Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications

Many researchers have been attracted to the study of convex analysis theory due to both facts, theoretical significance, and the applications in optimization, economics, and other fields, which has led to numerous improvements and extensions of the subject over the years. An essential part of the th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) Jg. 11; H. 2; S. 278
Hauptverfasser: Fahad, Asfand, Ayesha, Wang, Yuanheng, Butt, Saad Ihsaan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.01.2023
Schlagworte:
ISSN:2227-7390, 2227-7390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Many researchers have been attracted to the study of convex analysis theory due to both facts, theoretical significance, and the applications in optimization, economics, and other fields, which has led to numerous improvements and extensions of the subject over the years. An essential part of the theory of mathematical inequalities is the convex function and its extensions. In the recent past, the study of Jensen–Mercer inequality and Hermite–Hadamard–Mercer type inequalities has remained a topic of interest in mathematical inequalities. In this paper, we study several inequalities for GA-h-convex functions and its subclasses, including GA-convex functions, GA-s-convex functions, GA-Q-convex functions, and GA-P-convex functions. We prove the Jensen–Mercer inequality for GA-h-convex functions and give weighted Hermite–Hadamard inequalities by applying the newly established Jensen–Mercer inequality. We also establish inequalities of Hermite–Hadamard–Mercer type. Thus, we give new insights and variants of Jensen–Mercer and related inequalities for GA-h-convex functions. Furthermore, we apply our main results along with Hadamard fractional integrals to prove weighted Hermite–Hadamard–Mercer inequalities for GA-h-convex functions and its subclasses. As special cases of the proven results, we capture several well-known results from the relevant literature.
AbstractList Many researchers have been attracted to the study of convex analysis theory due to both facts, theoretical significance, and the applications in optimization, economics, and other fields, which has led to numerous improvements and extensions of the subject over the years. An essential part of the theory of mathematical inequalities is the convex function and its extensions. In the recent past, the study of Jensen–Mercer inequality and Hermite–Hadamard–Mercer type inequalities has remained a topic of interest in mathematical inequalities. In this paper, we study several inequalities for GA-h-convex functions and its subclasses, including GA-convex functions, GA-s-convex functions, GA-Q-convex functions, and GA-P-convex functions. We prove the Jensen–Mercer inequality for GA-h-convex functions and give weighted Hermite–Hadamard inequalities by applying the newly established Jensen–Mercer inequality. We also establish inequalities of Hermite–Hadamard–Mercer type. Thus, we give new insights and variants of Jensen–Mercer and related inequalities for GA-h-convex functions. Furthermore, we apply our main results along with Hadamard fractional integrals to prove weighted Hermite–Hadamard–Mercer inequalities for GA-h-convex functions and its subclasses. As special cases of the proven results, we capture several well-known results from the relevant literature.
Author Fahad, Asfand
Butt, Saad Ihsaan
Ayesha
Wang, Yuanheng
Author_xml – sequence: 1
  givenname: Asfand
  surname: Fahad
  fullname: Fahad, Asfand
– sequence: 2
  surname: Ayesha
  fullname: Ayesha
– sequence: 3
  givenname: Yuanheng
  orcidid: 0000-0003-4079-2850
  surname: Wang
  fullname: Wang, Yuanheng
– sequence: 4
  givenname: Saad Ihsaan
  orcidid: 0000-0001-7192-8269
  surname: Butt
  fullname: Butt, Saad Ihsaan
BookMark eNptkc1uFDEMxyPUSpTSWx9gJK4MZJKZyeS4WtHuolYcaM-R88VmNZtMkwylt74Db8iTEHaLqFB9sC37579s-Q068sEbhM4b_IFSjj_uIG-aBhNM2PAKnRBCWM1K4-hZ_hqdpbTFxXhDh5afoMfPxifjfz3-vDZRmViB19XKxJ3LphRXoGEHUf_r3zxMplp7czfD6LIzqbIhVpeLelMvg_9uflQXs1fZBZ_2Wuucqq-zVCOkVOB7lzfVYppGp2APvUXHFsZkzp7iKbq9-HSzXNVXXy7Xy8VVrWjPcq1ka22Dme01Lr5tuLTQtbjXYPthaIF0wAdlLSFgre0o0Rw0VkTi3nCQ9BStD7o6wFZM0ZWzHkQAJ_aFEL8JiNmp0Qgsm7btJZBG67ZjcuiVZAO1mBmrFTNF691Ba4rhbjYpi22Yoy_rC8J6RiinHS8UOVAqhpSisUK5vD86R3CjaLD48zjx_HFl6P1_Q39XfRH_De0PoQs
CitedBy_id crossref_primary_10_1016_j_ins_2024_120219
crossref_primary_10_1371_journal_pone_0320192
crossref_primary_10_3390_fractalfract8070408
crossref_primary_10_3390_fractalfract8120728
crossref_primary_10_3390_fractalfract8120680
crossref_primary_10_3390_math11163570
crossref_primary_10_3390_axioms12070691
crossref_primary_10_1134_S0036024425700220
Cites_doi 10.1186/s13660-020-02478-7
10.1016/j.amc.2014.12.018
10.1016/j.aej.2022.10.019
10.1016/j.amc.2015.06.051
10.1016/j.jmaa.2006.02.086
10.7153/mia-06-53
10.3934/math.2020412
10.1090/S0002-9904-1948-08994-7
10.1016/j.amc.2007.03.030
10.2298/FIL1806193L
10.1016/j.cam.2021.114049
10.1016/j.cie.2020.106634
10.3390/fractalfract5040269
10.1016/j.chaos.2019.109547
10.1016/j.aej.2021.10.033
10.1016/j.chaos.2020.110554
10.1016/j.chaos.2021.111025
10.1186/1029-242X-2013-491
10.1186/s13660-021-02735-3
10.3390/sym14020294
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math11020278
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_0b1446ba21dd457b86cb783f07efdc7e
10_3390_math11020278
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c367t-cb4ff107f6d007f419bfa5406daf6884a25a98cff22afff532d9ad0c2b06e9ab3
IEDL.DBID K7-
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000927412500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Fri Oct 03 12:52:49 EDT 2025
Fri Jul 25 12:00:25 EDT 2025
Sat Nov 29 07:18:22 EST 2025
Tue Nov 18 22:38:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-cb4ff107f6d007f419bfa5406daf6884a25a98cff22afff532d9ad0c2b06e9ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7192-8269
0000-0003-4079-2850
OpenAccessLink https://www.proquest.com/docview/2767239359?pq-origsite=%requestingapplication%
PQID 2767239359
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_0b1446ba21dd457b86cb783f07efdc7e
proquest_journals_2767239359
crossref_citationtrail_10_3390_math11020278
crossref_primary_10_3390_math11020278
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Niculescu (ref_18) 2003; 6
Noor (ref_23) 2014; 23
Kunt (ref_27) 2018; 2
Godunova (ref_6) 1985; 9
Dragomir (ref_7) 1995; 21
Sarikaya (ref_12) 2008; 2
Iscan (ref_25) 2013; 2013
Sahoo (ref_31) 2022; 65
Sarikaya (ref_13) 2010; 79
Butt (ref_30) 2022; 2022
Breckner (ref_9) 1978; 23
Mihai (ref_14) 2015; 252
Faisal (ref_33) 2022; 14
Wu (ref_4) 2022; 406
Rahman (ref_1) 2020; 147
Baloch (ref_8) 2020; 5
Tunc (ref_22) 2012; 15
Beckenbach (ref_2) 1948; 54
ref_24
Chen (ref_26) 2015; 268
Varosanec (ref_11) 2007; 326
ref_3
Butt (ref_29) 2021; 148
Luo (ref_16) 2020; 131
Dragomir (ref_19) 2018; 72
Set (ref_28) 2021; 143
Kirmaci (ref_10) 2007; 193
Niculescu (ref_17) 2000; 3
Latif (ref_20) 2018; 32
Iscan (ref_21) 2020; 2020
Saleem (ref_34) 2021; 5
Xu (ref_32) 2022; 61
Cortez (ref_15) 2017; 4
Mohanapriya (ref_5) 2020; 18
References_xml – volume: 2020
  start-page: 212
  year: 2020
  ident: ref_21
  article-title: Jensen-Mercer inequality for GA-convex functions and some related inequalities
  publication-title: J. Inequalities Appl.
  doi: 10.1186/s13660-020-02478-7
– volume: 252
  start-page: 257
  year: 2015
  ident: ref_14
  article-title: Some integral inequalities for harmonic h-convex functions involving hypergeometric functions
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.12.018
– volume: 65
  start-page: 689
  year: 2022
  ident: ref_31
  article-title: New midpoint type Hermite–Hadamard–Mercer inequalities pertaining to Caputo–Fabrizio fractional operators
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.10.019
– volume: 79
  start-page: 265
  year: 2010
  ident: ref_13
  article-title: On some new inequalities of Hadamard type involving h-convex functions
  publication-title: Acta Math. Univ. Comenian.
– volume: 268
  start-page: 121
  year: 2015
  ident: ref_26
  article-title: Extensions of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.06.051
– volume: 326
  start-page: 303
  year: 2007
  ident: ref_11
  article-title: On h-convexity
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.02.086
– ident: ref_3
– volume: 2
  start-page: 265
  year: 2008
  ident: ref_12
  article-title: On some Hadamard–type inequalities for h-convex functions
  publication-title: J. Math. Inequal.
– ident: ref_24
– volume: 6
  start-page: 571
  year: 2003
  ident: ref_18
  article-title: Convexity according to means
  publication-title: Math. Inequalities Appl.
  doi: 10.7153/mia-06-53
– volume: 23
  start-page: 13
  year: 1978
  ident: ref_9
  article-title: Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen
  publication-title: Publ. Inst. Math.
– volume: 5
  start-page: 6404
  year: 2020
  ident: ref_8
  article-title: A variant of Jensen-type inequality and related results for harmonic convex functions
  publication-title: Aims Math.
  doi: 10.3934/math.2020412
– volume: 54
  start-page: 439
  year: 1948
  ident: ref_2
  article-title: Convex functions
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1948-08994-7
– volume: 193
  start-page: 26
  year: 2007
  ident: ref_10
  article-title: Hadamard-type inequalities for s-convex functions
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.03.030
– volume: 32
  start-page: 2193
  year: 2018
  ident: ref_20
  article-title: Some Fejer type integral inequalities for geometrically-arithmetically-convex functions with applications
  publication-title: Filomat
  doi: 10.2298/FIL1806193L
– volume: 406
  start-page: 114049
  year: 2022
  ident: ref_4
  article-title: Discussions on two integral inequalities of Hermite–Hadamard type for convex functions
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2021.114049
– volume: 147
  start-page: 106634
  year: 2020
  ident: ref_1
  article-title: Necessary and sufficient optimality conditions for non-linear unconstrained and constrained optimization problem with interval valued objective function
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106634
– volume: 18
  start-page: 1051
  year: 2020
  ident: ref_5
  article-title: New generalization of Hermite–Hadamard type of inequalities for convex functions using Fourier integral transform
  publication-title: Thai J. Math.
– volume: 5
  start-page: 269
  year: 2021
  ident: ref_34
  article-title: Hermite–Jensen–Mercer–Type Inequalities via Caputo–Fabrizio Fractional Integral for h–Convex Function
  publication-title: Fractal. Fract.
  doi: 10.3390/fractalfract5040269
– volume: 23
  start-page: 193
  year: 2014
  ident: ref_23
  article-title: Some inequalities for geometrically arithmetically h-convex functions
  publication-title: Creat. Math. Inf.
– volume: 4
  start-page: 1
  year: 2017
  ident: ref_15
  article-title: A variant of Jensen–Mercer Inequality for h–convex functions and Operator h-convex functions
  publication-title: Rev. MATUA ISSN
– volume: 21
  start-page: 335
  year: 1995
  ident: ref_7
  article-title: Some inequalities of Hadamard type
  publication-title: Soochow. J. Math.
– volume: 2
  start-page: 1
  year: 2018
  ident: ref_27
  article-title: Fractional Hermite–Hadamard–Fejér type inequalities for GA–convex functions
  publication-title: Turk. J. Inequal.
– volume: 131
  start-page: 109547
  year: 2020
  ident: ref_16
  article-title: Fejer–Hermite–Hadamard type inequalities involving generalized h–convexity on fractal sets and their applications
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.109547
– volume: 9
  start-page: 138
  year: 1985
  ident: ref_6
  article-title: Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye inekotorye drugie vidy funkii
  publication-title: Vycislitel. Mat. I. Fiz. Mezvuzov. Sb. Nauc. Trudov.
– volume: 3
  start-page: 155
  year: 2000
  ident: ref_17
  article-title: Convexity according to the geometric mean
  publication-title: Math. Inequal. Appl.
– volume: 61
  start-page: 4837
  year: 2022
  ident: ref_32
  article-title: Generalized Fractal Jensen–Mercer and Hermite–Mercer type inequalities via h-convex functions involving Mittag–Leffler kernel
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.10.033
– volume: 143
  start-page: 110554
  year: 2021
  ident: ref_28
  article-title: New integral inequalities for differentiable convex functions via Atangana–Baleanu fractional integral operators
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110554
– volume: 148
  start-page: 111025
  year: 2021
  ident: ref_29
  article-title: New Hadamard–type integral inequalities via a general form of fractional integral operators
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111025
– volume: 2013
  start-page: 491
  year: 2013
  ident: ref_25
  article-title: New general integral inequalities for quasi–geometrically convex functions via fractional integrals
  publication-title: J. Inequalities Appl.
  doi: 10.1186/1029-242X-2013-491
– volume: 2022
  start-page: 1
  year: 2022
  ident: ref_30
  article-title: Generalized fractal Jensen and Jensen–Mercer inequalities for harmonic convex function with applications
  publication-title: J. Inequalities Appl.
  doi: 10.1186/s13660-021-02735-3
– volume: 14
  start-page: 294
  year: 2022
  ident: ref_33
  article-title: New “Conticrete” Hermite–Hadamard–Jensen–Mercer Fractional Inequalities
  publication-title: Symmetry
  doi: 10.3390/sym14020294
– volume: 15
  start-page: 1
  year: 2012
  ident: ref_22
  article-title: On Hadamard type inequalities for s-geometrically convex functions
  publication-title: RGMIA Res. Rep. Collect.
– volume: 72
  start-page: 55
  year: 2018
  ident: ref_19
  article-title: Some new inequalities of Hermite–Hadamard type for GA–convex functions
  publication-title: Ann. Univ. Mariae Curie Sect. A
SSID ssj0000913849
Score 2.2839403
Snippet Many researchers have been attracted to the study of convex analysis theory due to both facts, theoretical significance, and the applications in optimization,...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 278
SubjectTerms Convex analysis
convex functions
Fractional calculus
GA-h-convex functions
h-convex functions
Hadamard fractional integral
Hermite–Hadamard–Mercer type inequalities
Inequalities
Inequality
Integrals
Jensen–Mercer inequality
Mathematical analysis
Mathematical functions
Optimization
Trends
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF1VEYdyQNCCSEnRHugJrWJ7be_uMY0aUqRGPRQpN2s_FSRwq9itOPY_8A_5Jcys3dQIIS692iPb2hnPvLcevyHkg8SM54VgiSsSlovCMCOlZhBdCiq6kM7aOGxCrFZyvVaXg1Ff2BPWyQN3CzdNDDIWo7PUubwQRpbWCMlDInxwVnjMvoB6BmQq5mCVcpmrrtOdA6-fAv7bQKlDri__qEFRqv-vTBzLy-IledHjQjrrnucV2fP1AXl-sRNVbQ7J_WePG8G_7n9eYDfKlura0SU2s7QeDkIO0d_B34_nkWPS89p3P04CJaaAUOmnGduwOTab_6ALqGox8OK1ztuGQiKxCKjBGLdo6Wzwgfs1-bI4u5ovWT9AgVleipZZk4cA_C6UDqBAyFNlggaIVjodSvCSzgqtpA0hy3QIoeCZU9olNjNJ6ZU2_A0Z1de1f0toylMDKwpkpdC5MkZz7y0qxfjMa27UmHx8WNLK9uriOOTiWwUsAx1QDR0wJic765tOVeMfdqfonZ0NamHHAxAhVR8h1f8iZEwmD76t-he0qTJRiqj-po6e4h7vyD7Ooe_2ZiZk1G5v_TF5Zu_ar832fYzN3-iP7w4
  priority: 102
  providerName: Directory of Open Access Journals
Title Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications
URI https://www.proquest.com/docview/2767239359
https://doaj.org/article/0b1446ba21dd457b86cb783f07efdc7e
Volume 11
WOSCitedRecordID wos000927412500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3ogtZeUDnJDVxHnYPqFttUsXtKsVD6mcIj9ppZItmxRxQv0P_EN-CTNOdluE4MIlB3sURfrGM_ONJzOEPJNo8bwQLHFFwnJRGGak1Ay0S4FHF9JZG4dNiPlcHh2pRZ9wa_qyyrVNjIbaLS3myPe4KEVs16Venn1hODUKb1f7ERrXyXbKeYp6_kawTY4Fe17KXHX17hmw-z2IAo_B4SHjl795otiw_w97HJ3M5M7_ft5dcrsPL-mo04d75Jqv75Nbs01v1uYBuXjtMZ_88-LHDItaVlTXjh5iTUzrYRFMkf4ManO5j1SVTmvf_X8JzJpCoEtfjdgxO8Ca9W90As4x6m9817RtKNgji3E5CGOml46u3JM_JB8m4_cHh6yfw8BsVoqWWZOHADQxlA4iipCnygQNkV7pdCgBbM0LraQNgXMdQigy7pR2ieUmKb3SJntEtupl7R8TmmapAUiA8xQ6V8bozHuLDWc89zozakBerDGpbN-kHGdlnFZAVhDB6iqCA_J8I33WNef4i9w-wruRwZbacWG5-lT1J7RKDFJjo3nqXF4II0trhMxCInxwVvgB2V0jX_XnvKkuYd_59_YTchMH1XfJm12y1a7O_VNyw35tT5rVkGzvj-eLt8OYERhGJR5iFeo7fH4fw_5iOlt8_AWVXQKe
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQQIOvBELBXygJ2Q1aydxfEBoKSy7tLtCoki9pX7SSm22bJbXrf-B_8GP4pcw4yTbIgS3HrjaI8tyPn_zyHiGkCcFMp6XkiUuS1gqM8NMUWgG6FKg0WXhrI3NJuR0Wuzuqrcr5Ef3FgbTKjtOjETtZhZj5Btc5jKW61LPjz8y7BqFf1e7FhoNLLb8ty_gstXPxi_h-65zPny1szlibVcBZkUuF8yaNARwekLuQD-GtK9M0GC35E6HHLaueaZVYUPgXIcQMsGd0i6x3CS5V9oIWPcCuZgi-8dUwXfLmA7W2CxS1eTXC6GSDbA690HBYoSh-E3zxQYBf_B_VGrD6__bcdwg11rzmQ4avN8kK766Ra5OlrVn69vk5I3HePnPk-8TTNqZU105OsKcn4WHQaBafQTX4nQeXXE6rnzzvvTA1xQMefp6wPbZJubkf6VDUP7xfsa1xouaAt9a9DtAGCPZdHAmD-AOeX8uR3CXrFazyt8jtC_6BiAAPl2mU2WMFt5bLKjjudfCqB552mGgtG0RduwFcliCM4aIKc8ipkfWl9LHTfGRv8i9QDgtZbBkeByYzT-ULQOViUHX32jedy7NpClya2QhQiJ9cFb6HlnrkFa2PFaXpzC7_-_px-TyaGeyXW6Pp1sPyBXYlmgCVWtkdTH_5B-SS_bz4qCeP4pXhpK98wblL7SqXHo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKixAseCMGCnhBV8iajJ3E9gKh6WPoUDoaIZC6C37SSpApk-G16z_wN3wOX8K9eUyLEOy6YGtbVuKc-8zxvYQ8VqjxgpQs8VnCUplZZpUyDNClwaJL5Z2rm03IyUQdHOjpCvnR3YVBWmWnE2tF7WcOc-R9LnNZl-vS_djSIqbbo2fHHxl2kMI_rV07jQYie-HbFwjfqqfjbfjWG5yPdl5v7bK2wwBzIpcL5mwaIwRAMfdgK2M60DYa8GFyb2IOr2F4ZrRyMXJuYoyZ4F4bnzhukzxoYwXse4GsSXAyQLrWNncm01fLDA9W3FSpbtj2QuikDz7oIZhbzDeo3-xg3S7gD2tQm7jRtf_5cK6Tq61jTYeNJNwgK6G8Sa7sL6vSVrfIyYuAmfSfJ9_3kc4zp6b0dBfZQIsAg6CEzQcQmNN5DNLpuAzNzdOjUFFw8enzITtkW8jW_0pH4BbUklvvNV5UFDSxw4gEFmOOmw7PMARukzfncgR3yGo5K8NdQgdiYAEOEO1lJtXWGhGCw1I7gQcjrO6RJx0eCteWZ8cuIe8LCNMQPcVZ9PTIxnL1cVOW5C_rNhFayzVYTLwemM3fFa1uKhKLSQFr-MD7NJNW5c5KJWIiQ_ROhh5Z71BXtBquKk4hd-_f04_IJcBi8XI82btPLsNTiSaDtU5WF_NP4QG56D4vjqr5w1Z-KHl73qj8BbgtZos
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jensen%E2%80%93Mercer+and+Hermite%E2%80%93Hadamard%E2%80%93Mercer+Type+Inequalities+for+GA-h-Convex+Functions+and+Its+Subclasses+with+Applications&rft.jtitle=Mathematics+%28Basel%29&rft.au=Fahad%2C+Asfand&rft.au=Ayesha&rft.au=Wang%2C+Yuanheng&rft.au=Butt%2C+Saad+Ihsaan&rft.date=2023-01-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=11&rft.issue=2&rft.spage=278&rft_id=info:doi/10.3390%2Fmath11020278&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math11020278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon