Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications
Many researchers have been attracted to the study of convex analysis theory due to both facts, theoretical significance, and the applications in optimization, economics, and other fields, which has led to numerous improvements and extensions of the subject over the years. An essential part of the th...
Uložené v:
| Vydané v: | Mathematics (Basel) Ročník 11; číslo 2; s. 278 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.01.2023
|
| Predmet: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Many researchers have been attracted to the study of convex analysis theory due to both facts, theoretical significance, and the applications in optimization, economics, and other fields, which has led to numerous improvements and extensions of the subject over the years. An essential part of the theory of mathematical inequalities is the convex function and its extensions. In the recent past, the study of Jensen–Mercer inequality and Hermite–Hadamard–Mercer type inequalities has remained a topic of interest in mathematical inequalities. In this paper, we study several inequalities for GA-h-convex functions and its subclasses, including GA-convex functions, GA-s-convex functions, GA-Q-convex functions, and GA-P-convex functions. We prove the Jensen–Mercer inequality for GA-h-convex functions and give weighted Hermite–Hadamard inequalities by applying the newly established Jensen–Mercer inequality. We also establish inequalities of Hermite–Hadamard–Mercer type. Thus, we give new insights and variants of Jensen–Mercer and related inequalities for GA-h-convex functions. Furthermore, we apply our main results along with Hadamard fractional integrals to prove weighted Hermite–Hadamard–Mercer inequalities for GA-h-convex functions and its subclasses. As special cases of the proven results, we capture several well-known results from the relevant literature. |
|---|---|
| AbstractList | Many researchers have been attracted to the study of convex analysis theory due to both facts, theoretical significance, and the applications in optimization, economics, and other fields, which has led to numerous improvements and extensions of the subject over the years. An essential part of the theory of mathematical inequalities is the convex function and its extensions. In the recent past, the study of Jensen–Mercer inequality and Hermite–Hadamard–Mercer type inequalities has remained a topic of interest in mathematical inequalities. In this paper, we study several inequalities for GA-h-convex functions and its subclasses, including GA-convex functions, GA-s-convex functions, GA-Q-convex functions, and GA-P-convex functions. We prove the Jensen–Mercer inequality for GA-h-convex functions and give weighted Hermite–Hadamard inequalities by applying the newly established Jensen–Mercer inequality. We also establish inequalities of Hermite–Hadamard–Mercer type. Thus, we give new insights and variants of Jensen–Mercer and related inequalities for GA-h-convex functions. Furthermore, we apply our main results along with Hadamard fractional integrals to prove weighted Hermite–Hadamard–Mercer inequalities for GA-h-convex functions and its subclasses. As special cases of the proven results, we capture several well-known results from the relevant literature. |
| Author | Fahad, Asfand Butt, Saad Ihsaan Ayesha Wang, Yuanheng |
| Author_xml | – sequence: 1 givenname: Asfand surname: Fahad fullname: Fahad, Asfand – sequence: 2 surname: Ayesha fullname: Ayesha – sequence: 3 givenname: Yuanheng orcidid: 0000-0003-4079-2850 surname: Wang fullname: Wang, Yuanheng – sequence: 4 givenname: Saad Ihsaan orcidid: 0000-0001-7192-8269 surname: Butt fullname: Butt, Saad Ihsaan |
| BookMark | eNptkc1uFDEMxyPUSpTSWx9gJK4MZJKZyeS4WtHuolYcaM-R88VmNZtMkwylt74Db8iTEHaLqFB9sC37579s-Q068sEbhM4b_IFSjj_uIG-aBhNM2PAKnRBCWM1K4-hZ_hqdpbTFxXhDh5afoMfPxifjfz3-vDZRmViB19XKxJ3LphRXoGEHUf_r3zxMplp7czfD6LIzqbIhVpeLelMvg_9uflQXs1fZBZ_2Wuucqq-zVCOkVOB7lzfVYppGp2APvUXHFsZkzp7iKbq9-HSzXNVXXy7Xy8VVrWjPcq1ka22Dme01Lr5tuLTQtbjXYPthaIF0wAdlLSFgre0o0Rw0VkTi3nCQ9BStD7o6wFZM0ZWzHkQAJ_aFEL8JiNmp0Qgsm7btJZBG67ZjcuiVZAO1mBmrFTNF691Ba4rhbjYpi22Yoy_rC8J6RiinHS8UOVAqhpSisUK5vD86R3CjaLD48zjx_HFl6P1_Q39XfRH_De0PoQs |
| CitedBy_id | crossref_primary_10_1016_j_ins_2024_120219 crossref_primary_10_1371_journal_pone_0320192 crossref_primary_10_3390_fractalfract8070408 crossref_primary_10_3390_fractalfract8120728 crossref_primary_10_3390_fractalfract8120680 crossref_primary_10_3390_math11163570 crossref_primary_10_3390_axioms12070691 crossref_primary_10_1134_S0036024425700220 |
| Cites_doi | 10.1186/s13660-020-02478-7 10.1016/j.amc.2014.12.018 10.1016/j.aej.2022.10.019 10.1016/j.amc.2015.06.051 10.1016/j.jmaa.2006.02.086 10.7153/mia-06-53 10.3934/math.2020412 10.1090/S0002-9904-1948-08994-7 10.1016/j.amc.2007.03.030 10.2298/FIL1806193L 10.1016/j.cam.2021.114049 10.1016/j.cie.2020.106634 10.3390/fractalfract5040269 10.1016/j.chaos.2019.109547 10.1016/j.aej.2021.10.033 10.1016/j.chaos.2020.110554 10.1016/j.chaos.2021.111025 10.1186/1029-242X-2013-491 10.1186/s13660-021-02735-3 10.3390/sym14020294 |
| ContentType | Journal Article |
| Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/math11020278 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_0b1446ba21dd457b86cb783f07efdc7e 10_3390_math11020278 |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c367t-cb4ff107f6d007f419bfa5406daf6884a25a98cff22afff532d9ad0c2b06e9ab3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000927412500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Fri Oct 03 12:52:49 EDT 2025 Fri Jul 25 12:00:25 EDT 2025 Sat Nov 29 07:18:22 EST 2025 Tue Nov 18 22:38:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-cb4ff107f6d007f419bfa5406daf6884a25a98cff22afff532d9ad0c2b06e9ab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7192-8269 0000-0003-4079-2850 |
| OpenAccessLink | https://www.proquest.com/docview/2767239359?pq-origsite=%requestingapplication% |
| PQID | 2767239359 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0b1446ba21dd457b86cb783f07efdc7e proquest_journals_2767239359 crossref_citationtrail_10_3390_math11020278 crossref_primary_10_3390_math11020278 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Niculescu (ref_18) 2003; 6 Noor (ref_23) 2014; 23 Kunt (ref_27) 2018; 2 Godunova (ref_6) 1985; 9 Dragomir (ref_7) 1995; 21 Sarikaya (ref_12) 2008; 2 Iscan (ref_25) 2013; 2013 Sahoo (ref_31) 2022; 65 Sarikaya (ref_13) 2010; 79 Butt (ref_30) 2022; 2022 Breckner (ref_9) 1978; 23 Mihai (ref_14) 2015; 252 Faisal (ref_33) 2022; 14 Wu (ref_4) 2022; 406 Rahman (ref_1) 2020; 147 Baloch (ref_8) 2020; 5 Tunc (ref_22) 2012; 15 Beckenbach (ref_2) 1948; 54 ref_24 Chen (ref_26) 2015; 268 Varosanec (ref_11) 2007; 326 ref_3 Butt (ref_29) 2021; 148 Luo (ref_16) 2020; 131 Dragomir (ref_19) 2018; 72 Set (ref_28) 2021; 143 Kirmaci (ref_10) 2007; 193 Niculescu (ref_17) 2000; 3 Latif (ref_20) 2018; 32 Iscan (ref_21) 2020; 2020 Saleem (ref_34) 2021; 5 Xu (ref_32) 2022; 61 Cortez (ref_15) 2017; 4 Mohanapriya (ref_5) 2020; 18 |
| References_xml | – volume: 2020 start-page: 212 year: 2020 ident: ref_21 article-title: Jensen-Mercer inequality for GA-convex functions and some related inequalities publication-title: J. Inequalities Appl. doi: 10.1186/s13660-020-02478-7 – volume: 252 start-page: 257 year: 2015 ident: ref_14 article-title: Some integral inequalities for harmonic h-convex functions involving hypergeometric functions publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2014.12.018 – volume: 65 start-page: 689 year: 2022 ident: ref_31 article-title: New midpoint type Hermite–Hadamard–Mercer inequalities pertaining to Caputo–Fabrizio fractional operators publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.10.019 – volume: 79 start-page: 265 year: 2010 ident: ref_13 article-title: On some new inequalities of Hadamard type involving h-convex functions publication-title: Acta Math. Univ. Comenian. – volume: 268 start-page: 121 year: 2015 ident: ref_26 article-title: Extensions of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.06.051 – volume: 326 start-page: 303 year: 2007 ident: ref_11 article-title: On h-convexity publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2006.02.086 – ident: ref_3 – volume: 2 start-page: 265 year: 2008 ident: ref_12 article-title: On some Hadamard–type inequalities for h-convex functions publication-title: J. Math. Inequal. – ident: ref_24 – volume: 6 start-page: 571 year: 2003 ident: ref_18 article-title: Convexity according to means publication-title: Math. Inequalities Appl. doi: 10.7153/mia-06-53 – volume: 23 start-page: 13 year: 1978 ident: ref_9 article-title: Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen publication-title: Publ. Inst. Math. – volume: 5 start-page: 6404 year: 2020 ident: ref_8 article-title: A variant of Jensen-type inequality and related results for harmonic convex functions publication-title: Aims Math. doi: 10.3934/math.2020412 – volume: 54 start-page: 439 year: 1948 ident: ref_2 article-title: Convex functions publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1948-08994-7 – volume: 193 start-page: 26 year: 2007 ident: ref_10 article-title: Hadamard-type inequalities for s-convex functions publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2007.03.030 – volume: 32 start-page: 2193 year: 2018 ident: ref_20 article-title: Some Fejer type integral inequalities for geometrically-arithmetically-convex functions with applications publication-title: Filomat doi: 10.2298/FIL1806193L – volume: 406 start-page: 114049 year: 2022 ident: ref_4 article-title: Discussions on two integral inequalities of Hermite–Hadamard type for convex functions publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2021.114049 – volume: 147 start-page: 106634 year: 2020 ident: ref_1 article-title: Necessary and sufficient optimality conditions for non-linear unconstrained and constrained optimization problem with interval valued objective function publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106634 – volume: 18 start-page: 1051 year: 2020 ident: ref_5 article-title: New generalization of Hermite–Hadamard type of inequalities for convex functions using Fourier integral transform publication-title: Thai J. Math. – volume: 5 start-page: 269 year: 2021 ident: ref_34 article-title: Hermite–Jensen–Mercer–Type Inequalities via Caputo–Fabrizio Fractional Integral for h–Convex Function publication-title: Fractal. Fract. doi: 10.3390/fractalfract5040269 – volume: 23 start-page: 193 year: 2014 ident: ref_23 article-title: Some inequalities for geometrically arithmetically h-convex functions publication-title: Creat. Math. Inf. – volume: 4 start-page: 1 year: 2017 ident: ref_15 article-title: A variant of Jensen–Mercer Inequality for h–convex functions and Operator h-convex functions publication-title: Rev. MATUA ISSN – volume: 21 start-page: 335 year: 1995 ident: ref_7 article-title: Some inequalities of Hadamard type publication-title: Soochow. J. Math. – volume: 2 start-page: 1 year: 2018 ident: ref_27 article-title: Fractional Hermite–Hadamard–Fejér type inequalities for GA–convex functions publication-title: Turk. J. Inequal. – volume: 131 start-page: 109547 year: 2020 ident: ref_16 article-title: Fejer–Hermite–Hadamard type inequalities involving generalized h–convexity on fractal sets and their applications publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2019.109547 – volume: 9 start-page: 138 year: 1985 ident: ref_6 article-title: Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye inekotorye drugie vidy funkii publication-title: Vycislitel. Mat. I. Fiz. Mezvuzov. Sb. Nauc. Trudov. – volume: 3 start-page: 155 year: 2000 ident: ref_17 article-title: Convexity according to the geometric mean publication-title: Math. Inequal. Appl. – volume: 61 start-page: 4837 year: 2022 ident: ref_32 article-title: Generalized Fractal Jensen–Mercer and Hermite–Mercer type inequalities via h-convex functions involving Mittag–Leffler kernel publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.10.033 – volume: 143 start-page: 110554 year: 2021 ident: ref_28 article-title: New integral inequalities for differentiable convex functions via Atangana–Baleanu fractional integral operators publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110554 – volume: 148 start-page: 111025 year: 2021 ident: ref_29 article-title: New Hadamard–type integral inequalities via a general form of fractional integral operators publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111025 – volume: 2013 start-page: 491 year: 2013 ident: ref_25 article-title: New general integral inequalities for quasi–geometrically convex functions via fractional integrals publication-title: J. Inequalities Appl. doi: 10.1186/1029-242X-2013-491 – volume: 2022 start-page: 1 year: 2022 ident: ref_30 article-title: Generalized fractal Jensen and Jensen–Mercer inequalities for harmonic convex function with applications publication-title: J. Inequalities Appl. doi: 10.1186/s13660-021-02735-3 – volume: 14 start-page: 294 year: 2022 ident: ref_33 article-title: New “Conticrete” Hermite–Hadamard–Jensen–Mercer Fractional Inequalities publication-title: Symmetry doi: 10.3390/sym14020294 – volume: 15 start-page: 1 year: 2012 ident: ref_22 article-title: On Hadamard type inequalities for s-geometrically convex functions publication-title: RGMIA Res. Rep. Collect. – volume: 72 start-page: 55 year: 2018 ident: ref_19 article-title: Some new inequalities of Hermite–Hadamard type for GA–convex functions publication-title: Ann. Univ. Mariae Curie Sect. A |
| SSID | ssj0000913849 |
| Score | 2.283898 |
| Snippet | Many researchers have been attracted to the study of convex analysis theory due to both facts, theoretical significance, and the applications in optimization,... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 278 |
| SubjectTerms | Convex analysis convex functions Fractional calculus GA-h-convex functions h-convex functions Hadamard fractional integral Hermite–Hadamard–Mercer type inequalities Inequalities Inequality Integrals Jensen–Mercer inequality Mathematical analysis Mathematical functions Optimization Trends |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxKE9IGhBLC_5QE9VRGLHr-MWsUAFqIeCuEV-CqQS0G6oeuQ_9B_2l3TGCdutqqoXromVRJ7xzPc5428I2UdFFe4lrG8uQlEbFwsrYlVoC7mvwrOMWVLo6kxdXOjra_N5odUX1oT18sD9xB2UDhmLs6wKoRbKaemd0jyVKqbgVcToC6hngUzlGGwqrmvTV7pz4PUHgP9uINUh19d_5KAs1f9XJM7pZbJKVgZcSMf996yRV7F9S96cz0VVZ-_I06eIG8E_n36cYzXKlNo20BMsZukiXIQYYu_A3r_vI8ekp23sD04CJaaAUOnxuLgpDrHY_DudQFbLjpefddrNKAQSj4AaBuMWLR0v_OBeJ5eToy-HJ8XQQKHwXKqu8K5OCfhdkgGgQKor45IFiCaDTVLr2jJhjfYpMWZTSoKzYGwoPXOljMY6vkGW2vs2bhIqnJO2ZlEolvBsnHXOiYpbDfBHlCmOyIfnKW38oC6OTS6-NsAy0ADNogFG5P189EOvqvGPcR_ROvMxqIWdL4CHNIOHNP_zkBHZebZtMyzQWcOUVFn9zWy9xDu2yWvsQ9_vzeyQpW76GHfJsv_W3c6me9k3fwE-rO7L priority: 102 providerName: Directory of Open Access Journals |
| Title | Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications |
| URI | https://www.proquest.com/docview/2767239359 https://doaj.org/article/0b1446ba21dd457b86cb783f07efdc7e |
| Volume | 11 |
| WOSCitedRecordID | wos000927412500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAHylMUysoHOCGriRPHzgltq126wK5WvFROkZ8UCbJlExAn1P_Qf9hf0hknuy1CcOGSgz2KLM14Xp75hpAniKiS2QLudyYcy0vjmRY-ZUqD7UuxlzFCCn14LWczdXhYzvuEW9OXVa50YlTUbmExR77LZSEjXFf5_Pgbw6lR-Lraj9C4SjZTzlOU81eSrXMsiHmp8rKrd88gut8FL_AIDB5G_Oo3SxQB-__Qx9HIjLf-93i3yM3evaTDTh5ukyu-vkNuTNfYrM1dcvLSYz757OR0ikUtS6prRw-wJqb1sAiqSH8FsbnYx1CVTmrf9V9CZE3B0aUvhuyI7WPN-k86BuMY5Tf-a9I2FPSRRb8ciDHTS4eX3snvkffj0bv9A9bPYWA2K2TLrMlDgDAxFA48ipCnpQkaPL3C6VAolWsudKlsCJzrEILIuCu1Syw3SeFLbbL7ZKNe1P4BocKYQufcC8kDtthpY4xIM63AixJJ8Nvk2Yonle1BynFWxpcKghXkYHWZg9vk6Zr6uAPn-AvdHrJ3TYOQ2nFhsfxU9Te0SgyGxkbz1LlcSKMKa6TKQiJ9cFbC0XZWnK_6e95UF2x_-O_tR-Q6Dqrvkjc7ZKNdfvePyTX7o_3cLAdkc280m78ZxIzAIArxAKtQ3-L31wj255Pp_OM53GECWw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQQIW5S0KBbygKxQ1sePEWSA0FIYZOjNCoqDugp-0EmTKJDy66z_wH3wUX8K9TjItQrDrgq19ZVnOuc_cByEPsaMKNxnwNxc2SgvtIiVcEkkFui_BWsbQUujtJJ_N5N5e8WqF_OhrYTCtspeJQVDbucEY-RbLszy06yqeHH6KcGoU_l3tR2i0sNhxR1_BZasfj5_B991kbPh8d3sUdVMFIsOzvImMTr0Hp8dnFvSjT5NCewV2S2aVz6RMFROqkMZ7xpT3XnBmC2Vjw3ScuUJpDueeI-dTlP4hVfD1MqaDPTZlWrT59ZwX8RZYnfugYDHCIH_TfGFAwB_yPyi14ZX_7TmukrXOfKaDFu_XyIqrrpPL02Xv2foGOX7pMF7-8_j7FJN2FlRVlo4w56dxsAiiVn0EtjjZR1ecjivX1pceuJqCIU9fDKL9aBtz8r_RISj_wJ_hrHFTU5C3Bv0OIMZINh2cygO4Sd6cyRPcIqvVvHK3CRVaZyplTuTMYwmh0lqLhCsJVqKIvVsnj3oMlKZrwo6zQD6U4IwhYsrTiFknm0vqw7b5yF_oniKcljTYMjwszBfvy04ClbFG118rllibilzLzOhcch_nzluTw9U2eqSVnRyryxOY3fn39gNycbQ7nZST8WznLrkE1-JtoGqDrDaLz-4euWC-NAf14n5gGUrenTUofwG0x1w3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKixAc2BGFAj7QE4omsePYOSA0XYYObUcjBKi34JVWgkyZhO3W_8C_4efwS3gvy7QIwa0HrvaTZTnfW_MWQh5jRxVuM-BvLlyU5sZHWvgkUhp0X4K1jE1LoTd7cjJRBwf5dIn86GthMK2yl4mNoHYzizHyAZOZbNp15YPQpUVMt0bPjj9GOEEK_7T24zRaiOz6b1_AfauejrfgW68zNtp-tbkTdRMGIsszWUfWpCGAAxQyB7oypEluggYbJnM6ZEqlmgmdKxsCYzqEIDhzuXaxZSbOfK4Nh3MvkBUJRgZw18rG9mT6chHhwY6bKs3bbHvO83gANughqFuMN6jf9GAzLuAPbdCouNG1__lxrpOrnWFNhy0n3CBLvrxJruwvutJWt8jJC4-R9J8n3_cxnWdOdenoDmYD1R4WQQjrD8Awp_vopNNx6dvK0yNfUTDx6fNhdBhtYrb-VzoCs6Dh3OascV1RkMQWPRIgxhg3HZ7JELhNXp_LE9why-Ws9HcJFcZkOmVeSBawuFAbY0TCtQL7UcTBr5InPR4K27Vnxykh7wtw0xA9xVn0rJL1BfVx25bkL3QbCK0FDTYTbxZm83dFJ5uK2GBQwGiWOJcKaVRmjVQ8xNIHZyVcba1HXdFJuKo4hdy9f28_IpcAi8XeeLJ7n1yGW_E2grVGluv5J_-AXLSf66Nq_rDjH0renjcqfwGyI2ZI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jensen%E2%80%93Mercer+and+Hermite%E2%80%93Hadamard%E2%80%93Mercer+Type+Inequalities+for+GA-h-Convex+Functions+and+Its+Subclasses+with+Applications&rft.jtitle=Mathematics+%28Basel%29&rft.au=Fahad%2C+Asfand&rft.au=Ayesha&rft.au=Wang%2C+Yuanheng&rft.au=Butt%2C+Saad+Ihsaan&rft.date=2023-01-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=11&rft.issue=2&rft.spage=278&rft_id=info:doi/10.3390%2Fmath11020278&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math11020278 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |