MapReduce: an infrastructure review and research insights
In the current decade, doing the search on massive data to find “hidden” and valuable information within it is growing. This search can result in heavy processing on considerable data, leading to the development of solutions to process such huge information based on distributed and parallel processi...
Uloženo v:
| Vydáno v: | The Journal of supercomputing Ročník 75; číslo 10; s. 6934 - 7002 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0920-8542, 1573-0484 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the current decade, doing the search on massive data to find “hidden” and valuable information within it is growing. This search can result in heavy processing on considerable data, leading to the development of solutions to process such huge information based on distributed and parallel processing. Among all the parallel programming models, one that gains a lot of popularity is MapReduce. The goal of this paper is to survey researches conducted on the MapReduce framework in the context of its open-source implementation, Hadoop, in order to summarize and report the wide topic area at the infrastructure level. We managed to do a systematic review based on the prevalent topics dealing with MapReduce in seven areas: (1) performance; (2) job/task scheduling; (3) load balancing; (4) resource provisioning; (5) fault tolerance in terms of availability and reliability; (6) security; and (7) energy efficiency. We run our study by doing a quantitative and qualitative evaluation of the research publications’ trend which is published between January 1, 2014, and November 1, 2017. Since the MapReduce is a challenge-prone area for researchers who fall off to work and extend with, this work is a useful guideline for getting feedback and starting research. |
|---|---|
| AbstractList | In the current decade, doing the search on massive data to find “hidden” and valuable information within it is growing. This search can result in heavy processing on considerable data, leading to the development of solutions to process such huge information based on distributed and parallel processing. Among all the parallel programming models, one that gains a lot of popularity is MapReduce. The goal of this paper is to survey researches conducted on the MapReduce framework in the context of its open-source implementation, Hadoop, in order to summarize and report the wide topic area at the infrastructure level. We managed to do a systematic review based on the prevalent topics dealing with MapReduce in seven areas: (1) performance; (2) job/task scheduling; (3) load balancing; (4) resource provisioning; (5) fault tolerance in terms of availability and reliability; (6) security; and (7) energy efficiency. We run our study by doing a quantitative and qualitative evaluation of the research publications’ trend which is published between January 1, 2014, and November 1, 2017. Since the MapReduce is a challenge-prone area for researchers who fall off to work and extend with, this work is a useful guideline for getting feedback and starting research. |
| Author | Maleki, Neda Rahmani, Amir Masoud Conti, Mauro |
| Author_xml | – sequence: 1 givenname: Neda surname: Maleki fullname: Maleki, Neda organization: Department of Computer Engineering, Science and Research Branch, Islamic Azad University – sequence: 2 givenname: Amir Masoud surname: Rahmani fullname: Rahmani, Amir Masoud email: rahmani@srbiau.ac.ir organization: Department of Computer Engineering, Science and Research Branch, Islamic Azad University – sequence: 3 givenname: Mauro surname: Conti fullname: Conti, Mauro organization: Department of Mathematics, University of Padua |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Fz9FJsmkSb1L8googeg7Z7Gy7pe7WJKv4742uIHjoaQbmfWaGZ0JGbdciIacMzhmAuoiMca4oMEOBG1BUHpAxk0pQKHQxImMwHKiWBT8ikxg3AFAIJcbEPLjdE1a9x8uZa2dNWwcXU-h96gPOAr43-JEHVW4juuDXORKb1TrFY3JYu23Ek986JS8318-LO7p8vL1fXC2pF3OVaOmEKJkuK-0ZQwOVNrWvkNW6EIWunBSmcl4h80p68NwLYDiXGrRD4EyIKTkb9u5C99ZjTHbT9aHNJy0XwOcgpeE5pYeUD12MAWvrm-RS07UpuGZrGdhvUXYQZbMo-yPKyozyf-guNK8ufO6HxADFHG5XGP6-2kN9AWlkfIg |
| CitedBy_id | crossref_primary_10_1007_s10586_023_04201_9 crossref_primary_10_1155_2022_3838293 crossref_primary_10_1002_cpe_6368 crossref_primary_10_1007_s11227_020_03265_3 crossref_primary_10_1109_ACCESS_2022_3195872 crossref_primary_10_3390_jmse11040738 crossref_primary_10_1016_j_jnca_2020_102944 crossref_primary_10_1109_JSEN_2021_3060953 crossref_primary_10_1007_s00530_020_00725_x crossref_primary_10_1186_s13673_020_00247_5 crossref_primary_10_1007_s11227_021_04012_y crossref_primary_10_1007_s11227_025_07563_6 crossref_primary_10_1007_s42979_021_00692_8 |
| Cites_doi | 10.1016/j.infsof.2015.03.007 10.1016/j.future.2016.06.006 10.1016/j.ins.2014.01.015 10.1016/j.asoc.2015.04.039 10.1016/j.cosrev.2016.05.001 10.1109/TPDS.2015.2449299 10.1109/TPDS.2014.2316829 10.1007/s11227-014-1286-7 10.1007/s10766-015-0395-0 10.1109/TC.2016.2532860 10.1016/j.jpdc.2016.04.001 10.1109/JSYST.2014.2323112 10.1016/j.future.2017.09.063 10.1109/TPDS.2014.2358556 10.1109/TPDS.2016.2587645 10.1007/s11227-016-1797-5 10.1007/s10723-015-9350-y 10.1109/TPDS.2015.2419671 10.1016/j.jnca.2014.07.022 10.1109/TDSC.2013.14 10.1007/s10922-015-9362-8 10.1109/TPDS.2016.2587641 10.1016/j.parco.2016.10.004 10.1007/s10586-015-0467-3 10.1109/ACCESS.2017.2700228 10.1186/s40537-016-0051-6 10.1109/ACCESS.2014.2332453 10.1016/j.is.2016.03.008 10.1016/j.future.2015.01.005 10.1109/TC.2013.15 10.1007/s10796-016-9628-z 10.1016/j.future.2016.02.015 10.1007/s11227-014-1335-2 10.1007/s11227-016-1737-4 10.1016/j.future.2014.08.011 10.1109/TPDS.2013.59 10.14445/22312803/IJCTT-V48P109 10.1109/TPDS.2015.2405552 10.1109/TPDS.2016.2594765 10.1016/j.compeleceng.2015.06.013 10.1109/TSC.2015.2426186 10.1016/j.eswa.2015.12.024 10.1016/j.jss.2015.11.001 10.1016/j.ins.2016.09.030 10.1109/MNET.2017.1500095NM 10.1145/1327452.1327492 10.1007/s10586-015-0454-8 10.1007/s11036-013-0489-0 10.1016/j.jss.2017.09.001 10.1109/TPDS.2014.2350972 10.1016/j.future.2016.07.012 10.1109/TC.2015.2485230 10.1007/s11192-016-1945-y 10.1109/TPDS.2016.2617324 10.1109/CC.2014.7085615 10.1016/j.ins.2016.08.013 10.1007/s11227-016-1653-7 10.1109/CCBD.2015.33 10.1109/ICDE.2010.5447738 10.1145/2810103.2813695 10.1145/1651263.1651271 10.1109/BigData.2014.7004322 10.1007/978-3-319-61176-1_4 10.1109/TSC.2015.2453973 10.1145/2602044.2602061 10.1145/2714576.2714624 10.1109/CONFLUENCE.2016.7508142 10.1007/978-3-319-48671-0_27 10.1109/MSST.2010.5496972 10.1007/978-3-319-64203-1_28 10.1145/3078861.3084173 10.5281/zenodo.165773 10.1145/3131704.3131708 10.1109/CONFLUENCE.2014.6949381 10.1145/1755913.1755940 10.1145/3220192.3220193 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-019-02907-5 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 7002 |
| ExternalDocumentID | 10_1007_s11227_019_02907_5 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c367t-ba33b18bd8c11e90d89fcde1f84348da539dac7e1c75c0c2c301e65808ae02133 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000492960000029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Thu Sep 25 00:46:54 EDT 2025 Tue Nov 18 20:52:47 EST 2025 Sat Nov 29 04:27:38 EST 2025 Fri Feb 21 02:27:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Parallel and distributed programming model Systematic review MapReduce paradigm Hadoop |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-ba33b18bd8c11e90d89fcde1f84348da539dac7e1c75c0c2c301e65808ae02133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2302605592 |
| PQPubID | 2043774 |
| PageCount | 69 |
| ParticipantIDs | proquest_journals_2302605592 crossref_citationtrail_10_1007_s11227_019_02907_5 crossref_primary_10_1007_s11227_019_02907_5 springer_journals_10_1007_s11227_019_02907_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Cheng, Rao, Guo, Jiang, Zhou (CR68) 2017; 28 Hashem, Anuar, Gani, Yaqoob, Xia, Khan (CR2) 2016; 109 Polato, Ré, Goldman, Kon (CR4) 2014; 46 Chen, Mao, Liu (CR7) 2014; 19 CR35 CR79 CR34 Hadoop (CR92) 2016 CR30 CR72 Lim, Majumdar, Ashwood-Smith (CR49) 2017; 28 Li, Hu, Li, Wu, Yang (CR33) 2016; 44 Petersen, Vakkalanka, Kuzniarz (CR24) 2015; 64 Xu, Cao, Wang (CR48) 2016; 10 CR3 Song, He, Wang, Yu, Pierson (CR38) 2016; 1 CR8 Fu, Gao, Luo, Du, Guizani (CR83) 2017; 31 CR9 Myung, Shim, Yeon, Lee (CR62) 2016; 51 White (CR14) 2009 Huang, Zhang, Li, Wan, Li (CR80) 2016; 50 Liroz-Gistau, Akbarinia, Agrawal, Valduriez (CR61) 2016; 60 Guo, Rao, Cheng, Zhou (CR71) 2017; 28 CR88 CR87 CR42 CR86 Cai, Li, Li, Ju, Jia (CR39) 2017; 73 CR41 CR85 Hashem, Anuar, Marjani, Gani, Sangaiah, Sakariyah (CR54) 2017; 77 Khan, Jin, Li, Xiang, Jiang (CR89) 2016; 27 Bok, Hwang, Lim, Kim, Yoo (CR52) 2016; 76 Veiga, Expósito, Taboada, Tourino (CR78) 2016; 65 Tian, Li, Yang, Buyya (CR81) 2016; 72 Singh, Kaur (CR18) 2016; 3 Xu, Lau (CR76) 2017; 28 Hu, Wen, Chua, Li (CR5) 2014; 2 Alapati (CR21) 2016 Liu, Zhang, Boutaba, Liu, Wang (CR63) 2016; 24 Parmar, Roy, Bhattacharyya, Bandyopadhyay, Kim (CR84) 2017; 5 Chen, Zhang (CR6) 2014; 275 CR19 Tang, Jiang, Zhou, Li, Li (CR51) 2015; 43 CR16 Ibrahim, Phan, Carpen-Amarie, Chihoub, Moise, Antoniu (CR37) 2016; 54 CR13 Lin, Leu, Chen (CR47) 2015; 71 Chen, Yao, Xiao (CR57) 2015; 26 CR12 Erraissi, Belangour, Tragha (CR23) 2017; 48 Tang, Tang, Fedak, He (CR44) 2017; 379 Soualhia, Khomh, Tahar (CR10) 2017; 134 CR53 Nghiem, Figueira (CR90) 2016; 95 Dean, Ghemawat (CR1) 2008; 51 Nita, Pop, Voicu, Dobre, Xhafa (CR55) 2015; 18 Tang, Lee, He (CR65) 2016; 9 CR93 CR91 Zhang, Jiang, Zhang, Wang (CR64) 2015; 18 Lu, Feng (CR31) 2014; 11 Chen, Paik, Li (CR59) 2016; 65 Zhang, Wang, Zheng (CR11) 2018; 87 Bei, Yu, Zhang, Xiong, Xu, Eeckhout, Feng (CR67) 2016; 27 Charband, Navimipour (CR27) 2016; 18 Wang, Chen, Du, Hu (CR20) 2016; 9 Mashayekhy, Nejad, Grosu, Zhang, Shi (CR36) 2015; 26 Guo, Rao, Jiang, Zhou (CR75) 2017; 28 Wang, Lu, Lou, Wei (CR82) 2015; 13 Li, Ooi, Tamer Ozsu, Wu (CR17) 2014; 46 CR29 Memishi, Pérez, Antoniu (CR45) 2017; 379 Liu, Zhang, Ahmed, Boutaba, Liu, Gong (CR58) 2016; 65 CR28 Teng, Yu, Li, Deng, Magoulès (CR40) 2017; 73 Sun, Zhuang, Li, Lu, Zhou (CR50) 2016; 38 Kao, Chen (CR15) 2016; 112 Yu, Wang, Que (CR69) 2014; 25 CR26 CR25 Tang, Liu, Ammar, Li, Li (CR56) 2016; 72 Ke, Li, Guo, Guo (CR73) 2016; 27 CR22 Chen, Liu, Xiao (CR74) 2014; 63 Jiang, Zhu, Wu, Li (CR77) 2017; 67 Verma, Cherkasova, Campbell (CR66) 2013; 10 CR60 Guo, Xie, Zhou, Zhu, Wei, Luo (CR70) 2015; 26 Fu, Chen, Zhu, Yu (CR43) 2017; 61 Derbeko, Dolev, Gudes, Sharma (CR32) 2016; 20 Yildiz, Ibrahim, Antoniu (CR46) 2017; 74 2907_CR12 2907_CR13 P Derbeko (2907_CR32) 2016; 20 2907_CR16 2907_CR19 W Tian (2907_CR81) 2016; 72 Z Bei (2907_CR67) 2016; 27 M Chen (2907_CR7) 2014; 19 F Teng (2907_CR40) 2017; 73 X Xu (2907_CR48) 2016; 10 X Fu (2907_CR83) 2017; 31 CP Chen (2907_CR6) 2014; 275 H Xu (2907_CR76) 2017; 28 S Ibrahim (2907_CR37) 2016; 54 M Sun (2907_CR50) 2016; 38 H Hu (2907_CR5) 2014; 2 2907_CR60 A Verma (2907_CR66) 2013; 10 X Zhang (2907_CR64) 2015; 18 S Hadoop (2907_CR92) 2016 I Polato (2907_CR4) 2014; 46 2907_CR9 2907_CR88 2907_CR8 Y Guo (2907_CR71) 2017; 28 K Bok (2907_CR52) 2016; 76 SR Alapati (2907_CR21) 2016 D Guo (2907_CR70) 2015; 26 2907_CR3 Y Charband (2907_CR27) 2016; 18 X Huang (2907_CR80) 2016; 50 B Zhang (2907_CR11) 2018; 87 Q Chen (2907_CR57) 2015; 26 IAT Hashem (2907_CR54) 2017; 77 Y Jiang (2907_CR77) 2017; 67 2907_CR91 2907_CR93 M Soualhia (2907_CR10) 2017; 134 2907_CR53 2907_CR34 RR Parmar (2907_CR84) 2017; 5 2907_CR35 W Yu (2907_CR69) 2014; 25 2907_CR79 T White (2907_CR14) 2009 H Wang (2907_CR20) 2016; 9 Q Chen (2907_CR74) 2014; 63 W Chen (2907_CR59) 2016; 65 A Erraissi (2907_CR23) 2017; 48 L Mashayekhy (2907_CR36) 2015; 26 K Petersen (2907_CR24) 2015; 64 J Song (2907_CR38) 2016; 1 M Liroz-Gistau (2907_CR61) 2016; 60 PP Nghiem (2907_CR90) 2016; 95 M Khan (2907_CR89) 2016; 27 IAT Hashem (2907_CR2) 2016; 109 J Lu (2907_CR31) 2014; 11 R Singh (2907_CR18) 2016; 3 Z Tang (2907_CR56) 2016; 72 H Fu (2907_CR43) 2017; 61 S Tang (2907_CR65) 2016; 9 J-C Lin (2907_CR47) 2015; 71 2907_CR41 Z Liu (2907_CR63) 2016; 24 2907_CR85 2907_CR42 J Veiga (2907_CR78) 2016; 65 2907_CR86 2907_CR87 2907_CR22 J Dean (2907_CR1) 2008; 51 2907_CR25 2907_CR26 2907_CR28 D Cheng (2907_CR68) 2017; 28 2907_CR29 N Lim (2907_CR49) 2017; 28 R Li (2907_CR33) 2016; 44 X Cai (2907_CR39) 2017; 73 Y Wang (2907_CR82) 2015; 13 Z Tang (2907_CR51) 2015; 43 J Myung (2907_CR62) 2016; 51 Y Guo (2907_CR75) 2017; 28 B Tang (2907_CR44) 2017; 379 F Li (2907_CR17) 2014; 46 O Yildiz (2907_CR46) 2017; 74 B Memishi (2907_CR45) 2017; 379 M-C Nita (2907_CR55) 2015; 18 Z Liu (2907_CR58) 2016; 65 Y-C Kao (2907_CR15) 2016; 112 H Ke (2907_CR73) 2016; 27 2907_CR72 2907_CR30 |
| References_xml | – ident: CR22 – volume: 64 start-page: 1 year: 2015 end-page: 18 ident: CR24 article-title: Guidelines for conducting systematic mapping studies in software engineering: an update publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2015.03.007 – ident: CR93 – volume: 28 start-page: 530 issue: 2 year: 2017 end-page: 545 ident: CR76 article-title: Optimization for speculative execution in big data processing clusters publication-title: IEEE Trans Parallel Distrib Syst – ident: CR87 – ident: CR16 – ident: CR12 – volume: 65 start-page: 46 year: 2016 end-page: 56 ident: CR78 article-title: Flame-MR: an event-driven architecture for MapReduce applications publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2016.06.006 – volume: 275 start-page: 314 year: 2014 end-page: 347 ident: CR6 article-title: Data-intensive applications, challenges, techniques and technologies: a survey on big data publication-title: Inf Sci doi: 10.1016/j.ins.2014.01.015 – volume: 38 start-page: 1109 year: 2016 end-page: 1118 ident: CR50 article-title: Scheduling algorithm based on prefetching in MapReduce clusters publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.04.039 – volume: 46 start-page: 1 issue: 3 year: 2014 end-page: 42 ident: CR17 article-title: Distributed data management using MapReduce publication-title: ACM Comput Surv – volume: 20 start-page: 1 year: 2016 end-page: 28 ident: CR32 article-title: Security and privacy aspects in MapReduce on clouds: a survey publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2016.05.001 – volume: 27 start-page: 1470 issue: 5 year: 2016 end-page: 1483 ident: CR67 article-title: RFHOC: a random-forest approach to auto-tuning Hadoop’s configuration publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2015.2449299 – volume: 26 start-page: 997 issue: 4 year: 2015 end-page: 1009 ident: CR70 article-title: Exploiting efficient and scalable shuffle transfers in future data center networks publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2014.2316829 – volume: 71 start-page: 1657 issue: 5 year: 2015 end-page: 1677 ident: CR47 article-title: Analyzing job completion reliability and job energy consumption for a heterogeneous MapReduce cluster under different intermediate-data replication policies publication-title: J Supercomput doi: 10.1007/s11227-014-1286-7 – ident: CR35 – ident: CR29 – volume: 44 start-page: 832 issue: 4 year: 2016 end-page: 866 ident: CR33 article-title: MapReduce parallel programming model: a state-of-the-art survey publication-title: Int J Parallel Prog doi: 10.1007/s10766-015-0395-0 – volume: 65 start-page: 3304 issue: 11 year: 2016 end-page: 3317 ident: CR58 article-title: Dynamic resource allocation for MapReduce with partitioning skew publication-title: IEEE Trans Comput doi: 10.1109/TC.2016.2532860 – ident: CR8 – year: 2016 ident: CR21 publication-title: Expert Hadoop administration: managing, tuning, and securing spark, YARN, and HDFS – ident: CR25 – volume: 95 start-page: 29 year: 2016 end-page: 41 ident: CR90 article-title: Towards efficient resource provisioning in MapReduce publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2016.04.001 – ident: CR42 – volume: 10 start-page: 471 issue: 2 year: 2016 end-page: 482 ident: CR48 article-title: Adaptive task scheduling strategy based on dynamic workload adjustment for heterogeneous Hadoop clusters publication-title: IEEE Syst J doi: 10.1109/JSYST.2014.2323112 – volume: 87 start-page: 549 year: 2018 end-page: 556 ident: CR11 article-title: The optimization for recurring queries in big data analysis system with MapReduce publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2017.09.063 – volume: 1 start-page: 1 year: 2016 end-page: 16 ident: CR38 article-title: Modulo based data placement algorithm for energy consumption optimization of MapReduce system publication-title: J Grid Comput – volume: 26 start-page: 2720 issue: 10 year: 2015 end-page: 2733 ident: CR36 article-title: Energy-aware scheduling of mapreduce jobs for big data applications publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2014.2358556 – volume: 28 start-page: 1649 issue: 6 year: 2017 end-page: 1662 ident: CR71 article-title: iShuffle: improving Hadoop performance with shuffle-on-write publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2016.2587645 – ident: CR19 – volume: 73 start-page: 782 issue: 2 year: 2017 end-page: 809 ident: CR40 article-title: Energy efficiency of VM consolidation in IaaS clouds publication-title: J Supercomput doi: 10.1007/s11227-016-1797-5 – volume: 13 start-page: 587 issue: 4 year: 2015 end-page: 604 ident: CR82 article-title: Improving MapReduce performance with partial speculative execution publication-title: J Grid Comput doi: 10.1007/s10723-015-9350-y – ident: CR88 – volume: 27 start-page: 818 issue: 3 year: 2016 end-page: 828 ident: CR73 article-title: On traffic-aware partition and aggregation in mapreduce for big data applications publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2015.2419671 – volume: 46 start-page: 1 year: 2014 end-page: 25 ident: CR4 article-title: A comprehensive view of Hadoop research—a systematic literature review publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2014.07.022 – volume: 10 start-page: 314 issue: 5 year: 2013 end-page: 327 ident: CR66 article-title: Orchestrating an ensemble of MapReduce jobs for minimizing their makespan publication-title: IEEE Trans Dependable Secure Comput doi: 10.1109/TDSC.2013.14 – volume: 9 start-page: 84 issue: 1 year: 2016 end-page: 95 ident: CR20 article-title: BeTL: MapReduce checkpoint tactics beneath the task level publication-title: IEEE Trans Serv Comput – volume: 24 start-page: 859 issue: 4 year: 2016 end-page: 883 ident: CR63 article-title: OPTIMA: on-line partitioning skew mitigation for MapReduce with resource adjustment publication-title: J Netw Syst Manag doi: 10.1007/s10922-015-9362-8 – ident: CR9 – volume: 28 start-page: 798 issue: 3 year: 2017 end-page: 812 ident: CR75 article-title: Moving Hadoop into the cloud with flexible slot management and speculative execution publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2016.2587641 – volume: 61 start-page: 68 year: 2017 end-page: 82 ident: CR43 article-title: FARMS: efficient mapreduce speculation for failure recovery in short jobs publication-title: Parallel Comput doi: 10.1016/j.parco.2016.10.004 – volume: 18 start-page: 1157 issue: 3 year: 2015 end-page: 1169 ident: CR64 article-title: A data transmission algorithm for distributed computing system based on maximum flow publication-title: Cluster Comput doi: 10.1007/s10586-015-0467-3 – ident: CR60 – volume: 5 start-page: 7156 year: 2017 end-page: 7163 ident: CR84 article-title: Large-Scale Encryption in the Hadoop Environment: challenges and Solutions publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2700228 – ident: CR85 – volume: 3 start-page: 19 issue: 1 year: 2016 ident: CR18 article-title: Analyzing performance of Apache Tez and MapReduce with Hadoop multinode cluster on Amazon cloud publication-title: J Big Data doi: 10.1186/s40537-016-0051-6 – volume: 2 start-page: 652 year: 2014 end-page: 687 ident: CR5 article-title: Toward scalable systems for big data analytics: a technology tutorial publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2332453 – volume: 60 start-page: 69 year: 2016 end-page: 84 ident: CR61 article-title: FP-Hadoop: efficient processing of skewed MapReduce jobs publication-title: Inf Syst doi: 10.1016/j.is.2016.03.008 – volume: 54 start-page: 219 year: 2016 end-page: 232 ident: CR37 article-title: Governing energy consumption in Hadoop through cpu frequency scaling: an analysis publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2015.01.005 – volume: 63 start-page: 954 issue: 4 year: 2014 end-page: 967 ident: CR74 article-title: Improving MapReduce performance using smart speculative execution strategy publication-title: IEEE Trans Comput doi: 10.1109/TC.2013.15 – ident: CR26 – volume: 18 start-page: 1131 issue: 6 year: 2016 end-page: 1151 ident: CR27 article-title: Online knowledge sharing mechanisms: a systematic review of the state of the art literature and recommendations for future research publication-title: Inf Syst Front doi: 10.1007/s10796-016-9628-z – volume: 76 start-page: 1 issue: 16 year: 2016 end-page: 24 ident: CR52 article-title: An efficient MapReduce scheduling scheme for processing large multimedia data publication-title: Multimed Tools Appl – ident: CR91 – ident: CR72 – volume: 74 start-page: 208 year: 2017 end-page: 219 ident: CR46 article-title: Enabling fast failure recovery in shared Hadoop clusters: towards failure-aware scheduling publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2016.02.015 – year: 2009 ident: CR14 publication-title: Hadoop: the definitive guide – ident: CR53 – ident: CR30 – volume: 72 start-page: 2059 issue: 6 year: 2016 end-page: 2079 ident: CR56 article-title: An optimized MapReduce workflow scheduling algorithm for heterogeneous computing publication-title: J Supercomput doi: 10.1007/s11227-014-1335-2 – volume: 72 start-page: 2376 issue: 6 year: 2016 end-page: 2393 ident: CR81 article-title: HScheduler: an optimal approach to minimize the makespan of multiple MapReduce jobs publication-title: J Supercomput doi: 10.1007/s11227-016-1737-4 – volume: 43 start-page: 51 year: 2015 end-page: 60 ident: CR51 article-title: A self-adaptive scheduling algorithm for reduce start time publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2014.08.011 – ident: CR79 – ident: CR86 – volume: 25 start-page: 602 issue: 3 year: 2014 end-page: 611 ident: CR69 article-title: Design and evaluation of network-levitated merge for Hadoop acceleration publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2013.59 – volume: 48 start-page: 36 issue: 1 year: 2017 end-page: 40 ident: CR23 article-title: A big data Hadoop building blocks comparative study publication-title: Int J Comput Trends Technol doi: 10.14445/22312803/IJCTT-V48P109 – volume: 27 start-page: 441 issue: 2 year: 2016 end-page: 454 ident: CR89 article-title: Hadoop performance modeling for job estimation and resource provisioning publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2015.2405552 – volume: 28 start-page: 774 issue: 3 year: 2017 end-page: 786 ident: CR68 article-title: Improving performance of heterogeneous MapReduce clusters with adaptive task tuning publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2016.2594765 – volume: 50 start-page: 166 year: 2016 end-page: 179 ident: CR80 article-title: Novel heuristic speculative execution strategies in heterogeneous distributed environments publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2015.06.013 – volume: 9 start-page: 4 issue: 1 year: 2016 end-page: 17 ident: CR65 article-title: Dynamic job ordering and slot configurations for MapReduce workloads publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2015.2426186 – volume: 51 start-page: 286 year: 2016 end-page: 299 ident: CR62 article-title: Handling data skew in join algorithms using MapReduce publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.12.024 – volume: 112 start-page: 65 year: 2016 end-page: 77 ident: CR15 article-title: Data-locality-aware mapreduce real-time scheduling framework publication-title: J Syst Softw doi: 10.1016/j.jss.2015.11.001 – ident: CR3 – volume: 77 start-page: 1 issue: 8 year: 2017 end-page: 16 ident: CR54 article-title: Multi-objective scheduling of MapReduce jobs in big data processing publication-title: Multimed Tools Appl – volume: 379 start-page: 94 year: 2017 end-page: 111 ident: CR44 article-title: Availability/network-aware MapReduce over the internet publication-title: Inf Sci doi: 10.1016/j.ins.2016.09.030 – ident: CR13 – volume: 31 start-page: 67 issue: 2 year: 2017 end-page: 71 ident: CR83 article-title: Security threats to Hadoop: data leakage attacks and investigation publication-title: IEEE Netw doi: 10.1109/MNET.2017.1500095NM – ident: CR34 – year: 2016 ident: CR92 publication-title: Security recommendations for Hadoop environments – volume: 51 start-page: 107 issue: 1 year: 2008 end-page: 113 ident: CR1 article-title: MapReduce: simplified data processing on large clusters publication-title: Commun ACM doi: 10.1145/1327452.1327492 – volume: 18 start-page: 1011 issue: 3 year: 2015 end-page: 1024 ident: CR55 article-title: MOMTH: multi-objective scheduling algorithm of many tasks in Hadoop publication-title: Cluster Comput doi: 10.1007/s10586-015-0454-8 – volume: 19 start-page: 171 issue: 2 year: 2014 end-page: 209 ident: CR7 article-title: Big data: a survey publication-title: Mob Netw Appl doi: 10.1007/s11036-013-0489-0 – volume: 134 start-page: 170 year: 2017 end-page: 189 ident: CR10 article-title: Task scheduling in big data platforms: a systematic literature review publication-title: J Syst Softw doi: 10.1016/j.jss.2017.09.001 – volume: 26 start-page: 2520 issue: 9 year: 2015 end-page: 2533 ident: CR57 article-title: LIBRA: lightweight data skew mitigation in MapReduce publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2014.2350972 – volume: 67 start-page: 13 year: 2017 end-page: 21 ident: CR77 article-title: Makespan minimization for MapReduce systems with different servers publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2016.07.012 – volume: 65 start-page: 2603 issue: 8 year: 2016 end-page: 2617 ident: CR59 article-title: Topology-aware optimal data placement algorithm for network traffic optimization publication-title: IEEE Trans Comput doi: 10.1109/TC.2015.2485230 – volume: 109 start-page: 389 issue: 1 year: 2016 end-page: 422 ident: CR2 article-title: MapReduce: review and open challenges publication-title: Scientometrics doi: 10.1007/s11192-016-1945-y – ident: CR28 – ident: CR41 – volume: 28 start-page: 1375 issue: 5 year: 2017 end-page: 1389 ident: CR49 article-title: MRCP-RM: a technique for resource allocation and scheduling of MapReduce jobs with deadlines publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2016.2617324 – volume: 11 start-page: 146 issue: 14 year: 2014 end-page: 155 ident: CR31 article-title: A survey of mapreduce based parallel processing technologies publication-title: China Commun doi: 10.1109/CC.2014.7085615 – volume: 379 start-page: 112 year: 2017 end-page: 127 ident: CR45 article-title: Failure detector abstractions for MapReduce-based systems publication-title: Inf Sci doi: 10.1016/j.ins.2016.08.013 – volume: 73 start-page: 3526 issue: 8 year: 2017 end-page: 3546 ident: CR39 article-title: SLA-aware energy-efficient scheduling scheme for Hadoop YARN publication-title: J Supercomput doi: 10.1007/s11227-016-1653-7 – ident: 2907_CR26 doi: 10.1109/CCBD.2015.33 – volume: 61 start-page: 68 year: 2017 ident: 2907_CR43 publication-title: Parallel Comput doi: 10.1016/j.parco.2016.10.004 – volume: 2 start-page: 652 year: 2014 ident: 2907_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2332453 – volume: 27 start-page: 1470 issue: 5 year: 2016 ident: 2907_CR67 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2015.2449299 – volume: 28 start-page: 774 issue: 3 year: 2017 ident: 2907_CR68 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2016.2594765 – volume: 1 start-page: 1 year: 2016 ident: 2907_CR38 publication-title: J Grid Comput – volume: 87 start-page: 549 year: 2018 ident: 2907_CR11 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2017.09.063 – volume: 67 start-page: 13 year: 2017 ident: 2907_CR77 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2016.07.012 – volume: 10 start-page: 314 issue: 5 year: 2013 ident: 2907_CR66 publication-title: IEEE Trans Dependable Secure Comput doi: 10.1109/TDSC.2013.14 – volume: 51 start-page: 107 issue: 1 year: 2008 ident: 2907_CR1 publication-title: Commun ACM doi: 10.1145/1327452.1327492 – volume: 28 start-page: 530 issue: 2 year: 2017 ident: 2907_CR76 publication-title: IEEE Trans Parallel Distrib Syst – volume: 379 start-page: 112 year: 2017 ident: 2907_CR45 publication-title: Inf Sci doi: 10.1016/j.ins.2016.08.013 – ident: 2907_CR3 doi: 10.1109/ICDE.2010.5447738 – volume: 31 start-page: 67 issue: 2 year: 2017 ident: 2907_CR83 publication-title: IEEE Netw doi: 10.1109/MNET.2017.1500095NM – volume: 95 start-page: 29 year: 2016 ident: 2907_CR90 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2016.04.001 – volume: 76 start-page: 1 issue: 16 year: 2016 ident: 2907_CR52 publication-title: Multimed Tools Appl – ident: 2907_CR87 doi: 10.1145/2810103.2813695 – volume: 379 start-page: 94 year: 2017 ident: 2907_CR44 publication-title: Inf Sci doi: 10.1016/j.ins.2016.09.030 – ident: 2907_CR16 doi: 10.1145/1651263.1651271 – volume: 26 start-page: 2720 issue: 10 year: 2015 ident: 2907_CR36 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2014.2358556 – volume: 65 start-page: 46 year: 2016 ident: 2907_CR78 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2016.06.006 – volume-title: Hadoop: the definitive guide year: 2009 ident: 2907_CR14 – ident: 2907_CR28 doi: 10.1109/BigData.2014.7004322 – ident: 2907_CR22 doi: 10.1007/978-3-319-61176-1_4 – volume: 46 start-page: 1 issue: 3 year: 2014 ident: 2907_CR17 publication-title: ACM Comput Surv – volume: 38 start-page: 1109 year: 2016 ident: 2907_CR50 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.04.039 – ident: 2907_CR19 – volume: 46 start-page: 1 year: 2014 ident: 2907_CR4 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2014.07.022 – volume: 20 start-page: 1 year: 2016 ident: 2907_CR32 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2016.05.001 – volume: 9 start-page: 84 issue: 1 year: 2016 ident: 2907_CR20 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2015.2453973 – volume: 50 start-page: 166 year: 2016 ident: 2907_CR80 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2015.06.013 – volume: 73 start-page: 782 issue: 2 year: 2017 ident: 2907_CR40 publication-title: J Supercomput doi: 10.1007/s11227-016-1797-5 – volume-title: Expert Hadoop administration: managing, tuning, and securing spark, YARN, and HDFS year: 2016 ident: 2907_CR21 – volume: 25 start-page: 602 issue: 3 year: 2014 ident: 2907_CR69 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2013.59 – ident: 2907_CR42 doi: 10.1145/2602044.2602061 – volume: 28 start-page: 798 issue: 3 year: 2017 ident: 2907_CR75 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2016.2587641 – volume: 73 start-page: 3526 issue: 8 year: 2017 ident: 2907_CR39 publication-title: J Supercomput doi: 10.1007/s11227-016-1653-7 – volume: 275 start-page: 314 year: 2014 ident: 2907_CR6 publication-title: Inf Sci doi: 10.1016/j.ins.2014.01.015 – volume: 28 start-page: 1649 issue: 6 year: 2017 ident: 2907_CR71 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2016.2587645 – volume: 54 start-page: 219 year: 2016 ident: 2907_CR37 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2015.01.005 – volume: 60 start-page: 69 year: 2016 ident: 2907_CR61 publication-title: Inf Syst doi: 10.1016/j.is.2016.03.008 – ident: 2907_CR88 doi: 10.1145/2714576.2714624 – volume: 71 start-page: 1657 issue: 5 year: 2015 ident: 2907_CR47 publication-title: J Supercomput doi: 10.1007/s11227-014-1286-7 – volume: 72 start-page: 2376 issue: 6 year: 2016 ident: 2907_CR81 publication-title: J Supercomput doi: 10.1007/s11227-016-1737-4 – ident: 2907_CR30 doi: 10.1109/CONFLUENCE.2016.7508142 – volume: 112 start-page: 65 year: 2016 ident: 2907_CR15 publication-title: J Syst Softw doi: 10.1016/j.jss.2015.11.001 – volume: 72 start-page: 2059 issue: 6 year: 2016 ident: 2907_CR56 publication-title: J Supercomput doi: 10.1007/s11227-014-1335-2 – volume: 48 start-page: 36 issue: 1 year: 2017 ident: 2907_CR23 publication-title: Int J Comput Trends Technol doi: 10.14445/22312803/IJCTT-V48P109 – volume-title: Security recommendations for Hadoop environments year: 2016 ident: 2907_CR92 – ident: 2907_CR35 doi: 10.1007/978-3-319-48671-0_27 – volume: 109 start-page: 389 issue: 1 year: 2016 ident: 2907_CR2 publication-title: Scientometrics doi: 10.1007/s11192-016-1945-y – ident: 2907_CR13 doi: 10.1109/MSST.2010.5496972 – volume: 65 start-page: 2603 issue: 8 year: 2016 ident: 2907_CR59 publication-title: IEEE Trans Comput doi: 10.1109/TC.2015.2485230 – volume: 11 start-page: 146 issue: 14 year: 2014 ident: 2907_CR31 publication-title: China Commun doi: 10.1109/CC.2014.7085615 – ident: 2907_CR41 doi: 10.1007/978-3-319-64203-1_28 – volume: 43 start-page: 51 year: 2015 ident: 2907_CR51 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2014.08.011 – ident: 2907_CR85 doi: 10.1145/3078861.3084173 – ident: 2907_CR25 doi: 10.5281/zenodo.165773 – volume: 77 start-page: 1 issue: 8 year: 2017 ident: 2907_CR54 publication-title: Multimed Tools Appl – ident: 2907_CR93 – ident: 2907_CR12 – volume: 26 start-page: 997 issue: 4 year: 2015 ident: 2907_CR70 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2014.2316829 – volume: 18 start-page: 1131 issue: 6 year: 2016 ident: 2907_CR27 publication-title: Inf Syst Front doi: 10.1007/s10796-016-9628-z – ident: 2907_CR60 – volume: 18 start-page: 1157 issue: 3 year: 2015 ident: 2907_CR64 publication-title: Cluster Comput doi: 10.1007/s10586-015-0467-3 – ident: 2907_CR8 – volume: 65 start-page: 3304 issue: 11 year: 2016 ident: 2907_CR58 publication-title: IEEE Trans Comput doi: 10.1109/TC.2016.2532860 – volume: 13 start-page: 587 issue: 4 year: 2015 ident: 2907_CR82 publication-title: J Grid Comput doi: 10.1007/s10723-015-9350-y – volume: 27 start-page: 441 issue: 2 year: 2016 ident: 2907_CR89 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2015.2405552 – ident: 2907_CR91 doi: 10.1145/3131704.3131708 – volume: 134 start-page: 170 year: 2017 ident: 2907_CR10 publication-title: J Syst Softw doi: 10.1016/j.jss.2017.09.001 – volume: 74 start-page: 208 year: 2017 ident: 2907_CR46 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2016.02.015 – volume: 27 start-page: 818 issue: 3 year: 2016 ident: 2907_CR73 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2015.2419671 – volume: 9 start-page: 4 issue: 1 year: 2016 ident: 2907_CR65 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2015.2426186 – volume: 64 start-page: 1 year: 2015 ident: 2907_CR24 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2015.03.007 – ident: 2907_CR29 doi: 10.1109/CONFLUENCE.2014.6949381 – volume: 28 start-page: 1375 issue: 5 year: 2017 ident: 2907_CR49 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2016.2617324 – volume: 5 start-page: 7156 year: 2017 ident: 2907_CR84 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2700228 – volume: 26 start-page: 2520 issue: 9 year: 2015 ident: 2907_CR57 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2014.2350972 – ident: 2907_CR53 doi: 10.1145/1755913.1755940 – volume: 24 start-page: 859 issue: 4 year: 2016 ident: 2907_CR63 publication-title: J Netw Syst Manag doi: 10.1007/s10922-015-9362-8 – volume: 44 start-page: 832 issue: 4 year: 2016 ident: 2907_CR33 publication-title: Int J Parallel Prog doi: 10.1007/s10766-015-0395-0 – ident: 2907_CR79 – volume: 10 start-page: 471 issue: 2 year: 2016 ident: 2907_CR48 publication-title: IEEE Syst J doi: 10.1109/JSYST.2014.2323112 – volume: 51 start-page: 286 year: 2016 ident: 2907_CR62 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.12.024 – ident: 2907_CR9 – ident: 2907_CR72 doi: 10.1145/3220192.3220193 – ident: 2907_CR34 – volume: 19 start-page: 171 issue: 2 year: 2014 ident: 2907_CR7 publication-title: Mob Netw Appl doi: 10.1007/s11036-013-0489-0 – volume: 3 start-page: 19 issue: 1 year: 2016 ident: 2907_CR18 publication-title: J Big Data doi: 10.1186/s40537-016-0051-6 – volume: 63 start-page: 954 issue: 4 year: 2014 ident: 2907_CR74 publication-title: IEEE Trans Comput doi: 10.1109/TC.2013.15 – volume: 18 start-page: 1011 issue: 3 year: 2015 ident: 2907_CR55 publication-title: Cluster Comput doi: 10.1007/s10586-015-0454-8 – ident: 2907_CR86 |
| SSID | ssj0004373 |
| Score | 2.2623582 |
| Snippet | In the current decade, doing the search on massive data to find “hidden” and valuable information within it is growing. This search can result in heavy... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6934 |
| SubjectTerms | Compilers Computer Science Data search Fault tolerance Infrastructure Interpreters Parallel processing Parallel programming Processor Architectures Programming Languages Provisioning Resource allocation Task scheduling |
| Title | MapReduce: an infrastructure review and research insights |
| URI | https://link.springer.com/article/10.1007/s11227-019-02907-5 https://www.proquest.com/docview/2302605592 |
| Volume | 75 |
| WOSCitedRecordID | wos000492960000029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509eDF9Ymrq_TgTQNNk5jEm4iLB11kfbC3kiZZFKQu29Xfb5KmFkUFPWc6lHlkZsjMNwCH6QRn2oVmpApqEbUFQ4XvsrDYp7ucMmICuv4VHw7FeCxv4lBY1XS7N0-S4aZuh91wlvk2SYkcs5QjtghLLtwJ746j24d2GpLU78rSFUaC0SyOynzP43M4anPML8-iIdoMuv_7zzVYjdllclabwzos2HIDus3mhiQ68ibIazUdedBWe5qoMnFWNlM1kuzrzCb1OIs7MEnEAnp0JJUv46stuB9c3J1forhEAWlywueoUIQUWBRGaIytTI2QE20snghKqDCKEWmU5hZrznSqM-083rq0JBXKuvhPyDZ0ypfS7kAiFBeGcg_y56pq7go1FTIEJnVKC6l6gBtZ5joijPtFF895i43sZZM72eRBNjnrwdHHN9MaX-NX6n6jojz6WpW7IsoXZUxmPThuVNIe_8xt92_ke7CSea2GTr4-dJxW7D4s67f5UzU7CDb4DkJI0mw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CnqxPrFadQ_eNLDZJCbxJmKp2BapVXoL2WyKgqylW_39JvtwUVTQc2aHZR6ZGTLzDcBxOMGRcaEZ6ZhaRG3MUOy7LCz26S6njCQ5un6PDwZiPJa35VBYVnW7V0-S-U1dD7vhKPJtkhI5ZiFHbBGWqItYvpFvePdQT0OS4l1ZusJIMBqVozLf8_gcjuoc88uzaB5tOs3__ec6rJXZZXBRmMMGLNh0E5rV5oagdOQtkH09HXrQVnse6DRwVjbTBZLs68wGxTiLO0iCEgvo0ZFkvozPtuG-czW67KJyiQIy5IzPUawJibGIE2EwtjJMhJyYxOKJoISKRDMiE224xYYzE5rIOI-3Li0JhbYu_hOyA430JbW7EAjNRUK5B_lzVTV3hZrOMwQmTUhjqVuAK1kqUyKM-0UXz6rGRvayUU42KpeNYi04-fhmWuBr_ErdrlSkSl_LlCuifFHGZNSC00ol9fHP3Pb-Rn4EK91Rv6d614ObfViNvIbzrr42NJyG7AEsm7f5UzY7zO3xHSij1VA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60inixPrFadQ_eNLjZJCbxJmpRrKX4orclm2RRkLW01d9vsg9XRQXxnGxYZiaZ-ZiZbwB2wxRH2rlmpBJqEbUJQ4mvsrDYh7ucMmJydv0u7_XEYCD7H7r482r3KiVZ9DR4lqZscjA06UHd-IajyJdMSuQODjli0zBD_dAgj9dv7uvOSFLkmKUDSYLRqGyb-f6Mz66pjje_pEhzz9Np_v-fF2GhjDqD48JMlmDKZsvQrCY6BOUFXwF5pYbXnszVHgUqC5z1jVTBMPsyskHR5uIWTFByBD24LWMP78ercNc5uz05R-VwBaTJIZ-gRBGSYJEYoTG2MjRCptpYnApKqDCKEWmU5hZrznSoI-1eAuvClVAo6-ICQtagkT1ndh0CobgwlHvyP4e2uQNwKo8cmNQhTaRqAa7kGuuSedwPwHiKa85kL5vYySbOZROzFuy9fzMseDd-3d2u1BWXd3AcO3DlwRqTUQv2K_XUyz-ftvG37Tsw1z_txN2L3uUmzEdewXmxXxsaTkF2C2b16-RxPNrOTfMNvlXeNA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MapReduce%3A+an+infrastructure+review+and+research+insights&rft.jtitle=The+Journal+of+supercomputing&rft.au=Maleki%2C+Neda&rft.au=Rahmani%2C+Amir+Masoud&rft.au=Conti%2C+Mauro&rft.date=2019-10-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=75&rft.issue=10&rft.spage=6934&rft.epage=7002&rft_id=info:doi/10.1007%2Fs11227-019-02907-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_019_02907_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |