MapReduce: an infrastructure review and research insights

In the current decade, doing the search on massive data to find “hidden” and valuable information within it is growing. This search can result in heavy processing on considerable data, leading to the development of solutions to process such huge information based on distributed and parallel processi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of supercomputing Ročník 75; číslo 10; s. 6934 - 7002
Hlavní autoři: Maleki, Neda, Rahmani, Amir Masoud, Conti, Mauro
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2019
Springer Nature B.V
Témata:
ISSN:0920-8542, 1573-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the current decade, doing the search on massive data to find “hidden” and valuable information within it is growing. This search can result in heavy processing on considerable data, leading to the development of solutions to process such huge information based on distributed and parallel processing. Among all the parallel programming models, one that gains a lot of popularity is MapReduce. The goal of this paper is to survey researches conducted on the MapReduce framework in the context of its open-source implementation, Hadoop, in order to summarize and report the wide topic area at the infrastructure level. We managed to do a systematic review based on the prevalent topics dealing with MapReduce in seven areas: (1) performance; (2) job/task scheduling; (3) load balancing; (4) resource provisioning; (5) fault tolerance in terms of availability and reliability; (6) security; and (7) energy efficiency. We run our study by doing a quantitative and qualitative evaluation of the research publications’ trend which is published between January 1, 2014, and November 1, 2017. Since the MapReduce is a challenge-prone area for researchers who fall off to work and extend with, this work is a useful guideline for getting feedback and starting research.
AbstractList In the current decade, doing the search on massive data to find “hidden” and valuable information within it is growing. This search can result in heavy processing on considerable data, leading to the development of solutions to process such huge information based on distributed and parallel processing. Among all the parallel programming models, one that gains a lot of popularity is MapReduce. The goal of this paper is to survey researches conducted on the MapReduce framework in the context of its open-source implementation, Hadoop, in order to summarize and report the wide topic area at the infrastructure level. We managed to do a systematic review based on the prevalent topics dealing with MapReduce in seven areas: (1) performance; (2) job/task scheduling; (3) load balancing; (4) resource provisioning; (5) fault tolerance in terms of availability and reliability; (6) security; and (7) energy efficiency. We run our study by doing a quantitative and qualitative evaluation of the research publications’ trend which is published between January 1, 2014, and November 1, 2017. Since the MapReduce is a challenge-prone area for researchers who fall off to work and extend with, this work is a useful guideline for getting feedback and starting research.
Author Maleki, Neda
Rahmani, Amir Masoud
Conti, Mauro
Author_xml – sequence: 1
  givenname: Neda
  surname: Maleki
  fullname: Maleki, Neda
  organization: Department of Computer Engineering, Science and Research Branch, Islamic Azad University
– sequence: 2
  givenname: Amir Masoud
  surname: Rahmani
  fullname: Rahmani, Amir Masoud
  email: rahmani@srbiau.ac.ir
  organization: Department of Computer Engineering, Science and Research Branch, Islamic Azad University
– sequence: 3
  givenname: Mauro
  surname: Conti
  fullname: Conti, Mauro
  organization: Department of Mathematics, University of Padua
BookMark eNp9kE1LAzEQhoNUsK3-AU8Fz9FJsmkSb1L8googeg7Z7Gy7pe7WJKv4742uIHjoaQbmfWaGZ0JGbdciIacMzhmAuoiMca4oMEOBG1BUHpAxk0pQKHQxImMwHKiWBT8ikxg3AFAIJcbEPLjdE1a9x8uZa2dNWwcXU-h96gPOAr43-JEHVW4juuDXORKb1TrFY3JYu23Ek986JS8318-LO7p8vL1fXC2pF3OVaOmEKJkuK-0ZQwOVNrWvkNW6EIWunBSmcl4h80p68NwLYDiXGrRD4EyIKTkb9u5C99ZjTHbT9aHNJy0XwOcgpeE5pYeUD12MAWvrm-RS07UpuGZrGdhvUXYQZbMo-yPKyozyf-guNK8ufO6HxADFHG5XGP6-2kN9AWlkfIg
CitedBy_id crossref_primary_10_1007_s10586_023_04201_9
crossref_primary_10_1155_2022_3838293
crossref_primary_10_1002_cpe_6368
crossref_primary_10_1007_s11227_020_03265_3
crossref_primary_10_1109_ACCESS_2022_3195872
crossref_primary_10_3390_jmse11040738
crossref_primary_10_1016_j_jnca_2020_102944
crossref_primary_10_1109_JSEN_2021_3060953
crossref_primary_10_1007_s00530_020_00725_x
crossref_primary_10_1186_s13673_020_00247_5
crossref_primary_10_1007_s11227_021_04012_y
crossref_primary_10_1007_s11227_025_07563_6
crossref_primary_10_1007_s42979_021_00692_8
Cites_doi 10.1016/j.infsof.2015.03.007
10.1016/j.future.2016.06.006
10.1016/j.ins.2014.01.015
10.1016/j.asoc.2015.04.039
10.1016/j.cosrev.2016.05.001
10.1109/TPDS.2015.2449299
10.1109/TPDS.2014.2316829
10.1007/s11227-014-1286-7
10.1007/s10766-015-0395-0
10.1109/TC.2016.2532860
10.1016/j.jpdc.2016.04.001
10.1109/JSYST.2014.2323112
10.1016/j.future.2017.09.063
10.1109/TPDS.2014.2358556
10.1109/TPDS.2016.2587645
10.1007/s11227-016-1797-5
10.1007/s10723-015-9350-y
10.1109/TPDS.2015.2419671
10.1016/j.jnca.2014.07.022
10.1109/TDSC.2013.14
10.1007/s10922-015-9362-8
10.1109/TPDS.2016.2587641
10.1016/j.parco.2016.10.004
10.1007/s10586-015-0467-3
10.1109/ACCESS.2017.2700228
10.1186/s40537-016-0051-6
10.1109/ACCESS.2014.2332453
10.1016/j.is.2016.03.008
10.1016/j.future.2015.01.005
10.1109/TC.2013.15
10.1007/s10796-016-9628-z
10.1016/j.future.2016.02.015
10.1007/s11227-014-1335-2
10.1007/s11227-016-1737-4
10.1016/j.future.2014.08.011
10.1109/TPDS.2013.59
10.14445/22312803/IJCTT-V48P109
10.1109/TPDS.2015.2405552
10.1109/TPDS.2016.2594765
10.1016/j.compeleceng.2015.06.013
10.1109/TSC.2015.2426186
10.1016/j.eswa.2015.12.024
10.1016/j.jss.2015.11.001
10.1016/j.ins.2016.09.030
10.1109/MNET.2017.1500095NM
10.1145/1327452.1327492
10.1007/s10586-015-0454-8
10.1007/s11036-013-0489-0
10.1016/j.jss.2017.09.001
10.1109/TPDS.2014.2350972
10.1016/j.future.2016.07.012
10.1109/TC.2015.2485230
10.1007/s11192-016-1945-y
10.1109/TPDS.2016.2617324
10.1109/CC.2014.7085615
10.1016/j.ins.2016.08.013
10.1007/s11227-016-1653-7
10.1109/CCBD.2015.33
10.1109/ICDE.2010.5447738
10.1145/2810103.2813695
10.1145/1651263.1651271
10.1109/BigData.2014.7004322
10.1007/978-3-319-61176-1_4
10.1109/TSC.2015.2453973
10.1145/2602044.2602061
10.1145/2714576.2714624
10.1109/CONFLUENCE.2016.7508142
10.1007/978-3-319-48671-0_27
10.1109/MSST.2010.5496972
10.1007/978-3-319-64203-1_28
10.1145/3078861.3084173
10.5281/zenodo.165773
10.1145/3131704.3131708
10.1109/CONFLUENCE.2014.6949381
10.1145/1755913.1755940
10.1145/3220192.3220193
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-019-02907-5
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 7002
ExternalDocumentID 10_1007_s11227_019_02907_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c367t-ba33b18bd8c11e90d89fcde1f84348da539dac7e1c75c0c2c301e65808ae02133
IEDL.DBID RSV
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000492960000029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 00:46:54 EDT 2025
Tue Nov 18 20:52:47 EST 2025
Sat Nov 29 04:27:38 EST 2025
Fri Feb 21 02:27:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Parallel and distributed programming model
Systematic review
MapReduce paradigm
Hadoop
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-ba33b18bd8c11e90d89fcde1f84348da539dac7e1c75c0c2c301e65808ae02133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2302605592
PQPubID 2043774
PageCount 69
ParticipantIDs proquest_journals_2302605592
crossref_citationtrail_10_1007_s11227_019_02907_5
crossref_primary_10_1007_s11227_019_02907_5
springer_journals_10_1007_s11227_019_02907_5
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cheng, Rao, Guo, Jiang, Zhou (CR68) 2017; 28
Hashem, Anuar, Gani, Yaqoob, Xia, Khan (CR2) 2016; 109
Polato, Ré, Goldman, Kon (CR4) 2014; 46
Chen, Mao, Liu (CR7) 2014; 19
CR35
CR79
CR34
Hadoop (CR92) 2016
CR30
CR72
Lim, Majumdar, Ashwood-Smith (CR49) 2017; 28
Li, Hu, Li, Wu, Yang (CR33) 2016; 44
Petersen, Vakkalanka, Kuzniarz (CR24) 2015; 64
Xu, Cao, Wang (CR48) 2016; 10
CR3
Song, He, Wang, Yu, Pierson (CR38) 2016; 1
CR8
Fu, Gao, Luo, Du, Guizani (CR83) 2017; 31
CR9
Myung, Shim, Yeon, Lee (CR62) 2016; 51
White (CR14) 2009
Huang, Zhang, Li, Wan, Li (CR80) 2016; 50
Liroz-Gistau, Akbarinia, Agrawal, Valduriez (CR61) 2016; 60
Guo, Rao, Cheng, Zhou (CR71) 2017; 28
CR88
CR87
CR42
CR86
Cai, Li, Li, Ju, Jia (CR39) 2017; 73
CR41
CR85
Hashem, Anuar, Marjani, Gani, Sangaiah, Sakariyah (CR54) 2017; 77
Khan, Jin, Li, Xiang, Jiang (CR89) 2016; 27
Bok, Hwang, Lim, Kim, Yoo (CR52) 2016; 76
Veiga, Expósito, Taboada, Tourino (CR78) 2016; 65
Tian, Li, Yang, Buyya (CR81) 2016; 72
Singh, Kaur (CR18) 2016; 3
Xu, Lau (CR76) 2017; 28
Hu, Wen, Chua, Li (CR5) 2014; 2
Alapati (CR21) 2016
Liu, Zhang, Boutaba, Liu, Wang (CR63) 2016; 24
Parmar, Roy, Bhattacharyya, Bandyopadhyay, Kim (CR84) 2017; 5
Chen, Zhang (CR6) 2014; 275
CR19
Tang, Jiang, Zhou, Li, Li (CR51) 2015; 43
CR16
Ibrahim, Phan, Carpen-Amarie, Chihoub, Moise, Antoniu (CR37) 2016; 54
CR13
Lin, Leu, Chen (CR47) 2015; 71
Chen, Yao, Xiao (CR57) 2015; 26
CR12
Erraissi, Belangour, Tragha (CR23) 2017; 48
Tang, Tang, Fedak, He (CR44) 2017; 379
Soualhia, Khomh, Tahar (CR10) 2017; 134
CR53
Nghiem, Figueira (CR90) 2016; 95
Dean, Ghemawat (CR1) 2008; 51
Nita, Pop, Voicu, Dobre, Xhafa (CR55) 2015; 18
Tang, Lee, He (CR65) 2016; 9
CR93
CR91
Zhang, Jiang, Zhang, Wang (CR64) 2015; 18
Lu, Feng (CR31) 2014; 11
Chen, Paik, Li (CR59) 2016; 65
Zhang, Wang, Zheng (CR11) 2018; 87
Bei, Yu, Zhang, Xiong, Xu, Eeckhout, Feng (CR67) 2016; 27
Charband, Navimipour (CR27) 2016; 18
Wang, Chen, Du, Hu (CR20) 2016; 9
Mashayekhy, Nejad, Grosu, Zhang, Shi (CR36) 2015; 26
Guo, Rao, Jiang, Zhou (CR75) 2017; 28
Wang, Lu, Lou, Wei (CR82) 2015; 13
Li, Ooi, Tamer Ozsu, Wu (CR17) 2014; 46
CR29
Memishi, Pérez, Antoniu (CR45) 2017; 379
Liu, Zhang, Ahmed, Boutaba, Liu, Gong (CR58) 2016; 65
CR28
Teng, Yu, Li, Deng, Magoulès (CR40) 2017; 73
Sun, Zhuang, Li, Lu, Zhou (CR50) 2016; 38
Kao, Chen (CR15) 2016; 112
Yu, Wang, Que (CR69) 2014; 25
CR26
CR25
Tang, Liu, Ammar, Li, Li (CR56) 2016; 72
Ke, Li, Guo, Guo (CR73) 2016; 27
CR22
Chen, Liu, Xiao (CR74) 2014; 63
Jiang, Zhu, Wu, Li (CR77) 2017; 67
Verma, Cherkasova, Campbell (CR66) 2013; 10
CR60
Guo, Xie, Zhou, Zhu, Wei, Luo (CR70) 2015; 26
Fu, Chen, Zhu, Yu (CR43) 2017; 61
Derbeko, Dolev, Gudes, Sharma (CR32) 2016; 20
Yildiz, Ibrahim, Antoniu (CR46) 2017; 74
2907_CR12
2907_CR13
P Derbeko (2907_CR32) 2016; 20
2907_CR16
2907_CR19
W Tian (2907_CR81) 2016; 72
Z Bei (2907_CR67) 2016; 27
M Chen (2907_CR7) 2014; 19
F Teng (2907_CR40) 2017; 73
X Xu (2907_CR48) 2016; 10
X Fu (2907_CR83) 2017; 31
CP Chen (2907_CR6) 2014; 275
H Xu (2907_CR76) 2017; 28
S Ibrahim (2907_CR37) 2016; 54
M Sun (2907_CR50) 2016; 38
H Hu (2907_CR5) 2014; 2
2907_CR60
A Verma (2907_CR66) 2013; 10
X Zhang (2907_CR64) 2015; 18
S Hadoop (2907_CR92) 2016
I Polato (2907_CR4) 2014; 46
2907_CR9
2907_CR88
2907_CR8
Y Guo (2907_CR71) 2017; 28
K Bok (2907_CR52) 2016; 76
SR Alapati (2907_CR21) 2016
D Guo (2907_CR70) 2015; 26
2907_CR3
Y Charband (2907_CR27) 2016; 18
X Huang (2907_CR80) 2016; 50
B Zhang (2907_CR11) 2018; 87
Q Chen (2907_CR57) 2015; 26
IAT Hashem (2907_CR54) 2017; 77
Y Jiang (2907_CR77) 2017; 67
2907_CR91
2907_CR93
M Soualhia (2907_CR10) 2017; 134
2907_CR53
2907_CR34
RR Parmar (2907_CR84) 2017; 5
2907_CR35
W Yu (2907_CR69) 2014; 25
2907_CR79
T White (2907_CR14) 2009
H Wang (2907_CR20) 2016; 9
Q Chen (2907_CR74) 2014; 63
W Chen (2907_CR59) 2016; 65
A Erraissi (2907_CR23) 2017; 48
L Mashayekhy (2907_CR36) 2015; 26
K Petersen (2907_CR24) 2015; 64
J Song (2907_CR38) 2016; 1
M Liroz-Gistau (2907_CR61) 2016; 60
PP Nghiem (2907_CR90) 2016; 95
M Khan (2907_CR89) 2016; 27
IAT Hashem (2907_CR2) 2016; 109
J Lu (2907_CR31) 2014; 11
R Singh (2907_CR18) 2016; 3
Z Tang (2907_CR56) 2016; 72
H Fu (2907_CR43) 2017; 61
S Tang (2907_CR65) 2016; 9
J-C Lin (2907_CR47) 2015; 71
2907_CR41
Z Liu (2907_CR63) 2016; 24
2907_CR85
2907_CR42
J Veiga (2907_CR78) 2016; 65
2907_CR86
2907_CR87
2907_CR22
J Dean (2907_CR1) 2008; 51
2907_CR25
2907_CR26
2907_CR28
D Cheng (2907_CR68) 2017; 28
2907_CR29
N Lim (2907_CR49) 2017; 28
R Li (2907_CR33) 2016; 44
X Cai (2907_CR39) 2017; 73
Y Wang (2907_CR82) 2015; 13
Z Tang (2907_CR51) 2015; 43
J Myung (2907_CR62) 2016; 51
Y Guo (2907_CR75) 2017; 28
B Tang (2907_CR44) 2017; 379
F Li (2907_CR17) 2014; 46
O Yildiz (2907_CR46) 2017; 74
B Memishi (2907_CR45) 2017; 379
M-C Nita (2907_CR55) 2015; 18
Z Liu (2907_CR58) 2016; 65
Y-C Kao (2907_CR15) 2016; 112
H Ke (2907_CR73) 2016; 27
2907_CR72
2907_CR30
References_xml – ident: CR22
– volume: 64
  start-page: 1
  year: 2015
  end-page: 18
  ident: CR24
  article-title: Guidelines for conducting systematic mapping studies in software engineering: an update
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2015.03.007
– ident: CR93
– volume: 28
  start-page: 530
  issue: 2
  year: 2017
  end-page: 545
  ident: CR76
  article-title: Optimization for speculative execution in big data processing clusters
  publication-title: IEEE Trans Parallel Distrib Syst
– ident: CR87
– ident: CR16
– ident: CR12
– volume: 65
  start-page: 46
  year: 2016
  end-page: 56
  ident: CR78
  article-title: Flame-MR: an event-driven architecture for MapReduce applications
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2016.06.006
– volume: 275
  start-page: 314
  year: 2014
  end-page: 347
  ident: CR6
  article-title: Data-intensive applications, challenges, techniques and technologies: a survey on big data
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.01.015
– volume: 38
  start-page: 1109
  year: 2016
  end-page: 1118
  ident: CR50
  article-title: Scheduling algorithm based on prefetching in MapReduce clusters
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.04.039
– volume: 46
  start-page: 1
  issue: 3
  year: 2014
  end-page: 42
  ident: CR17
  article-title: Distributed data management using MapReduce
  publication-title: ACM Comput Surv
– volume: 20
  start-page: 1
  year: 2016
  end-page: 28
  ident: CR32
  article-title: Security and privacy aspects in MapReduce on clouds: a survey
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2016.05.001
– volume: 27
  start-page: 1470
  issue: 5
  year: 2016
  end-page: 1483
  ident: CR67
  article-title: RFHOC: a random-forest approach to auto-tuning Hadoop’s configuration
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2015.2449299
– volume: 26
  start-page: 997
  issue: 4
  year: 2015
  end-page: 1009
  ident: CR70
  article-title: Exploiting efficient and scalable shuffle transfers in future data center networks
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2014.2316829
– volume: 71
  start-page: 1657
  issue: 5
  year: 2015
  end-page: 1677
  ident: CR47
  article-title: Analyzing job completion reliability and job energy consumption for a heterogeneous MapReduce cluster under different intermediate-data replication policies
  publication-title: J Supercomput
  doi: 10.1007/s11227-014-1286-7
– ident: CR35
– ident: CR29
– volume: 44
  start-page: 832
  issue: 4
  year: 2016
  end-page: 866
  ident: CR33
  article-title: MapReduce parallel programming model: a state-of-the-art survey
  publication-title: Int J Parallel Prog
  doi: 10.1007/s10766-015-0395-0
– volume: 65
  start-page: 3304
  issue: 11
  year: 2016
  end-page: 3317
  ident: CR58
  article-title: Dynamic resource allocation for MapReduce with partitioning skew
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2016.2532860
– ident: CR8
– year: 2016
  ident: CR21
  publication-title: Expert Hadoop administration: managing, tuning, and securing spark, YARN, and HDFS
– ident: CR25
– volume: 95
  start-page: 29
  year: 2016
  end-page: 41
  ident: CR90
  article-title: Towards efficient resource provisioning in MapReduce
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2016.04.001
– ident: CR42
– volume: 10
  start-page: 471
  issue: 2
  year: 2016
  end-page: 482
  ident: CR48
  article-title: Adaptive task scheduling strategy based on dynamic workload adjustment for heterogeneous Hadoop clusters
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2014.2323112
– volume: 87
  start-page: 549
  year: 2018
  end-page: 556
  ident: CR11
  article-title: The optimization for recurring queries in big data analysis system with MapReduce
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2017.09.063
– volume: 1
  start-page: 1
  year: 2016
  end-page: 16
  ident: CR38
  article-title: Modulo based data placement algorithm for energy consumption optimization of MapReduce system
  publication-title: J Grid Comput
– volume: 26
  start-page: 2720
  issue: 10
  year: 2015
  end-page: 2733
  ident: CR36
  article-title: Energy-aware scheduling of mapreduce jobs for big data applications
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2014.2358556
– volume: 28
  start-page: 1649
  issue: 6
  year: 2017
  end-page: 1662
  ident: CR71
  article-title: iShuffle: improving Hadoop performance with shuffle-on-write
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2016.2587645
– ident: CR19
– volume: 73
  start-page: 782
  issue: 2
  year: 2017
  end-page: 809
  ident: CR40
  article-title: Energy efficiency of VM consolidation in IaaS clouds
  publication-title: J Supercomput
  doi: 10.1007/s11227-016-1797-5
– volume: 13
  start-page: 587
  issue: 4
  year: 2015
  end-page: 604
  ident: CR82
  article-title: Improving MapReduce performance with partial speculative execution
  publication-title: J Grid Comput
  doi: 10.1007/s10723-015-9350-y
– ident: CR88
– volume: 27
  start-page: 818
  issue: 3
  year: 2016
  end-page: 828
  ident: CR73
  article-title: On traffic-aware partition and aggregation in mapreduce for big data applications
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2015.2419671
– volume: 46
  start-page: 1
  year: 2014
  end-page: 25
  ident: CR4
  article-title: A comprehensive view of Hadoop research—a systematic literature review
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2014.07.022
– volume: 10
  start-page: 314
  issue: 5
  year: 2013
  end-page: 327
  ident: CR66
  article-title: Orchestrating an ensemble of MapReduce jobs for minimizing their makespan
  publication-title: IEEE Trans Dependable Secure Comput
  doi: 10.1109/TDSC.2013.14
– volume: 9
  start-page: 84
  issue: 1
  year: 2016
  end-page: 95
  ident: CR20
  article-title: BeTL: MapReduce checkpoint tactics beneath the task level
  publication-title: IEEE Trans Serv Comput
– volume: 24
  start-page: 859
  issue: 4
  year: 2016
  end-page: 883
  ident: CR63
  article-title: OPTIMA: on-line partitioning skew mitigation for MapReduce with resource adjustment
  publication-title: J Netw Syst Manag
  doi: 10.1007/s10922-015-9362-8
– ident: CR9
– volume: 28
  start-page: 798
  issue: 3
  year: 2017
  end-page: 812
  ident: CR75
  article-title: Moving Hadoop into the cloud with flexible slot management and speculative execution
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2016.2587641
– volume: 61
  start-page: 68
  year: 2017
  end-page: 82
  ident: CR43
  article-title: FARMS: efficient mapreduce speculation for failure recovery in short jobs
  publication-title: Parallel Comput
  doi: 10.1016/j.parco.2016.10.004
– volume: 18
  start-page: 1157
  issue: 3
  year: 2015
  end-page: 1169
  ident: CR64
  article-title: A data transmission algorithm for distributed computing system based on maximum flow
  publication-title: Cluster Comput
  doi: 10.1007/s10586-015-0467-3
– ident: CR60
– volume: 5
  start-page: 7156
  year: 2017
  end-page: 7163
  ident: CR84
  article-title: Large-Scale Encryption in the Hadoop Environment: challenges and Solutions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2700228
– ident: CR85
– volume: 3
  start-page: 19
  issue: 1
  year: 2016
  ident: CR18
  article-title: Analyzing performance of Apache Tez and MapReduce with Hadoop multinode cluster on Amazon cloud
  publication-title: J Big Data
  doi: 10.1186/s40537-016-0051-6
– volume: 2
  start-page: 652
  year: 2014
  end-page: 687
  ident: CR5
  article-title: Toward scalable systems for big data analytics: a technology tutorial
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2332453
– volume: 60
  start-page: 69
  year: 2016
  end-page: 84
  ident: CR61
  article-title: FP-Hadoop: efficient processing of skewed MapReduce jobs
  publication-title: Inf Syst
  doi: 10.1016/j.is.2016.03.008
– volume: 54
  start-page: 219
  year: 2016
  end-page: 232
  ident: CR37
  article-title: Governing energy consumption in Hadoop through cpu frequency scaling: an analysis
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2015.01.005
– volume: 63
  start-page: 954
  issue: 4
  year: 2014
  end-page: 967
  ident: CR74
  article-title: Improving MapReduce performance using smart speculative execution strategy
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2013.15
– ident: CR26
– volume: 18
  start-page: 1131
  issue: 6
  year: 2016
  end-page: 1151
  ident: CR27
  article-title: Online knowledge sharing mechanisms: a systematic review of the state of the art literature and recommendations for future research
  publication-title: Inf Syst Front
  doi: 10.1007/s10796-016-9628-z
– volume: 76
  start-page: 1
  issue: 16
  year: 2016
  end-page: 24
  ident: CR52
  article-title: An efficient MapReduce scheduling scheme for processing large multimedia data
  publication-title: Multimed Tools Appl
– ident: CR91
– ident: CR72
– volume: 74
  start-page: 208
  year: 2017
  end-page: 219
  ident: CR46
  article-title: Enabling fast failure recovery in shared Hadoop clusters: towards failure-aware scheduling
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2016.02.015
– year: 2009
  ident: CR14
  publication-title: Hadoop: the definitive guide
– ident: CR53
– ident: CR30
– volume: 72
  start-page: 2059
  issue: 6
  year: 2016
  end-page: 2079
  ident: CR56
  article-title: An optimized MapReduce workflow scheduling algorithm for heterogeneous computing
  publication-title: J Supercomput
  doi: 10.1007/s11227-014-1335-2
– volume: 72
  start-page: 2376
  issue: 6
  year: 2016
  end-page: 2393
  ident: CR81
  article-title: HScheduler: an optimal approach to minimize the makespan of multiple MapReduce jobs
  publication-title: J Supercomput
  doi: 10.1007/s11227-016-1737-4
– volume: 43
  start-page: 51
  year: 2015
  end-page: 60
  ident: CR51
  article-title: A self-adaptive scheduling algorithm for reduce start time
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2014.08.011
– ident: CR79
– ident: CR86
– volume: 25
  start-page: 602
  issue: 3
  year: 2014
  end-page: 611
  ident: CR69
  article-title: Design and evaluation of network-levitated merge for Hadoop acceleration
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2013.59
– volume: 48
  start-page: 36
  issue: 1
  year: 2017
  end-page: 40
  ident: CR23
  article-title: A big data Hadoop building blocks comparative study
  publication-title: Int J Comput Trends Technol
  doi: 10.14445/22312803/IJCTT-V48P109
– volume: 27
  start-page: 441
  issue: 2
  year: 2016
  end-page: 454
  ident: CR89
  article-title: Hadoop performance modeling for job estimation and resource provisioning
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2015.2405552
– volume: 28
  start-page: 774
  issue: 3
  year: 2017
  end-page: 786
  ident: CR68
  article-title: Improving performance of heterogeneous MapReduce clusters with adaptive task tuning
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2016.2594765
– volume: 50
  start-page: 166
  year: 2016
  end-page: 179
  ident: CR80
  article-title: Novel heuristic speculative execution strategies in heterogeneous distributed environments
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2015.06.013
– volume: 9
  start-page: 4
  issue: 1
  year: 2016
  end-page: 17
  ident: CR65
  article-title: Dynamic job ordering and slot configurations for MapReduce workloads
  publication-title: IEEE Trans Serv Comput
  doi: 10.1109/TSC.2015.2426186
– volume: 51
  start-page: 286
  year: 2016
  end-page: 299
  ident: CR62
  article-title: Handling data skew in join algorithms using MapReduce
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.12.024
– volume: 112
  start-page: 65
  year: 2016
  end-page: 77
  ident: CR15
  article-title: Data-locality-aware mapreduce real-time scheduling framework
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2015.11.001
– ident: CR3
– volume: 77
  start-page: 1
  issue: 8
  year: 2017
  end-page: 16
  ident: CR54
  article-title: Multi-objective scheduling of MapReduce jobs in big data processing
  publication-title: Multimed Tools Appl
– volume: 379
  start-page: 94
  year: 2017
  end-page: 111
  ident: CR44
  article-title: Availability/network-aware MapReduce over the internet
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.09.030
– ident: CR13
– volume: 31
  start-page: 67
  issue: 2
  year: 2017
  end-page: 71
  ident: CR83
  article-title: Security threats to Hadoop: data leakage attacks and investigation
  publication-title: IEEE Netw
  doi: 10.1109/MNET.2017.1500095NM
– ident: CR34
– year: 2016
  ident: CR92
  publication-title: Security recommendations for Hadoop environments
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  end-page: 113
  ident: CR1
  article-title: MapReduce: simplified data processing on large clusters
  publication-title: Commun ACM
  doi: 10.1145/1327452.1327492
– volume: 18
  start-page: 1011
  issue: 3
  year: 2015
  end-page: 1024
  ident: CR55
  article-title: MOMTH: multi-objective scheduling algorithm of many tasks in Hadoop
  publication-title: Cluster Comput
  doi: 10.1007/s10586-015-0454-8
– volume: 19
  start-page: 171
  issue: 2
  year: 2014
  end-page: 209
  ident: CR7
  article-title: Big data: a survey
  publication-title: Mob Netw Appl
  doi: 10.1007/s11036-013-0489-0
– volume: 134
  start-page: 170
  year: 2017
  end-page: 189
  ident: CR10
  article-title: Task scheduling in big data platforms: a systematic literature review
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2017.09.001
– volume: 26
  start-page: 2520
  issue: 9
  year: 2015
  end-page: 2533
  ident: CR57
  article-title: LIBRA: lightweight data skew mitigation in MapReduce
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2014.2350972
– volume: 67
  start-page: 13
  year: 2017
  end-page: 21
  ident: CR77
  article-title: Makespan minimization for MapReduce systems with different servers
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2016.07.012
– volume: 65
  start-page: 2603
  issue: 8
  year: 2016
  end-page: 2617
  ident: CR59
  article-title: Topology-aware optimal data placement algorithm for network traffic optimization
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2015.2485230
– volume: 109
  start-page: 389
  issue: 1
  year: 2016
  end-page: 422
  ident: CR2
  article-title: MapReduce: review and open challenges
  publication-title: Scientometrics
  doi: 10.1007/s11192-016-1945-y
– ident: CR28
– ident: CR41
– volume: 28
  start-page: 1375
  issue: 5
  year: 2017
  end-page: 1389
  ident: CR49
  article-title: MRCP-RM: a technique for resource allocation and scheduling of MapReduce jobs with deadlines
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2016.2617324
– volume: 11
  start-page: 146
  issue: 14
  year: 2014
  end-page: 155
  ident: CR31
  article-title: A survey of mapreduce based parallel processing technologies
  publication-title: China Commun
  doi: 10.1109/CC.2014.7085615
– volume: 379
  start-page: 112
  year: 2017
  end-page: 127
  ident: CR45
  article-title: Failure detector abstractions for MapReduce-based systems
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.08.013
– volume: 73
  start-page: 3526
  issue: 8
  year: 2017
  end-page: 3546
  ident: CR39
  article-title: SLA-aware energy-efficient scheduling scheme for Hadoop YARN
  publication-title: J Supercomput
  doi: 10.1007/s11227-016-1653-7
– ident: 2907_CR26
  doi: 10.1109/CCBD.2015.33
– volume: 61
  start-page: 68
  year: 2017
  ident: 2907_CR43
  publication-title: Parallel Comput
  doi: 10.1016/j.parco.2016.10.004
– volume: 2
  start-page: 652
  year: 2014
  ident: 2907_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2332453
– volume: 27
  start-page: 1470
  issue: 5
  year: 2016
  ident: 2907_CR67
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2015.2449299
– volume: 28
  start-page: 774
  issue: 3
  year: 2017
  ident: 2907_CR68
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2016.2594765
– volume: 1
  start-page: 1
  year: 2016
  ident: 2907_CR38
  publication-title: J Grid Comput
– volume: 87
  start-page: 549
  year: 2018
  ident: 2907_CR11
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2017.09.063
– volume: 67
  start-page: 13
  year: 2017
  ident: 2907_CR77
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2016.07.012
– volume: 10
  start-page: 314
  issue: 5
  year: 2013
  ident: 2907_CR66
  publication-title: IEEE Trans Dependable Secure Comput
  doi: 10.1109/TDSC.2013.14
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  ident: 2907_CR1
  publication-title: Commun ACM
  doi: 10.1145/1327452.1327492
– volume: 28
  start-page: 530
  issue: 2
  year: 2017
  ident: 2907_CR76
  publication-title: IEEE Trans Parallel Distrib Syst
– volume: 379
  start-page: 112
  year: 2017
  ident: 2907_CR45
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.08.013
– ident: 2907_CR3
  doi: 10.1109/ICDE.2010.5447738
– volume: 31
  start-page: 67
  issue: 2
  year: 2017
  ident: 2907_CR83
  publication-title: IEEE Netw
  doi: 10.1109/MNET.2017.1500095NM
– volume: 95
  start-page: 29
  year: 2016
  ident: 2907_CR90
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2016.04.001
– volume: 76
  start-page: 1
  issue: 16
  year: 2016
  ident: 2907_CR52
  publication-title: Multimed Tools Appl
– ident: 2907_CR87
  doi: 10.1145/2810103.2813695
– volume: 379
  start-page: 94
  year: 2017
  ident: 2907_CR44
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.09.030
– ident: 2907_CR16
  doi: 10.1145/1651263.1651271
– volume: 26
  start-page: 2720
  issue: 10
  year: 2015
  ident: 2907_CR36
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2014.2358556
– volume: 65
  start-page: 46
  year: 2016
  ident: 2907_CR78
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2016.06.006
– volume-title: Hadoop: the definitive guide
  year: 2009
  ident: 2907_CR14
– ident: 2907_CR28
  doi: 10.1109/BigData.2014.7004322
– ident: 2907_CR22
  doi: 10.1007/978-3-319-61176-1_4
– volume: 46
  start-page: 1
  issue: 3
  year: 2014
  ident: 2907_CR17
  publication-title: ACM Comput Surv
– volume: 38
  start-page: 1109
  year: 2016
  ident: 2907_CR50
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.04.039
– ident: 2907_CR19
– volume: 46
  start-page: 1
  year: 2014
  ident: 2907_CR4
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2014.07.022
– volume: 20
  start-page: 1
  year: 2016
  ident: 2907_CR32
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2016.05.001
– volume: 9
  start-page: 84
  issue: 1
  year: 2016
  ident: 2907_CR20
  publication-title: IEEE Trans Serv Comput
  doi: 10.1109/TSC.2015.2453973
– volume: 50
  start-page: 166
  year: 2016
  ident: 2907_CR80
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2015.06.013
– volume: 73
  start-page: 782
  issue: 2
  year: 2017
  ident: 2907_CR40
  publication-title: J Supercomput
  doi: 10.1007/s11227-016-1797-5
– volume-title: Expert Hadoop administration: managing, tuning, and securing spark, YARN, and HDFS
  year: 2016
  ident: 2907_CR21
– volume: 25
  start-page: 602
  issue: 3
  year: 2014
  ident: 2907_CR69
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2013.59
– ident: 2907_CR42
  doi: 10.1145/2602044.2602061
– volume: 28
  start-page: 798
  issue: 3
  year: 2017
  ident: 2907_CR75
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2016.2587641
– volume: 73
  start-page: 3526
  issue: 8
  year: 2017
  ident: 2907_CR39
  publication-title: J Supercomput
  doi: 10.1007/s11227-016-1653-7
– volume: 275
  start-page: 314
  year: 2014
  ident: 2907_CR6
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.01.015
– volume: 28
  start-page: 1649
  issue: 6
  year: 2017
  ident: 2907_CR71
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2016.2587645
– volume: 54
  start-page: 219
  year: 2016
  ident: 2907_CR37
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2015.01.005
– volume: 60
  start-page: 69
  year: 2016
  ident: 2907_CR61
  publication-title: Inf Syst
  doi: 10.1016/j.is.2016.03.008
– ident: 2907_CR88
  doi: 10.1145/2714576.2714624
– volume: 71
  start-page: 1657
  issue: 5
  year: 2015
  ident: 2907_CR47
  publication-title: J Supercomput
  doi: 10.1007/s11227-014-1286-7
– volume: 72
  start-page: 2376
  issue: 6
  year: 2016
  ident: 2907_CR81
  publication-title: J Supercomput
  doi: 10.1007/s11227-016-1737-4
– ident: 2907_CR30
  doi: 10.1109/CONFLUENCE.2016.7508142
– volume: 112
  start-page: 65
  year: 2016
  ident: 2907_CR15
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2015.11.001
– volume: 72
  start-page: 2059
  issue: 6
  year: 2016
  ident: 2907_CR56
  publication-title: J Supercomput
  doi: 10.1007/s11227-014-1335-2
– volume: 48
  start-page: 36
  issue: 1
  year: 2017
  ident: 2907_CR23
  publication-title: Int J Comput Trends Technol
  doi: 10.14445/22312803/IJCTT-V48P109
– volume-title: Security recommendations for Hadoop environments
  year: 2016
  ident: 2907_CR92
– ident: 2907_CR35
  doi: 10.1007/978-3-319-48671-0_27
– volume: 109
  start-page: 389
  issue: 1
  year: 2016
  ident: 2907_CR2
  publication-title: Scientometrics
  doi: 10.1007/s11192-016-1945-y
– ident: 2907_CR13
  doi: 10.1109/MSST.2010.5496972
– volume: 65
  start-page: 2603
  issue: 8
  year: 2016
  ident: 2907_CR59
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2015.2485230
– volume: 11
  start-page: 146
  issue: 14
  year: 2014
  ident: 2907_CR31
  publication-title: China Commun
  doi: 10.1109/CC.2014.7085615
– ident: 2907_CR41
  doi: 10.1007/978-3-319-64203-1_28
– volume: 43
  start-page: 51
  year: 2015
  ident: 2907_CR51
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2014.08.011
– ident: 2907_CR85
  doi: 10.1145/3078861.3084173
– ident: 2907_CR25
  doi: 10.5281/zenodo.165773
– volume: 77
  start-page: 1
  issue: 8
  year: 2017
  ident: 2907_CR54
  publication-title: Multimed Tools Appl
– ident: 2907_CR93
– ident: 2907_CR12
– volume: 26
  start-page: 997
  issue: 4
  year: 2015
  ident: 2907_CR70
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2014.2316829
– volume: 18
  start-page: 1131
  issue: 6
  year: 2016
  ident: 2907_CR27
  publication-title: Inf Syst Front
  doi: 10.1007/s10796-016-9628-z
– ident: 2907_CR60
– volume: 18
  start-page: 1157
  issue: 3
  year: 2015
  ident: 2907_CR64
  publication-title: Cluster Comput
  doi: 10.1007/s10586-015-0467-3
– ident: 2907_CR8
– volume: 65
  start-page: 3304
  issue: 11
  year: 2016
  ident: 2907_CR58
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2016.2532860
– volume: 13
  start-page: 587
  issue: 4
  year: 2015
  ident: 2907_CR82
  publication-title: J Grid Comput
  doi: 10.1007/s10723-015-9350-y
– volume: 27
  start-page: 441
  issue: 2
  year: 2016
  ident: 2907_CR89
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2015.2405552
– ident: 2907_CR91
  doi: 10.1145/3131704.3131708
– volume: 134
  start-page: 170
  year: 2017
  ident: 2907_CR10
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2017.09.001
– volume: 74
  start-page: 208
  year: 2017
  ident: 2907_CR46
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2016.02.015
– volume: 27
  start-page: 818
  issue: 3
  year: 2016
  ident: 2907_CR73
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2015.2419671
– volume: 9
  start-page: 4
  issue: 1
  year: 2016
  ident: 2907_CR65
  publication-title: IEEE Trans Serv Comput
  doi: 10.1109/TSC.2015.2426186
– volume: 64
  start-page: 1
  year: 2015
  ident: 2907_CR24
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2015.03.007
– ident: 2907_CR29
  doi: 10.1109/CONFLUENCE.2014.6949381
– volume: 28
  start-page: 1375
  issue: 5
  year: 2017
  ident: 2907_CR49
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2016.2617324
– volume: 5
  start-page: 7156
  year: 2017
  ident: 2907_CR84
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2700228
– volume: 26
  start-page: 2520
  issue: 9
  year: 2015
  ident: 2907_CR57
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2014.2350972
– ident: 2907_CR53
  doi: 10.1145/1755913.1755940
– volume: 24
  start-page: 859
  issue: 4
  year: 2016
  ident: 2907_CR63
  publication-title: J Netw Syst Manag
  doi: 10.1007/s10922-015-9362-8
– volume: 44
  start-page: 832
  issue: 4
  year: 2016
  ident: 2907_CR33
  publication-title: Int J Parallel Prog
  doi: 10.1007/s10766-015-0395-0
– ident: 2907_CR79
– volume: 10
  start-page: 471
  issue: 2
  year: 2016
  ident: 2907_CR48
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2014.2323112
– volume: 51
  start-page: 286
  year: 2016
  ident: 2907_CR62
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.12.024
– ident: 2907_CR9
– ident: 2907_CR72
  doi: 10.1145/3220192.3220193
– ident: 2907_CR34
– volume: 19
  start-page: 171
  issue: 2
  year: 2014
  ident: 2907_CR7
  publication-title: Mob Netw Appl
  doi: 10.1007/s11036-013-0489-0
– volume: 3
  start-page: 19
  issue: 1
  year: 2016
  ident: 2907_CR18
  publication-title: J Big Data
  doi: 10.1186/s40537-016-0051-6
– volume: 63
  start-page: 954
  issue: 4
  year: 2014
  ident: 2907_CR74
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2013.15
– volume: 18
  start-page: 1011
  issue: 3
  year: 2015
  ident: 2907_CR55
  publication-title: Cluster Comput
  doi: 10.1007/s10586-015-0454-8
– ident: 2907_CR86
SSID ssj0004373
Score 2.2623582
Snippet In the current decade, doing the search on massive data to find “hidden” and valuable information within it is growing. This search can result in heavy...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6934
SubjectTerms Compilers
Computer Science
Data search
Fault tolerance
Infrastructure
Interpreters
Parallel processing
Parallel programming
Processor Architectures
Programming Languages
Provisioning
Resource allocation
Task scheduling
Title MapReduce: an infrastructure review and research insights
URI https://link.springer.com/article/10.1007/s11227-019-02907-5
https://www.proquest.com/docview/2302605592
Volume 75
WOSCitedRecordID wos000492960000029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509eDF9Ymrq_TgTQNNk5jEm4iLB11kfbC3kiZZFKQu29Xfb5KmFkUFPWc6lHlkZsjMNwCH6QRn2oVmpApqEbUFQ4XvsrDYp7ucMmICuv4VHw7FeCxv4lBY1XS7N0-S4aZuh91wlvk2SYkcs5QjtghLLtwJ746j24d2GpLU78rSFUaC0SyOynzP43M4anPML8-iIdoMuv_7zzVYjdllclabwzos2HIDus3mhiQ68ibIazUdedBWe5qoMnFWNlM1kuzrzCb1OIs7MEnEAnp0JJUv46stuB9c3J1forhEAWlywueoUIQUWBRGaIytTI2QE20snghKqDCKEWmU5hZrznSqM-083rq0JBXKuvhPyDZ0ypfS7kAiFBeGcg_y56pq7go1FTIEJnVKC6l6gBtZ5joijPtFF895i43sZZM72eRBNjnrwdHHN9MaX-NX6n6jojz6WpW7IsoXZUxmPThuVNIe_8xt92_ke7CSea2GTr4-dJxW7D4s67f5UzU7CDb4DkJI0mw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CnqxPrFadQ_eNLDZJCbxJmKp2BapVXoL2WyKgqylW_39JvtwUVTQc2aHZR6ZGTLzDcBxOMGRcaEZ6ZhaRG3MUOy7LCz26S6njCQ5un6PDwZiPJa35VBYVnW7V0-S-U1dD7vhKPJtkhI5ZiFHbBGWqItYvpFvePdQT0OS4l1ZusJIMBqVozLf8_gcjuoc88uzaB5tOs3__ec6rJXZZXBRmMMGLNh0E5rV5oagdOQtkH09HXrQVnse6DRwVjbTBZLs68wGxTiLO0iCEgvo0ZFkvozPtuG-czW67KJyiQIy5IzPUawJibGIE2EwtjJMhJyYxOKJoISKRDMiE224xYYzE5rIOI-3Li0JhbYu_hOyA430JbW7EAjNRUK5B_lzVTV3hZrOMwQmTUhjqVuAK1kqUyKM-0UXz6rGRvayUU42KpeNYi04-fhmWuBr_ErdrlSkSl_LlCuifFHGZNSC00ol9fHP3Pb-Rn4EK91Rv6d614ObfViNvIbzrr42NJyG7AEsm7f5UzY7zO3xHSij1VA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60inixPrFadQ_eNLjZJCbxJmpRrKX4orclm2RRkLW01d9vsg9XRQXxnGxYZiaZ-ZiZbwB2wxRH2rlmpBJqEbUJQ4mvsrDYh7ucMmJydv0u7_XEYCD7H7r482r3KiVZ9DR4lqZscjA06UHd-IajyJdMSuQODjli0zBD_dAgj9dv7uvOSFLkmKUDSYLRqGyb-f6Mz66pjje_pEhzz9Np_v-fF2GhjDqD48JMlmDKZsvQrCY6BOUFXwF5pYbXnszVHgUqC5z1jVTBMPsyskHR5uIWTFByBD24LWMP78ercNc5uz05R-VwBaTJIZ-gRBGSYJEYoTG2MjRCptpYnApKqDCKEWmU5hZrznSoI-1eAuvClVAo6-ICQtagkT1ndh0CobgwlHvyP4e2uQNwKo8cmNQhTaRqAa7kGuuSedwPwHiKa85kL5vYySbOZROzFuy9fzMseDd-3d2u1BWXd3AcO3DlwRqTUQv2K_XUyz-ftvG37Tsw1z_txN2L3uUmzEdewXmxXxsaTkF2C2b16-RxPNrOTfMNvlXeNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MapReduce%3A+an+infrastructure+review+and+research+insights&rft.jtitle=The+Journal+of+supercomputing&rft.au=Maleki%2C+Neda&rft.au=Rahmani%2C+Amir+Masoud&rft.au=Conti%2C+Mauro&rft.date=2019-10-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=75&rft.issue=10&rft.spage=6934&rft.epage=7002&rft_id=info:doi/10.1007%2Fs11227-019-02907-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_019_02907_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon