, Sturler, Paulino (br0030) 2007; 69
Cheung, Choi, Copeland, Huynh (br0190) 2022
Xie, Zhang, Webster (br0630) 2019; 7
Geelen, Wright, Willcox (br0780) 2022
Hughes, Buchan (br0290) 2020; 121
Choi, Oxberry, White, Kirchdoerfer (br0370) 2019
Huang, Wang, Yang (br0490) 2015
Choi, Boncoraglio, Anderson, Amsallem, Farhat (br0390) 2020; 423
Copeland, Cheung, Huynh, Choi (br0180) 2022; 388
Champion, Lusch, Kutz, Brunton (br0760) 2019; 116
Melville, Mooney (br0900) 2004
Chen, Marodon, Hu (br0310) 2015; 102
Lu, Tartakovsky (br0410) 2021; 2
Issan, Kramer (br0880) 2022
Roweis, Saul (br0970) 2000; 290
Kim, Azevedo, Thuerey, Kim, Gross, Solenthaler (br0620) 2019; vol. 38
McQuarrie, Huang, Willcox (br0840) 2021; 51
Kim, Wang, Choi (br0260) 2021; 9
Fries, He, Choi (br0400) 2022; 399
Paganini, de Oliveira, Nachman (br0540) 2018; 97
Settles (br0890) 2009
Berkooz, Holmes, Lumley (br0090) 1993; 25
Hinton, Salakhutdinov (br0130) 2006; 313
Stabile, Rozza (br0270) 2018; 173
Lauzon, Cheung, Shin, Choi, Copeland, Huynh (br0200) 2022
Morton, Jameson, Kochenderfer, Witherden (br0560) 2018; 31
Marjavaara, Lundström, Goel, Mack, Shyy (br0480) 2007; 129
Kim, Choi, Widemann, Zohdi (br0140) 2022; 451
Jain, McQuarrie, Kramer (br0830) 2021
He, He, Chen (br0960) 2021; 385
Yıldız, Goyal, Benner, Karasözen (br0870) 2021; 93
Bock, Aydin, Cyron, Huber, Kalidindi, Klusemann (br0520) 2019; 6
Elsken, Metzen, Hutter (br1020) 2019; 20
He, Kang, Wang (br0950) 2014; 54
Shepard (br0920) 1968
Qian, Seepersad, Joseph, Allen, Wu (br0460) 2006; 128
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (br0990) 2016
Jones, Snider, Nassehi, Yon, Hicks (br0010) 2020; 29
Reiss, Schulze, Sesterhenn, Mehrmann (br0440) 2018; 40
Koza (br0650) 1994; 4
Carlberg, Choi, Sargsyan (br0240) 2018; 371
Li, Fan, Singh, Riley (br0750) 2019
Smith (br0060) 2013
McBane, Choi (br0380) 2021; 381
Fritzen, Haasdonk, Ryckelynck, Schöps (br0210) 2018; 23
Galbally, Fidkowski, Willcox, Ghattas (br0080) 2010; 81
Min, Lee, Yoon (br0550) 2017; 18
Choi, Brown, Arrighi, Anderson, Huynh (br0300) 2021; 424
Brunton, Proctor, Kutz (br0670) 2016; 113
Kadeethum, Ballarin, O'Malley, Choi, Bouklas, Yoon (br0600) 2022
Choi, Farhat, Murray, Saunders (br0050) 2015; 65
Guo, McQuarrie, Willcox (br0790) 2022
Swischuk, Mainini, Peherstorfer, Willcox (br0610) 2019; 179
Cranmer (br0720) 2020
Benner, Goyal, Kramer, Peherstorfer, Willcox (br0700) 2020; 372
Anderson, Andrej, Barker, Bramwell, Camier, Cerveny, Dobrev, Dudouit, Fisher, Kolev (br1010) 2021; 81
Liu, Fang, Dong, Xu (br0020) 2021; 58
Sahoo, Lampert, Martius (br0730) 2018
Wendland (br0940) 2004
White, Choi, Kudo (br0040) 2020; 61
Geelen, Willcox (br0800) 2022; 380
Han, Görtz (br0510) 2012; 50
Qian, Kramer, Peherstorfer, Willcox (br0690) 2020; 406
Choi, Coombs, Anderson (br0220) 2020; 42
Kusner, Paige, Hernández-Lobato (br0740) 2017
Carlberg (10.1016/j.jcp.2023.112267_br0240) 2018; 371
Smith (10.1016/j.jcp.2023.112267_br0060) 2013
Jain (10.1016/j.jcp.2023.112267_br0830) 2021
Roweis (10.1016/j.jcp.2023.112267_br0970) 2000; 290
Kim (10.1016/j.jcp.2023.112267_br0140) 2022; 451
Choi (10.1016/j.jcp.2023.112267_br0370)
He (10.1016/j.jcp.2023.112267_br0950) 2014; 54
Babuška (10.1016/j.jcp.2023.112267_br0930) 1997; 40
Liu (10.1016/j.jcp.2023.112267_br0020) 2021; 58
Huang (10.1016/j.jcp.2023.112267_br0490) 2015
Geelen (10.1016/j.jcp.2023.112267_br0800) 2022; 380
Benner (10.1016/j.jcp.2023.112267_br0700) 2020; 372
Cheung (10.1016/j.jcp.2023.112267_br0190)
Bock (10.1016/j.jcp.2023.112267_br0520) 2019; 6
Marjavaara (10.1016/j.jcp.2023.112267_br0480) 2007; 129
Hoang (10.1016/j.jcp.2023.112267_br0640) 2022; 389
Khodabakhshi (10.1016/j.jcp.2023.112267_br0860) 2022; 389
Guo (10.1016/j.jcp.2023.112267_br0790)
Paszke (10.1016/j.jcp.2023.112267_br0910) 2017
Lee (10.1016/j.jcp.2023.112267_br0160) 2020; 404
Choi (10.1016/j.jcp.2023.112267_br0220) 2020; 42
Lee (10.1016/j.jcp.2023.112267_br0340) 2013; 6
Mojgani (10.1016/j.jcp.2023.112267_br0430)
Issan (10.1016/j.jcp.2023.112267_br0880)
Choi (10.1016/j.jcp.2023.112267_br0300) 2021; 424
Fritzen (10.1016/j.jcp.2023.112267_br0210) 2018; 23
Lauzon (10.1016/j.jcp.2023.112267_br0200)
Sahoo (10.1016/j.jcp.2023.112267_br0730) 2018
Shepard (10.1016/j.jcp.2023.112267_br0920) 1968
He (10.1016/j.jcp.2023.112267_br0960) 2021; 385
Koza (10.1016/j.jcp.2023.112267_br0650) 1994; 4
Peherstorfer (10.1016/j.jcp.2023.112267_br0680) 2016; 306
Yıldız (10.1016/j.jcp.2023.112267_br0870) 2021; 93
Gogu (10.1016/j.jcp.2023.112267_br0360) 2015; 101
Cranmer (10.1016/j.jcp.2023.112267_br0710) 2020; 33
Galbally (10.1016/j.jcp.2023.112267_br0080) 2010; 81
Anderson (10.1016/j.jcp.2023.112267_br1010) 2021; 81
Berkooz (10.1016/j.jcp.2023.112267_br0090) 1993; 25
Chen (10.1016/j.jcp.2023.112267_br0310) 2015; 102
Hinton (10.1016/j.jcp.2023.112267_br0130) 2006; 313
Patera (10.1016/j.jcp.2023.112267_br0100) 2007
Choi (10.1016/j.jcp.2023.112267_br0390) 2020; 423
Kutz (10.1016/j.jcp.2023.112267_br0530) 2017; 814
Hoang (10.1016/j.jcp.2023.112267_br0170) 2021; 384
Cranmer (10.1016/j.jcp.2023.112267_br0720) 2020
Peherstorfer (10.1016/j.jcp.2023.112267_br0850) 2020; 42
McQuarrie (10.1016/j.jcp.2023.112267_br0810)
Xie (10.1016/j.jcp.2023.112267_br0630) 2019; 7
Choi (10.1016/j.jcp.2023.112267_br0230) 2019; 41
Li (10.1016/j.jcp.2023.112267_br0750)
Bai (10.1016/j.jcp.2023.112267_br0770) 2021; 8
Lu (10.1016/j.jcp.2023.112267_br0420) 2020; 407
Wendland (10.1016/j.jcp.2023.112267_br0940) 2004
Kingma (10.1016/j.jcp.2023.112267_br1000)
Fries (10.1016/j.jcp.2023.112267_br0400) 2022; 399
Swischuk (10.1016/j.jcp.2023.112267_br0820) 2020; 58
Elsken (10.1016/j.jcp.2023.112267_br1020) 2019; 20
Choi (10.1016/j.jcp.2023.112267_br0050) 2015; 65
Qian (10.1016/j.jcp.2023.112267_br0460) 2006; 128
Qian (10.1016/j.jcp.2023.112267_br0690) 2020; 406
Lee (10.1016/j.jcp.2023.112267_br0330) 2013; 96
Stabile (10.1016/j.jcp.2023.112267_br0270) 2018; 173
Kadeethum (10.1016/j.jcp.2023.112267_br0600)
Copeland (10.1016/j.jcp.2023.112267_br0180) 2022; 388
Abadi (10.1016/j.jcp.2023.112267_br0990) 2016
Champion (10.1016/j.jcp.2023.112267_br0760) 2019; 116
Kusner (10.1016/j.jcp.2023.112267_br0740) 2017
Wang (10.1016/j.jcp.2023.112267_br0030) 2007; 69
Kim (10.1016/j.jcp.2023.112267_br0260) 2021; 9
Morton (10.1016/j.jcp.2023.112267_br0560) 2018; 31
Kaneko (10.1016/j.jcp.2023.112267_br0350) 2021; 151
Tapia (10.1016/j.jcp.2023.112267_br0470) 2018; 94
Jones (10.1016/j.jcp.2023.112267_br0010) 2020; 29
Safonov (10.1016/j.jcp.2023.112267_br0110) 1989; 34
McQuarrie (10.1016/j.jcp.2023.112267_br0840) 2021; 51
Paganini (10.1016/j.jcp.2023.112267_br0540) 2018; 97
Kadeethum (10.1016/j.jcp.2023.112267_br0580)
Iliescu (10.1016/j.jcp.2023.112267_br0280) 2014; 30
Schmidt (10.1016/j.jcp.2023.112267_br0660) 2009; 324
Biros (10.1016/j.jcp.2023.112267_br0070) 2011
DeMers (10.1016/j.jcp.2023.112267_br0120) 1993
Kadeethum (10.1016/j.jcp.2023.112267_br0590) 2022
Min (10.1016/j.jcp.2023.112267_br0550) 2017; 18
Hughes (10.1016/j.jcp.2023.112267_br0290) 2020; 121
Mirhoseini (10.1016/j.jcp.2023.112267_br0450)
Kadeethum (10.1016/j.jcp.2023.112267_br0570) 2021; 1
Swischuk (10.1016/j.jcp.2023.112267_br0610) 2019; 179
Geelen (10.1016/j.jcp.2023.112267_br0780)
McBane (10.1016/j.jcp.2023.112267_br0380) 2021; 381
Reiss (10.1016/j.jcp.2023.112267_br0440) 2018; 40
He (10.1016/j.jcp.2023.112267_br0980) 2020; 363
Han (10.1016/j.jcp.2023.112267_br0500) 2013; 25
Settles (10.1016/j.jcp.2023.112267_br0890) 2009
Han (10.1016/j.jcp.2023.112267_br0510) 2012; 50
McLaughlin (10.1016/j.jcp.2023.112267_br0250) 2016; 71
Kim (10.1016/j.jcp.2023.112267_br0620) 2019; vol. 38
Brunton (10.1016/j.jcp.2023.112267_br0670) 2016; 113
Lu (10.1016/j.jcp.2023.112267_br0410) 2021; 2
Melville (10.1016/j.jcp.2023.112267_br0900) 2004
Kim (10.1016/j.jcp.2023.112267_br0150)
White (10.1016/j.jcp.2023.112267_br0040) 2020; 61
He (10.1016/j.jcp.2023.112267_br0320) 2019; 63
References_xml – volume: 121
  start-page: 5647
  year: 2020
  end-page: 5666
  ident: br0290
  article-title: A discontinuous and adaptive reduced order model for the angular discretization of the Boltzmann transport equation
  publication-title: Int. J. Numer. Methods Eng.
– volume: 128
  start-page: 668
  year: 2006
  end-page: 677
  ident: br0460
  article-title: Building surrogate models based on detailed and approximate simulations
  publication-title: J. Mech. Des.
– volume: 93
  start-page: 2803
  year: 2021
  end-page: 2821
  ident: br0870
  article-title: Learning reduced-order dynamics for parametrized shallow water equations from data
  publication-title: Int. J. Numer. Methods Fluids
– start-page: 74
  year: 2004
  ident: br0900
  article-title: Diverse ensembles for active learning
  publication-title: Proceedings of the Twenty-First International Conference on Machine Learning
– volume: 41
  start-page: A26
  year: 2019
  end-page: A58
  ident: br0230
  article-title: Space–time least-squares Petrov–Galerkin projection for nonlinear model reduction
  publication-title: SIAM J. Sci. Comput.
– volume: 97
  year: 2018
  ident: br0540
  article-title: Calogan: simulating 3d high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks
  publication-title: Phys. Rev. D
– volume: 29
  start-page: 36
  year: 2020
  end-page: 52
  ident: br0010
  article-title: Characterising the digital twin: a systematic literature review
  publication-title: CIRP J. Manuf. Sci. Technol.
– volume: 116
  start-page: 22445
  year: 2019
  end-page: 22451
  ident: br0760
  article-title: Data-driven discovery of coordinates and governing equations
  publication-title: Proc. Natl. Acad. Sci.
– volume: 81
  start-page: 42
  year: 2021
  end-page: 74
  ident: br1010
  article-title: Mfem: a modular finite element methods library
  publication-title: Comput. Math. Appl.
– volume: 25
  start-page: 177
  year: 2013
  end-page: 189
  ident: br0500
  article-title: Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function
  publication-title: Aerosp. Sci. Technol.
– start-page: 4442
  year: 2018
  end-page: 4450
  ident: br0730
  article-title: Learning equations for extrapolation and control
  publication-title: International Conference on Machine Learning
– volume: 71
  start-page: 2407
  year: 2016
  end-page: 2420
  ident: br0250
  article-title: Stabilized reduced order models for the advection–diffusion–reaction equation using operator splitting
  publication-title: Comput. Math. Appl.
– volume: 65
  start-page: 576
  year: 2015
  end-page: 597
  ident: br0050
  article-title: A practical factorization of a Schur complement for pde-constrained distributed optimal control
  publication-title: J. Sci. Comput.
– start-page: 1945
  year: 2017
  end-page: 1954
  ident: br0740
  article-title: Grammar variational autoencoder
  publication-title: International Conference on Machine Learning
– volume: 20
  start-page: 1997
  year: 2019
  end-page: 2017
  ident: br1020
  article-title: Neural architecture search: a survey
  publication-title: J. Mach. Learn. Res.
– year: 2022
  ident: br0600
  article-title: Reduced order modeling for flow and transport problems with barlow twins self-supervised learning
– volume: 113
  start-page: 3932
  year: 2016
  end-page: 3937
  ident: br0670
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
– year: 2021
  ident: br0810
  article-title: Non-intrusive reduced-order models for parametric partial differential equations via data-driven operator inference
– volume: 30
  start-page: 641
  year: 2014
  end-page: 663
  ident: br0280
  article-title: Variational multiscale proper orthogonal decomposition: Navier-Stokes equations
  publication-title: Numer. Methods Partial Differ. Equ.
– year: 2017
  ident: br0910
  article-title: Automatic differentiation in PyTorch
– volume: 96
  start-page: 599
  year: 2013
  end-page: 627
  ident: br0330
  article-title: Proper orthogonal decomposition-based model order reduction via radial basis functions for molecular dynamics systems
  publication-title: Int. J. Numer. Methods Eng.
– year: 2021
  ident: br0580
  article-title: Continuous conditional generative adversarial networks for data-driven solutions of poroelasticity with heterogeneous material properties
– volume: 399
  year: 2022
  ident: br0400
  article-title: LaSDI: parametric latent space dynamics identification
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 389
  year: 2022
  ident: br0640
  article-title: Projection-based model reduction of dynamical systems using space–time subspace and machine learning
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 384
  year: 2021
  ident: br0170
  article-title: Domain-decomposition least-squares Petrov–Galerkin (dd-lspg) nonlinear model reduction
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2020
  ident: br0720
  article-title: Pysr: Fast & parallelized symbolic regression in Python/Julia
– volume: 6
  start-page: 395
  year: 2013
  end-page: 409
  ident: br0340
  article-title: Rbf-pod reduced-order modeling of DNA molecules under stretching and bending
  publication-title: Interact. Multiscale Mech.
– volume: 40
  start-page: A1322
  year: 2018
  end-page: A1344
  ident: br0440
  article-title: The shifted proper orthogonal decomposition: a mode decomposition for multiple transport phenomena
  publication-title: SIAM J. Sci. Comput.
– volume: 50
  start-page: 1885
  year: 2012
  end-page: 1896
  ident: br0510
  article-title: Hierarchical Kriging model for variable-fidelity surrogate modeling
  publication-title: AIAA J.
– year: 2022
  ident: br0790
  article-title: Bayesian operator inference for data-driven reduced order modeling
– volume: 34
  start-page: 729
  year: 1989
  end-page: 733
  ident: br0110
  article-title: A Schur method for balanced-truncation model reduction
  publication-title: IEEE Trans. Autom. Control
– year: 2021
  ident: br0450
  article-title: Model reduction of convection-dominated partial differential equations via optimization-based implicit feature tracking
– volume: 424
  year: 2021
  ident: br0300
  article-title: Space–time reduced order model for large-scale linear dynamical systems with application to Boltzmann transport problems
  publication-title: J. Comput. Phys.
– volume: 363
  year: 2020
  ident: br0980
  article-title: A physics-constrained data-driven approach based on locally convex reconstruction for noisy database
  publication-title: Comput. Methods Appl. Mech. Eng.
– start-page: 3633
  year: 2021
  ident: br0830
  article-title: Performance comparison of data-driven reduced models for a single-injector combustion process
  publication-title: AIAA Propulsion and Energy 2021 Forum
– year: 2019
  ident: br0370
  article-title: Accelerating design optimization using reduced order models
– volume: 42
  start-page: A3489
  year: 2020
  end-page: A3515
  ident: br0850
  article-title: Sampling low-dimensional markovian dynamics for preasymptotically recovering reduced models from data with operator inference
  publication-title: SIAM J. Sci. Comput.
– volume: 61
  start-page: 749
  year: 2020
  end-page: 762
  ident: br0040
  article-title: A dual mesh method with adaptivity for stress-constrained topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 324
  start-page: 81
  year: 2009
  end-page: 85
  ident: br0660
  article-title: Distilling free-form natural laws from experimental data
  publication-title: Science
– year: 2022
  ident: br0200
  article-title: S-OPT: a points selection algorithm for hyper-reduction in reduced order models
– volume: 9
  start-page: 1690
  year: 2021
  ident: br0260
  article-title: Efficient space–time reduced order model for linear dynamical systems in python using less than 120 lines of code
  publication-title: Mathematics
– volume: 404
  year: 2020
  ident: br0160
  article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
  publication-title: J. Comput. Phys.
– start-page: 265
  year: 2016
  end-page: 283
  ident: br0990
  article-title: tensorflow: a system for large-scale machine learning
  publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)
– year: 2009
  ident: br0890
  article-title: Active learning literature survey
– year: 2020
  ident: br0150
  article-title: Efficient nonlinear manifold reduced order model
– volume: 54
  start-page: 629
  year: 2014
  end-page: 644
  ident: br0950
  article-title: A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation
  publication-title: Comput. Mech.
– volume: 31
  year: 2018
  ident: br0560
  article-title: Deep dynamical modeling and control of unsteady fluid flows
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 517
  year: 1968
  end-page: 524
  ident: br0920
  article-title: A two-dimensional interpolation function for irregularly-spaced data
  publication-title: Proceedings of the 1968 23rd ACM National Conference
– volume: 69
  start-page: 2441
  year: 2007
  end-page: 2468
  ident: br0030
  article-title: Large-scale topology optimization using preconditioned Krylov subspace methods with recycling
  publication-title: Int. J. Numer. Methods Eng.
– volume: 18
  start-page: 851
  year: 2017
  end-page: 869
  ident: br0550
  article-title: Deep learning in bioinformatics
  publication-title: Brief. Bioinform.
– volume: 423
  year: 2020
  ident: br0390
  article-title: Gradient-based constrained optimization using a database of linear reduced-order models
  publication-title: J. Comput. Phys.
– volume: 6
  start-page: 110
  year: 2019
  ident: br0520
  article-title: A review of the application of machine learning and data mining approaches in continuum materials mechanics
  publication-title: Frontiers Mater.
– volume: 1
  start-page: 819
  year: 2021
  end-page: 829
  ident: br0570
  article-title: A framework for data-driven solution and parameter estimation of pdes using conditional generative adversarial networks
  publication-title: Nat. Comput. Sci.
– volume: 372
  year: 2020
  ident: br0700
  article-title: Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 42
  start-page: A1116
  year: 2020
  end-page: A1146
  ident: br0220
  article-title: Sns: a solution-based nonlinear subspace method for time-dependent model order reduction
  publication-title: SIAM J. Sci. Comput.
– volume: 58
  start-page: 2658
  year: 2020
  end-page: 2672
  ident: br0820
  article-title: Learning physics-based reduced-order models for a single-injector combustion process
  publication-title: AIAA J.
– volume: 25
  start-page: 539
  year: 1993
  end-page: 575
  ident: br0090
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
– year: 2022
  ident: br0190
  article-title: Local Lagrangian reduced-order modeling for Rayleigh-Taylor instability by solution manifold decomposition
– volume: 151
  year: 2021
  ident: br0350
  article-title: A hyper-reduction computational method for accelerated modeling of thermal cycling-induced plastic deformations
  publication-title: J. Mech. Phys. Solids
– volume: 4
  start-page: 87
  year: 1994
  end-page: 112
  ident: br0650
  article-title: Genetic programming as a means for programming computers by natural selection
  publication-title: Stat. Comput.
– year: 2022
  ident: br0880
  article-title: Predicting solar wind streams from the inner-heliosphere to Earth via shifted operator inference
– year: 2022
  ident: br0590
  article-title: Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: comparison with linear subspace techniques
  publication-title: Adv. Water Resour.
– volume: 406
  year: 2020
  ident: br0690
  article-title: Lift & learn: physics-informed machine learning for large-scale nonlinear dynamical systems
  publication-title: Physica D
– volume: 451
  year: 2022
  ident: br0140
  article-title: A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder
  publication-title: J. Comput. Phys.
– volume: 8
  start-page: 1
  year: 2021
  end-page: 24
  ident: br0770
  article-title: Non-intrusive nonlinear model reduction via machine learning approximations to low-dimensional operators
  publication-title: Adv. Model. Simul. Eng. Sci.
– start-page: 580
  year: 1993
  end-page: 587
  ident: br0120
  article-title: Non-linear dimensionality reduction
  publication-title: Advances in Neural Information Processing Systems
– volume: 63
  start-page: 593
  year: 2019
  end-page: 614
  ident: br0320
  article-title: A decomposed subspace reduction for fracture mechanics based on the meshfree integrated singular basis function method
  publication-title: Comput. Mech.
– volume: 380
  year: 2022
  ident: br0800
  article-title: Localized non-intrusive reduced-order modeling in the operator inference framework
  publication-title: Philos. Trans. R. Soc., A
– year: 2015
  ident: br0490
  article-title: Hull form optimization for reduced drag and improved seakeeping using a surrogate-based method
  publication-title: The Twenty-Fifth International Ocean and Polar Engineering Conference
– volume: 290
  start-page: 2323
  year: 2000
  end-page: 2326
  ident: br0970
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
– year: 2014
  ident: br1000
  article-title: Adam: a method for stochastic optimization
– volume: 58
  start-page: 346
  year: 2021
  end-page: 361
  ident: br0020
  article-title: Review of digital twin about concepts, technologies, and industrial applications
  publication-title: J. Manuf. Syst.
– year: 2011
  ident: br0070
  article-title: Large-Scale Inverse Problems and Quantification of Uncertainty
– volume: 371
  start-page: 280
  year: 2018
  end-page: 314
  ident: br0240
  article-title: Conservative model reduction for finite-volume models
  publication-title: J. Comput. Phys.
– volume: 407
  year: 2020
  ident: br0420
  article-title: Lagrangian dynamic mode decomposition for construction of reduced-order models of advection-dominated phenomena
  publication-title: J. Comput. Phys.
– volume: 389
  year: 2022
  ident: br0860
  article-title: Non-intrusive data-driven model reduction for differential–algebraic equations derived from lifting transformations
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 129
  start-page: 1228
  year: 2007
  end-page: 1240
  ident: br0480
  article-title: Hydraulic turbine diffuser shape optimization by multiple surrogate model approximations of Pareto fronts
  publication-title: J. Fluids Eng.
– volume: 173
  start-page: 273
  year: 2018
  end-page: 284
  ident: br0270
  article-title: Finite volume pod-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations
  publication-title: Comput. Fluids
– volume: 102
  start-page: 1211
  year: 2015
  end-page: 1237
  ident: br0310
  article-title: Model order reduction for meshfree solution of Poisson singularity problems
  publication-title: Int. J. Numer. Methods Eng.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: br0130
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 306
  start-page: 196
  year: 2016
  end-page: 215
  ident: br0680
  article-title: Data-driven operator inference for nonintrusive projection-based model reduction
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 388
  year: 2022
  ident: br0180
  article-title: Reduced order models for lagrangian hydrodynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: vol. 38
  start-page: 59
  year: 2019
  end-page: 70
  ident: br0620
  article-title: Deep fluids: a generative network for parameterized fluid simulations
  publication-title: Computer Graphics Forum
– volume: 94
  start-page: 3591
  year: 2018
  end-page: 3603
  ident: br0470
  article-title: Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316l stainless steel
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 179
  start-page: 704
  year: 2019
  end-page: 717
  ident: br0610
  article-title: Projection-based model reduction: formulations for physics-based machine learning
  publication-title: Comput. Fluids
– year: 2022
  ident: br0780
  article-title: Operator inference for non-intrusive model reduction with nonlinear manifolds
– volume: 7
  start-page: 757
  year: 2019
  ident: br0630
  article-title: Non-intrusive inference reduced order model for fluids using deep multistep neural network
  publication-title: Mathematics
– volume: 33
  start-page: 17429
  year: 2020
  end-page: 17442
  ident: br0710
  article-title: Discovering symbolic models from deep learning with inductive biases
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 101
  start-page: 281
  year: 2015
  end-page: 304
  ident: br0360
  article-title: Improving the efficiency of large scale topology optimization through on-the-fly reduced order model construction
  publication-title: Int. J. Numer. Methods Eng.
– volume: 814
  start-page: 1
  year: 2017
  end-page: 4
  ident: br0530
  article-title: Deep learning in fluid dynamics
  publication-title: J. Fluid Mech.
– volume: 385
  year: 2021
  ident: br0960
  article-title: Deep autoencoders for physics-constrained data-driven nonlinear materials modeling
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2019
  ident: br0750
  article-title: Neural-guided symbolic regression with asymptotic constraints
– volume: 51
  start-page: 194
  year: 2021
  end-page: 211
  ident: br0840
  article-title: Data-driven reduced-order models via regularised operator inference for a single-injector combustion process
  publication-title: J. R. Soc. N.Z.
– volume: 81
  start-page: 1581
  year: 2010
  end-page: 1608
  ident: br0080
  article-title: Non-linear model reduction for uncertainty quantification in large-scale inverse problems
  publication-title: Int. J. Numer. Methods Eng.
– volume: 381
  year: 2021
  ident: br0380
  article-title: Component-wise reduced order model lattice-type structure design
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2017
  ident: br0430
  article-title: Lagrangian basis method for dimensionality reduction of convection dominated nonlinear flows
– year: 2007
  ident: br0100
  article-title: Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations
– volume: 40
  start-page: 727
  year: 1997
  end-page: 758
  ident: br0930
  article-title: The partition of unity method
  publication-title: Int. J. Numer. Methods Eng.
– year: 2013
  ident: br0060
  article-title: Uncertainty Quantification: Theory, Implementation, and Applications, vol. 12
– volume: 23
  start-page: 8
  year: 2018
  ident: br0210
  article-title: An algorithmic comparison of the hyper-reduction and the discrete empirical interpolation method for a nonlinear thermal problem
  publication-title: Math. Comput. Appl.
– year: 2004
  ident: br0940
  article-title: Scattered Data Approximation, vol. 17
– volume: 2
  year: 2021
  ident: br0410
  article-title: Dynamic mode decomposition for construction of reduced-order models of hyperbolic problems with shocks
  publication-title: J. Mach. Learn. Model. Comput.
– volume: 384
  year: 2021
  ident: 10.1016/j.jcp.2023.112267_br0170
  article-title: Domain-decomposition least-squares Petrov–Galerkin (dd-lspg) nonlinear model reduction
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113997
– volume: 30
  start-page: 641
  issue: 2
  year: 2014
  ident: 10.1016/j.jcp.2023.112267_br0280
  article-title: Variational multiscale proper orthogonal decomposition: Navier-Stokes equations
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.21835
– start-page: 517
  year: 1968
  ident: 10.1016/j.jcp.2023.112267_br0920
  article-title: A two-dimensional interpolation function for irregularly-spaced data
– volume: 424
  year: 2021
  ident: 10.1016/j.jcp.2023.112267_br0300
  article-title: Space–time reduced order model for large-scale linear dynamical systems with application to Boltzmann transport problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109845
– volume: 40
  start-page: 727
  issue: 4
  year: 1997
  ident: 10.1016/j.jcp.2023.112267_br0930
  article-title: The partition of unity method
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
– volume: 116
  start-page: 22445
  issue: 45
  year: 2019
  ident: 10.1016/j.jcp.2023.112267_br0760
  article-title: Data-driven discovery of coordinates and governing equations
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1906995116
– volume: 102
  start-page: 1211
  issue: 5
  year: 2015
  ident: 10.1016/j.jcp.2023.112267_br0310
  article-title: Model order reduction for meshfree solution of Poisson singularity problems
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4743
– ident: 10.1016/j.jcp.2023.112267_br1000
– ident: 10.1016/j.jcp.2023.112267_br0810
– year: 2009
  ident: 10.1016/j.jcp.2023.112267_br0890
– volume: 151
  year: 2021
  ident: 10.1016/j.jcp.2023.112267_br0350
  article-title: A hyper-reduction computational method for accelerated modeling of thermal cycling-induced plastic deformations
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2021.104385
– ident: 10.1016/j.jcp.2023.112267_br0150
– year: 2011
  ident: 10.1016/j.jcp.2023.112267_br0070
– volume: 371
  start-page: 280
  year: 2018
  ident: 10.1016/j.jcp.2023.112267_br0240
  article-title: Conservative model reduction for finite-volume models
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.05.019
– volume: 34
  start-page: 729
  issue: 7
  year: 1989
  ident: 10.1016/j.jcp.2023.112267_br0110
  article-title: A Schur method for balanced-truncation model reduction
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.29399
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  ident: 10.1016/j.jcp.2023.112267_br0970
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– start-page: 1945
  year: 2017
  ident: 10.1016/j.jcp.2023.112267_br0740
  article-title: Grammar variational autoencoder
– volume: 40
  start-page: A1322
  issue: 3
  year: 2018
  ident: 10.1016/j.jcp.2023.112267_br0440
  article-title: The shifted proper orthogonal decomposition: a mode decomposition for multiple transport phenomena
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1140571
– ident: 10.1016/j.jcp.2023.112267_br0450
– volume: 399
  year: 2022
  ident: 10.1016/j.jcp.2023.112267_br0400
  article-title: LaSDI: parametric latent space dynamics identification
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.115436
– volume: 128
  start-page: 668
  issue: 4
  year: 2006
  ident: 10.1016/j.jcp.2023.112267_br0460
  article-title: Building surrogate models based on detailed and approximate simulations
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2179459
– volume: 93
  start-page: 2803
  issue: 8
  year: 2021
  ident: 10.1016/j.jcp.2023.112267_br0870
  article-title: Learning reduced-order dynamics for parametrized shallow water equations from data
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.4998
– year: 2004
  ident: 10.1016/j.jcp.2023.112267_br0940
– year: 2015
  ident: 10.1016/j.jcp.2023.112267_br0490
  article-title: Hull form optimization for reduced drag and improved seakeeping using a surrogate-based method
– volume: 380
  issue: 2229
  year: 2022
  ident: 10.1016/j.jcp.2023.112267_br0800
  article-title: Localized non-intrusive reduced-order modeling in the operator inference framework
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2021.0206
– volume: 101
  start-page: 281
  issue: 4
  year: 2015
  ident: 10.1016/j.jcp.2023.112267_br0360
  article-title: Improving the efficiency of large scale topology optimization through on-the-fly reduced order model construction
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4797
– volume: 81
  start-page: 1581
  issue: 12
  year: 2010
  ident: 10.1016/j.jcp.2023.112267_br0080
  article-title: Non-linear model reduction for uncertainty quantification in large-scale inverse problems
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2746
– volume: 179
  start-page: 704
  year: 2019
  ident: 10.1016/j.jcp.2023.112267_br0610
  article-title: Projection-based model reduction: formulations for physics-based machine learning
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.07.021
– volume: 6
  start-page: 110
  year: 2019
  ident: 10.1016/j.jcp.2023.112267_br0520
  article-title: A review of the application of machine learning and data mining approaches in continuum materials mechanics
  publication-title: Frontiers Mater.
  doi: 10.3389/fmats.2019.00110
– volume: 1
  start-page: 819
  issue: 12
  year: 2021
  ident: 10.1016/j.jcp.2023.112267_br0570
  article-title: A framework for data-driven solution and parameter estimation of pdes using conditional generative adversarial networks
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-021-00171-3
– year: 2017
  ident: 10.1016/j.jcp.2023.112267_br0910
– start-page: 4442
  year: 2018
  ident: 10.1016/j.jcp.2023.112267_br0730
  article-title: Learning equations for extrapolation and control
– ident: 10.1016/j.jcp.2023.112267_br0780
– volume: 96
  start-page: 599
  issue: 10
  year: 2013
  ident: 10.1016/j.jcp.2023.112267_br0330
  article-title: Proper orthogonal decomposition-based model order reduction via radial basis functions for molecular dynamics systems
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4552
– volume: 451
  year: 2022
  ident: 10.1016/j.jcp.2023.112267_br0140
  article-title: A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110841
– volume: 423
  year: 2020
  ident: 10.1016/j.jcp.2023.112267_br0390
  article-title: Gradient-based constrained optimization using a database of linear reduced-order models
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109787
– volume: 113
  start-page: 3932
  issue: 15
  year: 2016
  ident: 10.1016/j.jcp.2023.112267_br0670
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1517384113
– ident: 10.1016/j.jcp.2023.112267_br0580
– volume: 372
  year: 2020
  ident: 10.1016/j.jcp.2023.112267_br0700
  article-title: Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113433
– start-page: 265
  year: 2016
  ident: 10.1016/j.jcp.2023.112267_br0990
  article-title: tensorflow: a system for large-scale machine learning
– volume: 121
  start-page: 5647
  issue: 24
  year: 2020
  ident: 10.1016/j.jcp.2023.112267_br0290
  article-title: A discontinuous and adaptive reduced order model for the angular discretization of the Boltzmann transport equation
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6516
– volume: 406
  year: 2020
  ident: 10.1016/j.jcp.2023.112267_br0690
  article-title: Lift & learn: physics-informed machine learning for large-scale nonlinear dynamical systems
  publication-title: Physica D
  doi: 10.1016/j.physd.2020.132401
– volume: 63
  start-page: 593
  issue: 3
  year: 2019
  ident: 10.1016/j.jcp.2023.112267_br0320
  article-title: A decomposed subspace reduction for fracture mechanics based on the meshfree integrated singular basis function method
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-018-1611-8
– volume: 61
  start-page: 749
  issue: 2
  year: 2020
  ident: 10.1016/j.jcp.2023.112267_br0040
  article-title: A dual mesh method with adaptivity for stress-constrained topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-019-02393-6
– ident: 10.1016/j.jcp.2023.112267_br0600
– volume: 7
  start-page: 757
  issue: 8
  year: 2019
  ident: 10.1016/j.jcp.2023.112267_br0630
  article-title: Non-intrusive inference reduced order model for fluids using deep multistep neural network
  publication-title: Mathematics
  doi: 10.3390/math7080757
– volume: 42
  start-page: A1116
  issue: 2
  year: 2020
  ident: 10.1016/j.jcp.2023.112267_br0220
  article-title: Sns: a solution-based nonlinear subspace method for time-dependent model order reduction
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1242963
– volume: 381
  year: 2021
  ident: 10.1016/j.jcp.2023.112267_br0380
  article-title: Component-wise reduced order model lattice-type structure design
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113813
– volume: 41
  start-page: A26
  issue: 1
  year: 2019
  ident: 10.1016/j.jcp.2023.112267_br0230
  article-title: Space–time least-squares Petrov–Galerkin projection for nonlinear model reduction
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1120531
– volume: 363
  year: 2020
  ident: 10.1016/j.jcp.2023.112267_br0980
  article-title: A physics-constrained data-driven approach based on locally convex reconstruction for noisy database
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112791
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.jcp.2023.112267_br0770
  article-title: Non-intrusive nonlinear model reduction via machine learning approximations to low-dimensional operators
  publication-title: Adv. Model. Simul. Eng. Sci.
  doi: 10.1186/s40323-021-00213-5
– ident: 10.1016/j.jcp.2023.112267_br0430
– volume: 23
  start-page: 8
  issue: 1
  year: 2018
  ident: 10.1016/j.jcp.2023.112267_br0210
  article-title: An algorithmic comparison of the hyper-reduction and the discrete empirical interpolation method for a nonlinear thermal problem
  publication-title: Math. Comput. Appl.
– volume: 71
  start-page: 2407
  issue: 11
  year: 2016
  ident: 10.1016/j.jcp.2023.112267_br0250
  article-title: Stabilized reduced order models for the advection–diffusion–reaction equation using operator splitting
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.01.032
– volume: 407
  year: 2020
  ident: 10.1016/j.jcp.2023.112267_br0420
  article-title: Lagrangian dynamic mode decomposition for construction of reduced-order models of advection-dominated phenomena
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109229
– volume: 69
  start-page: 2441
  issue: 12
  year: 2007
  ident: 10.1016/j.jcp.2023.112267_br0030
  article-title: Large-scale topology optimization using preconditioned Krylov subspace methods with recycling
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1798
– volume: 81
  start-page: 42
  year: 2021
  ident: 10.1016/j.jcp.2023.112267_br1010
  article-title: Mfem: a modular finite element methods library
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2020.06.009
– volume: 33
  start-page: 17429
  year: 2020
  ident: 10.1016/j.jcp.2023.112267_br0710
  article-title: Discovering symbolic models from deep learning with inductive biases
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 389
  year: 2022
  ident: 10.1016/j.jcp.2023.112267_br0640
  article-title: Projection-based model reduction of dynamical systems using space–time subspace and machine learning
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114341
– year: 2020
  ident: 10.1016/j.jcp.2023.112267_br0720
– start-page: 74
  year: 2004
  ident: 10.1016/j.jcp.2023.112267_br0900
  article-title: Diverse ensembles for active learning
– volume: 18
  start-page: 851
  issue: 5
  year: 2017
  ident: 10.1016/j.jcp.2023.112267_br0550
  article-title: Deep learning in bioinformatics
  publication-title: Brief. Bioinform.
– volume: 31
  year: 2018
  ident: 10.1016/j.jcp.2023.112267_br0560
  article-title: Deep dynamical modeling and control of unsteady fluid flows
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 25
  start-page: 177
  issue: 1
  year: 2013
  ident: 10.1016/j.jcp.2023.112267_br0500
  article-title: Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2012.01.006
– volume: 389
  year: 2022
  ident: 10.1016/j.jcp.2023.112267_br0860
  article-title: Non-intrusive data-driven model reduction for differential–algebraic equations derived from lifting transformations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114296
– volume: 65
  start-page: 576
  issue: 2
  year: 2015
  ident: 10.1016/j.jcp.2023.112267_br0050
  article-title: A practical factorization of a Schur complement for pde-constrained distributed optimal control
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-014-9976-0
– ident: 10.1016/j.jcp.2023.112267_br0200
– ident: 10.1016/j.jcp.2023.112267_br0370
– volume: 9
  start-page: 1690
  issue: 14
  year: 2021
  ident: 10.1016/j.jcp.2023.112267_br0260
  article-title: Efficient space–time reduced order model for linear dynamical systems in python using less than 120 lines of code
  publication-title: Mathematics
  doi: 10.3390/math9141690
– volume: 306
  start-page: 196
  year: 2016
  ident: 10.1016/j.jcp.2023.112267_br0680
  article-title: Data-driven operator inference for nonintrusive projection-based model reduction
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.03.025
– volume: 51
  start-page: 194
  issue: 2
  year: 2021
  ident: 10.1016/j.jcp.2023.112267_br0840
  article-title: Data-driven reduced-order models via regularised operator inference for a single-injector combustion process
  publication-title: J. R. Soc. N.Z.
  doi: 10.1080/03036758.2020.1863237
– volume: 25
  start-page: 539
  issue: 1
  year: 1993
  ident: 10.1016/j.jcp.2023.112267_br0090
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.25.010193.002543
– volume: 814
  start-page: 1
  year: 2017
  ident: 10.1016/j.jcp.2023.112267_br0530
  article-title: Deep learning in fluid dynamics
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.803
– volume: 58
  start-page: 346
  year: 2021
  ident: 10.1016/j.jcp.2023.112267_br0020
  article-title: Review of digital twin about concepts, technologies, and industrial applications
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.06.017
– volume: 129
  start-page: 1228
  issue: 9
  year: 2007
  ident: 10.1016/j.jcp.2023.112267_br0480
  article-title: Hydraulic turbine diffuser shape optimization by multiple surrogate model approximations of Pareto fronts
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.2754324
– volume: 404
  year: 2020
  ident: 10.1016/j.jcp.2023.112267_br0160
  article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108973
– start-page: 3633
  year: 2021
  ident: 10.1016/j.jcp.2023.112267_br0830
  article-title: Performance comparison of data-driven reduced models for a single-injector combustion process
– volume: 54
  start-page: 629
  issue: 3
  year: 2014
  ident: 10.1016/j.jcp.2023.112267_br0950
  article-title: A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-014-1011-7
– volume: 324
  start-page: 81
  issue: 5923
  year: 2009
  ident: 10.1016/j.jcp.2023.112267_br0660
  article-title: Distilling free-form natural laws from experimental data
  publication-title: Science
  doi: 10.1126/science.1165893
– ident: 10.1016/j.jcp.2023.112267_br0750
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.jcp.2023.112267_br0130
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 29
  start-page: 36
  year: 2020
  ident: 10.1016/j.jcp.2023.112267_br0010
  article-title: Characterising the digital twin: a systematic literature review
  publication-title: CIRP J. Manuf. Sci. Technol.
  doi: 10.1016/j.cirpj.2020.02.002
– volume: 6
  start-page: 395
  issue: 4
  year: 2013
  ident: 10.1016/j.jcp.2023.112267_br0340
  article-title: Rbf-pod reduced-order modeling of DNA molecules under stretching and bending
  publication-title: Interact. Multiscale Mech.
  doi: 10.12989/imm.2013.6.4.395
– volume: 97
  issue: 1
  year: 2018
  ident: 10.1016/j.jcp.2023.112267_br0540
  article-title: Calogan: simulating 3d high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.014021
– volume: 385
  year: 2021
  ident: 10.1016/j.jcp.2023.112267_br0960
  article-title: Deep autoencoders for physics-constrained data-driven nonlinear materials modeling
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114034
– start-page: 580
  year: 1993
  ident: 10.1016/j.jcp.2023.112267_br0120
  article-title: Non-linear dimensionality reduction
– volume: 42
  start-page: A3489
  issue: 5
  year: 2020
  ident: 10.1016/j.jcp.2023.112267_br0850
  article-title: Sampling low-dimensional markovian dynamics for preasymptotically recovering reduced models from data with operator inference
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1292448
– volume: 94
  start-page: 3591
  issue: 9
  year: 2018
  ident: 10.1016/j.jcp.2023.112267_br0470
  article-title: Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316l stainless steel
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-1045-z
– volume: 4
  start-page: 87
  issue: 2
  year: 1994
  ident: 10.1016/j.jcp.2023.112267_br0650
  article-title: Genetic programming as a means for programming computers by natural selection
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175355
– ident: 10.1016/j.jcp.2023.112267_br0880
– volume: vol. 38
  start-page: 59
  year: 2019
  ident: 10.1016/j.jcp.2023.112267_br0620
  article-title: Deep fluids: a generative network for parameterized fluid simulations
– volume: 2
  issue: 1
  year: 2021
  ident: 10.1016/j.jcp.2023.112267_br0410
  article-title: Dynamic mode decomposition for construction of reduced-order models of hyperbolic problems with shocks
  publication-title: J. Mach. Learn. Model. Comput.
  doi: 10.1615/JMachLearnModelComput.2021036132
– year: 2022
  ident: 10.1016/j.jcp.2023.112267_br0590
  article-title: Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: comparison with linear subspace techniques
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2021.104098
– year: 2007
  ident: 10.1016/j.jcp.2023.112267_br0100
– volume: 20
  start-page: 1997
  issue: 1
  year: 2019
  ident: 10.1016/j.jcp.2023.112267_br1020
  article-title: Neural architecture search: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 388
  year: 2022
  ident: 10.1016/j.jcp.2023.112267_br0180
  article-title: Reduced order models for lagrangian hydrodynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114259
– volume: 58
  start-page: 2658
  issue: 6
  year: 2020
  ident: 10.1016/j.jcp.2023.112267_br0820
  article-title: Learning physics-based reduced-order models for a single-injector combustion process
  publication-title: AIAA J.
  doi: 10.2514/1.J058943
– year: 2013
  ident: 10.1016/j.jcp.2023.112267_br0060
– ident: 10.1016/j.jcp.2023.112267_br0190
– volume: 173
  start-page: 273
  year: 2018
  ident: 10.1016/j.jcp.2023.112267_br0270
  article-title: Finite volume pod-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.01.035
– ident: 10.1016/j.jcp.2023.112267_br0790
– volume: 50
  start-page: 1885
  issue: 9
  year: 2012
  ident: 10.1016/j.jcp.2023.112267_br0510
  article-title: Hierarchical Kriging model for variable-fidelity surrogate modeling
  publication-title: AIAA J.
  doi: 10.2514/1.J051354
SSID ssj0008548
Score 2.5902393
Snippet A parametric adaptive physics-informed greedy Latent Space Dynamics Identification (gLaSDI) method is proposed for accurate, efficient, and robust data-driven...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 112267
SubjectTerms Adaptive sampling
Autoencoders
MATHEMATICS AND COMPUTING
Nonlinear dynamical systems
Physics-informed greedy algorithm
Reduced order model
Regression-based dynamics identification
Title gLaSDI: Parametric physics-informed greedy latent space dynamics identification
URI https://dx.doi.org/10.1016/j.jcp.2023.112267
https://www.osti.gov/servlets/purl/1999976
Volume 489
WOSCitedRecordID wos001033012800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect (Freedom Collection)
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg48CFb7QxmHzgRJQqtePY4TaxTRuaxiR66C1KnBi1qpJpKWh_Pu_lOWnpRAWHXawqrZPK75ff-_Dze4x9tIkrnSqSMClxm1FP4jAFPQ2DMQWoszIVeddsQl9dmdksvfah7LZrJ6Dr2tzdpTcPKmq4BsLGo7P_Ie7hpnABPoPQYQSxw_hPgv9xmX8_uUBP_zrHzCsswe8DGG1IdVLByAQ3G_g1WIKpWa8CoBV4v0vqTt8G89LnEK3Fdt9-tV0_iD6W6B-wDq2i7GbzHLjV68Yuh6Dpkgc6immbZgAP-utdth9Ff4KT8RAmqJaN2wzzB5fjzUiFkJhWQWc1KXzmdf0mHWN-SErtusYVMXCURqHQdACzp-iY2gzdo3uKPCzGC4ulR4XEA1GC2ntsVdHGagtgeT1me0KrFBh87_jidPZ1UNpGxaS0_T_qN8C7VMCt2__NhBk1wMob1sn0BXvmxcKPCQ4v2aOqfsWeexeDewJvX7NvhI7PfI0Nvo0NTtjghA3eYYP32OB_YuMNm56dTr-ch76nRmhlolehLasot_AGFlq6WNmkUAIVjTOFm0hlJHgAEyeUyUVS5FqBfSsrrJGnXGSllW_ZqG7qap_xHByNVObaVuBBOGGMjWOs4YVbrWh1HrCoX6XM-nrz2PZkmfWJhYsMFjbDhc1oYQ_Yp2HKDRVb2fXjuF_6zFuLZAVmgI5d0w5RTDgFqyRbTCeDOR4f73Z-e8iernH9no1Wtz-rD-yJ_bWat7dHHlK_AYF9jt0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=gLaSDI%3A+Parametric+physics-informed+greedy+latent+space+dynamics+identification&rft.jtitle=Journal+of+computational+physics&rft.au=He%2C+Xiaolong&rft.au=Choi%2C+Youngsoo&rft.au=Fries%2C+William+D.&rft.au=Belof%2C+Jonathan+L.&rft.date=2023-09-15&rft.pub=Elsevier&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=489&rft_id=info:doi/10.1016%2Fj.jcp.2023.112267&rft.externalDocID=1999976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon