HumanLight: Incentivizing ridesharing via human-centric deep reinforcement learning in traffic signal control

Single occupancy vehicles are the most attractive transportation alternative for many commuters, leading to increased traffic congestion and air pollution. Advancements in information technologies create opportunities for smart solutions that incentivize ridesharing and mode shift to higher occupanc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Transportation research. Part C, Emerging technologies Ročník 162; s. 104593
Hlavní autoři: Vlachogiannis, Dimitris M., Wei, Hua, Moura, Scott, Macfarlane, Jane
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.05.2024
Elsevier
Témata:
ISSN:0968-090X, 1879-2359
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Single occupancy vehicles are the most attractive transportation alternative for many commuters, leading to increased traffic congestion and air pollution. Advancements in information technologies create opportunities for smart solutions that incentivize ridesharing and mode shift to higher occupancy vehicles (HOVs) to achieve the car lighter vision of cities. In this study, we present HumanLight, a novel decentralized adaptive traffic signal control algorithm designed to optimize people throughput at intersections. Our proposed controller is founded on reinforcement learning with the reward function embedding the transportation-inspired concept of pressure at the person-level. By rewarding HOV commuters with travel time savings for their efforts to merge into a single ride, HumanLight achieves equitable allocation of green times. Apart from adopting FRAP, a state-of-the-art (SOTA) base model, HumanLight introduces the concept of active vehicles, loosely defined as vehicles in proximity to the intersection within the action interval window. The proposed algorithm showcases significant headroom and scalability in different network configurations considering multimodal vehicle splits at various scenarios of HOV adoption. Improvements in person delays and queues range from 15% to over 55% compared to vehicle-level SOTA controllers. We quantify the impact of incorporating active vehicles in the formulation of our RL model for different network structures. HumanLight also enables regulation of the aggressiveness of the HOV prioritization. The impact of parameter setting on the generated phase profile is investigated as a key component of acyclic signal controllers affecting pedestrian waiting times. HumanLight’s scalable, decentralized design can reshape the resolution of traffic management to be more human-centric and empower policies that incentivize ridesharing and public transit systems. [Display omitted] •HumanLight is the first scalable human-centric RL-based adaptive signal controller.•Scalability is enabled from the decentralized design and algorithmic formulation.•HumanLight can democratize urban traffic by equitably allocating green times.•Active vehicles are proposed to handle the variance in occupancy of multimodal traffic.•HumanLight offers policymakers control of the aggressiveness in HOV prioritization.
AbstractList Single occupancy vehicles are the most attractive transportation alternative for many commuters, leading to increased traffic congestion and air pollution. Advancements in information technologies create opportunities for smart solutions that incentivize ridesharing and mode shift to higher occupancy vehicles (HOVs) to achieve the car lighter vision of cities. In this study, we present HumanLight, a novel decentralized adaptive traffic signal control algorithm designed to optimize people throughput at intersections. Our proposed controller is founded on reinforcement learning with the reward function embedding the transportation-inspired concept of pressure at the person-level. By rewarding HOV commuters with travel time savings for their efforts to merge into a single ride, HumanLight achieves equitable allocation of green times. Apart from adopting FRAP, a state-of-the-art (SOTA) base model, HumanLight introduces the concept of active vehicles, loosely defined as vehicles in proximity to the intersection within the action interval window. The proposed algorithm showcases significant headroom and scalability in different network configurations considering multimodal vehicle splits at various scenarios of HOV adoption. Improvements in person delays and queues range from 15% to over 55% compared to vehicle-level SOTA controllers. We quantify the impact of incorporating active vehicles in the formulation of our RL model for different network structures. HumanLight also enables regulation of the aggressiveness of the HOV prioritization. The impact of parameter setting on the generated phase profile is investigated as a key component of acyclic signal controllers affecting pedestrian waiting times. HumanLight’s scalable, decentralized design can reshape the resolution of traffic management to be more human-centric and empower policies that incentivize ridesharing and public transit systems.
Single occupancy vehicles are the most attractive transportation alternative for many commuters, leading to increased traffic congestion and air pollution. Advancements in information technologies create opportunities for smart solutions that incentivize ridesharing and mode shift to higher occupancy vehicles (HOVs) to achieve the car lighter vision of cities. In this study, we present HumanLight, a novel decentralized adaptive traffic signal control algorithm designed to optimize people throughput at intersections. Our proposed controller is founded on reinforcement learning with the reward function embedding the transportation-inspired concept of pressure at the person-level. By rewarding HOV commuters with travel time savings for their efforts to merge into a single ride, HumanLight achieves equitable allocation of green times. Apart from adopting FRAP, a state-of-the-art (SOTA) base model, HumanLight introduces the concept of active vehicles, loosely defined as vehicles in proximity to the intersection within the action interval window. The proposed algorithm showcases significant headroom and scalability in different network configurations considering multimodal vehicle splits at various scenarios of HOV adoption. Improvements in person delays and queues range from 15% to over 55% compared to vehicle-level SOTA controllers. We quantify the impact of incorporating active vehicles in the formulation of our RL model for different network structures. HumanLight also enables regulation of the aggressiveness of the HOV prioritization. The impact of parameter setting on the generated phase profile is investigated as a key component of acyclic signal controllers affecting pedestrian waiting times. HumanLight’s scalable, decentralized design can reshape the resolution of traffic management to be more human-centric and empower policies that incentivize ridesharing and public transit systems. [Display omitted] •HumanLight is the first scalable human-centric RL-based adaptive signal controller.•Scalability is enabled from the decentralized design and algorithmic formulation.•HumanLight can democratize urban traffic by equitably allocating green times.•Active vehicles are proposed to handle the variance in occupancy of multimodal traffic.•HumanLight offers policymakers control of the aggressiveness in HOV prioritization.
ArticleNumber 104593
Author Moura, Scott
Wei, Hua
Macfarlane, Jane
Vlachogiannis, Dimitris M.
Author_xml – sequence: 1
  givenname: Dimitris M.
  orcidid: 0000-0001-5486-0274
  surname: Vlachogiannis
  fullname: Vlachogiannis, Dimitris M.
  email: d.vlachogiannis@berkeley.edu
  organization: Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, 94720, CA, United States
– sequence: 2
  givenname: Hua
  orcidid: 0000-0002-3735-1635
  surname: Wei
  fullname: Wei, Hua
  organization: Department of Informatics, Ying Wu College of Computing, New Jersey Institute of Technology, Suite 5700 University Heights, Newark 07102, NJ, United States
– sequence: 3
  givenname: Scott
  orcidid: 0000-0002-6393-4375
  surname: Moura
  fullname: Moura, Scott
  organization: Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, 94720, CA, United States
– sequence: 4
  givenname: Jane
  orcidid: 0000-0002-4683-5447
  surname: Macfarlane
  fullname: Macfarlane, Jane
  email: janemacfarlane@berkeley.edu
  organization: Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, 94720, CA, United States
BackLink https://www.osti.gov/biblio/2335413$$D View this record in Osti.gov
BookMark eNp9kE1LAzEURYNUsH78AHeD-6nJzGTS6EpErVBwo-AuZDIv7SvTTEliQX-9CXXloqt8cM7jvntOJm50QMg1ozNGWXu7mUVvZhWtmvRuuKxPyJTNhSyrmssJmVLZzksq6ecZOQ9hQyllkosp2S6-ttotcbWOd8WrM-Ai7vEH3arw2ENYa5_ve9TFOpNlJjyaogfYFR7Q2dEb2KbfYgDtXabRFdFraxMWcOX0UJgxWeNwSU6tHgJc_Z0X5OP56f1xUS7fXl4fH5alqVsRy27ecaiMgErQrq8Nb-YWODCtmTCdYVXbdW0lLJcUmGG2aWQrmW45FZIZK-sLcnOYO4aIKhiMYNYpgwMTVVXXvGF1gsQBMn4MwYNVidMRc1SNg2JU5WrVRqVqVa5WHapNJvtn7jxutf8-6twfHEh77xF8jgWp8B59TtWPeMT-BbvEldg
CitedBy_id crossref_primary_10_3390_vehicles7030072
crossref_primary_10_1016_j_chaos_2025_117024
crossref_primary_10_1080_03081060_2025_2457030
crossref_primary_10_1016_j_procs_2023_11_089
crossref_primary_10_1093_iti_liaf009
crossref_primary_10_3390_electronics14081664
crossref_primary_10_1007_s11831_025_10311_x
Cites_doi 10.1080/01441647.2015.1005034
10.1109/ACCESS.2020.3034141
10.1016/j.trc.2017.09.020
10.1007/BF02125334
10.1109/TITS.2013.2255286
10.1016/j.trc.2013.08.014
10.1016/j.trc.2022.103814
10.1609/aaai.v34i04.5744
10.3141/2487-07
10.1007/978-3-319-25808-9_4
10.1016/j.trc.2014.12.005
10.1145/3357384.3357900
10.1109/MIC.2020.3018038
10.1109/TITS.2019.2901791
10.3141/2259-18
10.1016/j.trc.2023.104112
10.1145/3068287
10.1016/j.ijtst.2020.03.002
10.1145/3357384.3357902
10.1145/3308558.3314139
10.1016/j.knosys.2019.07.026
10.1145/3219819.3220096
10.1016/j.ifacol.2016.10.366
10.1016/j.trc.2015.11.009
10.1080/01441647.2018.1497728
10.3141/2620-04
10.1049/iet-its.2009.0070
10.1109/TITS.2022.3179893
10.1109/TITS.2013.2259623
10.1145/3292500.3330949
10.1016/j.tranpol.2016.01.003
10.1002/wcm.859
10.1609/aaai.v32i1.11694
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID 6I.
AAFTH
AAYXX
CITATION
OTOTI
DOI 10.1016/j.trc.2024.104593
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
ExternalDocumentID 2335413
10_1016_j_trc_2024_104593
S0968090X24001141
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
OTOTI
ID FETCH-LOGICAL-c367t-b8b5e2c7e270bd3c548fe5e1aa17cbc126bb627f590e1c1f449691a650791cf93
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001225456800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0968-090X
IngestDate Thu Nov 27 01:46:40 EST 2025
Tue Nov 18 22:01:45 EST 2025
Sat Nov 29 03:01:11 EST 2025
Sat May 04 15:43:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Decentralized adaptive control
Deep reinforcement learning
Multimodal traffic environment
Ridesharing
Person-based traffic signal control
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-b8b5e2c7e270bd3c548fe5e1aa17cbc126bb627f590e1c1f449691a650791cf93
Notes AC02-05CH11231
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO)
ORCID 0000-0002-4683-5447
0000-0002-3735-1635
0000-0002-6393-4375
0000-0001-5486-0274
0000000263934375
0000000154860274
0000000237351635
0000000246835447
OpenAccessLink https://dx.doi.org/10.1016/j.trc.2024.104593
ParticipantIDs osti_scitechconnect_2335413
crossref_citationtrail_10_1016_j_trc_2024_104593
crossref_primary_10_1016_j_trc_2024_104593
elsevier_sciencedirect_doi_10_1016_j_trc_2024_104593
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chen, C., Wei, H., Xu, N., Zheng, G., Yang, M., Xiong, Y., Xu, K., Li, Z., 2020. Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal control. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34, pp. 3414–3421.
Oroojlooy, Nazari, Hajinezhad, Silva (b36) 2020; 33
Christofa, Papamichail, Skabardonis (b9) 2013; 14
Aslani, Mesgari, Wiering (b2) 2017; 85
Long, Zou, Zhou, Chung (b30) 2022; 142
Wei, Zheng, Gayah, Li (b57) 2019
Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D., 2018. Deep reinforcement learning that matters. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32, pp. 3207–3214.
Cohen, Fiszer, Ratzon, Sasson (b12) 2021
Arel, Liu, Urbanik, Kohls (b1) 2010; 4
Kanis, Samson, Bloembergen, Bakker (b25) 2021
Vlachogiannis, Moura, Macfarlane (b52) 2023; 151
Shabestary, Abdulhai (b42) 2018
Diab, Badami, El-Geneidy (b15) 2015; 35
Cowan, Monteleone, Bellisario (b14) 2021
Bakker, Whiteson, Kester, Groen (b3) 2010
Bardaka, Hajibabai, Singh (b4) 2020; 24
Wei, H., Xu, N., Zhang, H., Zheng, G., Zang, X., Chen, C., Zhang, W., Zhu, Y., Xu, K., Li, Z., 2019b. Colight: Learning network-level cooperation for traffic signal control. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. pp. 1913–1922.
Vlachogiannis, Vlahogianni, Golias (b53) 2020; 9
Chan, Wang, Bachan, Macfarlane (b6) 2018
Lioris, Kurzhanskiy, Varaiya (b29) 2016; 49
Sutton, Barto (b47) 2018
Christofa, Ampountolas, Skabardonis (b8) 2016; 66
Kuyer, Whiteson, Bakker, Vlassis (b27) 2008
Salkham, Cahill (b40) 2010
Varaiya (b50) 2013; 36
Gershenson (b21) 2004
Chu, Wang, Codecà, Li (b11) 2019; 21
Shaheen, Chan, Gaynor (b45) 2016; 51
Viegas, Martinez, Crist, Masterson (b51) 2016
Zhang, H., Feng, S., Liu, C., Ding, Y., Zhu, Y., Zhou, Z., Zhang, W., Yu, Y., Jin, H., Li, Z., 2019. Cityflow: A multi-agent reinforcement learning environment for large scale city traffic scenario. In: The World Wide Web Conference. pp. 3620–3624.
Rasheed, Yau, Noor, Wu, Low (b38) 2020; 8
Wei, H., Chen, C., Zheng, G., Wu, K., Gayah, V., Xu, K., Li, Z., 2019a. Presslight: Learning max pressure control to coordinate traffic signals in arterial network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 1290–1298.
Wei, H., Zheng, G., Yao, H., Li, Z., 2018. Intellilight: A reinforcement learning approach for intelligent traffic light control. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 2496–2505.
Zhang, Wu, Shen, Lü, Du, Wu (b65) 2022
Giuliano, Levine, Teal (b22) 1990; 17
Yu, Gayah, Christofa (b61) 2017; 2620
Yang, Yang, Wong, Kang (b59) 2019; 183
Malalgoda, Lim (b31) 2019; 130
Casas (b5) 2017
Zeng, Sun, Zhang, Quadrifoglio (b63) 2015; 2487
Hu, Park, Lee (b24) 2015; 55
Van der Pol, E., Oliehoek, F.A., 2016. Coordinated deep reinforcement learners for traffic light control. In: Proceedings of Learning, Inference and Control of Multi-Agent Systems (at NIPS 2016). Vol. 8, pp. 21–38.
Schank, Huang (b41) 2022
Urbanik, Tanaka, Lozner, Lindstrom, Lee, Quayle, Beaird, Tsoi, Ryus, Gettman (b49) 2015
Mei, Lei, Da, Shi, Wei (b34) 2022
El-Tantawy, Abdulhai (b18) 2010
Mannion, Duggan, Howley (b32) 2016
Zheng, G., Xiong, Y., Zang, X., Feng, J., Wei, H., Zhang, H., Li, Y., Xu, K., Li, Z., 2019. Learning phase competition for traffic signal control. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. pp. 1963–1972.
Dietterich (b16) 1998; Vol. 98
Martinez, Toh, Cano, Calafate, Manzoni (b33) 2011; 11
United States Department of Transportation (b48) 2021
Lazarus, Caicedo, Bayen, Shaheen (b28) 2021; 148
Shabestary, Abdulhai (b43) 2022; 23
Shabestray, Abdulhai (b44) 2019
Wang, Ma, Dong, Wang (b54) 2022
Christofa, Skabardonis (b10) 2011; 2259
Nishi, Otaki, Hayakawa, Yoshimura (b35) 2018
Roess, Prassas, McShane (b39) 2004
Farid, Christofa (b20) 2017
Du, Ye, Gu, Li, Wei, Wang (b17) 2022
Yu, Gayah, Christofa (b62) 2018
Cools, Gershenson, D’Hooghe (b13) 2013
Shaheen, Cohen (b46) 2019; 39
Koonce, Rodegerdts (b26) 2008
Yau, Qadir, Khoo, Ling, Komisarczuk (b60) 2017; 50
El-Tantawy, Abdulhai, Abdelgawad (b19) 2013; 14
Shabestary (10.1016/j.trc.2024.104593_b42) 2018
Hu (10.1016/j.trc.2024.104593_b24) 2015; 55
Cowan (10.1016/j.trc.2024.104593_b14) 2021
10.1016/j.trc.2024.104593_b37
Urbanik (10.1016/j.trc.2024.104593_b49) 2015
Christofa (10.1016/j.trc.2024.104593_b10) 2011; 2259
Yau (10.1016/j.trc.2024.104593_b60) 2017; 50
Kanis (10.1016/j.trc.2024.104593_b25) 2021
Zeng (10.1016/j.trc.2024.104593_b63) 2015; 2487
Zhang (10.1016/j.trc.2024.104593_b65) 2022
Cohen (10.1016/j.trc.2024.104593_b12) 2021
Rasheed (10.1016/j.trc.2024.104593_b38) 2020; 8
Varaiya (10.1016/j.trc.2024.104593_b50) 2013; 36
Lioris (10.1016/j.trc.2024.104593_b29) 2016; 49
Yu (10.1016/j.trc.2024.104593_b62) 2018
Chu (10.1016/j.trc.2024.104593_b11) 2019; 21
Aslani (10.1016/j.trc.2024.104593_b2) 2017; 85
Kuyer (10.1016/j.trc.2024.104593_b27) 2008
Vlachogiannis (10.1016/j.trc.2024.104593_b52) 2023; 151
Martinez (10.1016/j.trc.2024.104593_b33) 2011; 11
El-Tantawy (10.1016/j.trc.2024.104593_b18) 2010
Gershenson (10.1016/j.trc.2024.104593_b21) 2004
Roess (10.1016/j.trc.2024.104593_b39) 2004
Yu (10.1016/j.trc.2024.104593_b61) 2017; 2620
Bardaka (10.1016/j.trc.2024.104593_b4) 2020; 24
Giuliano (10.1016/j.trc.2024.104593_b22) 1990; 17
Mei (10.1016/j.trc.2024.104593_b34) 2022
Wang (10.1016/j.trc.2024.104593_b54) 2022
Chan (10.1016/j.trc.2024.104593_b6) 2018
Salkham (10.1016/j.trc.2024.104593_b40) 2010
Christofa (10.1016/j.trc.2024.104593_b8) 2016; 66
Lazarus (10.1016/j.trc.2024.104593_b28) 2021; 148
10.1016/j.trc.2024.104593_b55
10.1016/j.trc.2024.104593_b56
Christofa (10.1016/j.trc.2024.104593_b9) 2013; 14
Shabestray (10.1016/j.trc.2024.104593_b44) 2019
10.1016/j.trc.2024.104593_b58
Oroojlooy (10.1016/j.trc.2024.104593_b36) 2020; 33
Cools (10.1016/j.trc.2024.104593_b13) 2013
Malalgoda (10.1016/j.trc.2024.104593_b31) 2019; 130
United States Department of Transportation (10.1016/j.trc.2024.104593_b48) 2021
Long (10.1016/j.trc.2024.104593_b30) 2022; 142
Koonce (10.1016/j.trc.2024.104593_b26) 2008
Bakker (10.1016/j.trc.2024.104593_b3) 2010
Shaheen (10.1016/j.trc.2024.104593_b45) 2016; 51
10.1016/j.trc.2024.104593_b7
10.1016/j.trc.2024.104593_b64
10.1016/j.trc.2024.104593_b66
10.1016/j.trc.2024.104593_b23
Viegas (10.1016/j.trc.2024.104593_b51) 2016
Casas (10.1016/j.trc.2024.104593_b5) 2017
El-Tantawy (10.1016/j.trc.2024.104593_b19) 2013; 14
Farid (10.1016/j.trc.2024.104593_b20) 2017
Schank (10.1016/j.trc.2024.104593_b41) 2022
Shabestary (10.1016/j.trc.2024.104593_b43) 2022; 23
Yang (10.1016/j.trc.2024.104593_b59) 2019; 183
Diab (10.1016/j.trc.2024.104593_b15) 2015; 35
Nishi (10.1016/j.trc.2024.104593_b35) 2018
Vlachogiannis (10.1016/j.trc.2024.104593_b53) 2020; 9
Arel (10.1016/j.trc.2024.104593_b1) 2010; 4
Dietterich (10.1016/j.trc.2024.104593_b16) 1998; Vol. 98
Wei (10.1016/j.trc.2024.104593_b57) 2019
Shaheen (10.1016/j.trc.2024.104593_b46) 2019; 39
Sutton (10.1016/j.trc.2024.104593_b47) 2018
Mannion (10.1016/j.trc.2024.104593_b32) 2016
Du (10.1016/j.trc.2024.104593_b17) 2022
References_xml – year: 2010
  ident: b3
  article-title: Traffic Light Control by Multiagent Reinforcement Learning Systems
– start-page: 656
  year: 2008
  end-page: 671
  ident: b27
  article-title: Multiagent reinforcement learning for urban traffic control using coordination graphs
  publication-title: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part I 19
– year: 2015
  ident: b49
  publication-title: Signal Timing Manual
– start-page: 47
  year: 2016
  end-page: 66
  ident: b32
  article-title: An experimental review of reinforcement learning algorithms for adaptive traffic signal control
  publication-title: Auton. Road Transp. Support Syst.
– volume: 130
  start-page: 351
  year: 2019
  end-page: 372
  ident: b31
  article-title: Do transportation network companies reduce public transit use in the US?
  publication-title: Transp. Res. A
– start-page: 634
  year: 2018
  end-page: 641
  ident: b6
  article-title: Mobiliti: Scalable transportation simulation using high-performance parallel computing
  publication-title: 2018 21st International Conference on Intelligent Transportation Systems
– volume: 23
  start-page: 20021
  year: 2022
  end-page: 20035
  ident: b43
  article-title: Adaptive traffic signal control with deep reinforcement learning and high dimensional sensory inputs: Case study and comprehensive sensitivity analyses
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 142
  year: 2022
  ident: b30
  article-title: Deep reinforcement learning for transit signal priority in a connected environment
  publication-title: Transp. Res. C
– start-page: 4532
  year: 2019
  end-page: 4539
  ident: b44
  article-title: Multimodal intelligent deep (mind) traffic signal controller
  publication-title: 2019 IEEE Intelligent Transportation Systems Conference
– volume: 51
  start-page: 165
  year: 2016
  end-page: 173
  ident: b45
  article-title: Casual carpooling in the san Francisco Bay Area: Understanding user characteristics, behaviors, and motivations
  publication-title: Transp. Policy
– start-page: 20
  year: 2018
  end-page: 25
  ident: b62
  article-title: Implementing phase rotation in a person-based signal timing optimization framework
  publication-title: 2018 21st International Conference on Intelligent Transportation Systems
– year: 2022
  ident: b41
  article-title: Microtransit: A Good Idea Just Got Even Better
– start-page: 1
  year: 2016
  end-page: 56
  ident: b51
  article-title: Shared mobility: Innovation for liveable cities
  publication-title: International Transport Forum’s Corporate Partnership Board
– year: 2004
  ident: b39
  article-title: Traffic Engineering
– volume: 11
  start-page: 813
  year: 2011
  end-page: 828
  ident: b33
  article-title: A survey and comparative study of simulators for vehicular ad hoc networks (VANETs)
  publication-title: Wirel. Commun. Mob. Comput.
– volume: 17
  start-page: 159
  year: 1990
  end-page: 177
  ident: b22
  article-title: Impact of high occupancy vehicle lanes on carpooling behavior
  publication-title: Transportation
– volume: 36
  start-page: 177
  year: 2013
  end-page: 195
  ident: b50
  article-title: Max pressure control of a network of signalized intersections
  publication-title: Transp. Res. C
– year: 2019
  ident: b57
  article-title: A survey on traffic signal control methods
– start-page: 877
  year: 2018
  end-page: 883
  ident: b35
  article-title: Traffic signal control based on reinforcement learning with graph convolutional neural nets
  publication-title: 2018 21st International Conference on Intelligent Transportation Systems
– volume: 24
  start-page: 38
  year: 2020
  end-page: 44
  ident: b4
  article-title: Reimagining ride sharing: Efficient, equitable, sustainable public microtransit
  publication-title: IEEE Internet Comput.
– reference: Wei, H., Zheng, G., Yao, H., Li, Z., 2018. Intellilight: A reinforcement learning approach for intelligent traffic light control. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 2496–2505.
– start-page: 531
  year: 2010
  end-page: 538
  ident: b40
  article-title: Soilse: A decentralized approach to optimization of fluctuating urban traffic using reinforcement learning
  publication-title: 13th International IEEE Conference on Intelligent Transportation Systems
– volume: Vol. 98
  start-page: 118
  year: 1998
  end-page: 126
  ident: b16
  article-title: The MAXQ method for hierarchical reinforcement learning
  publication-title: ICML
– start-page: 286
  year: 2018
  end-page: 293
  ident: b42
  article-title: Deep learning vs. discrete reinforcement learning for adaptive traffic signal control
  publication-title: 2018 21st International Conference on Intelligent Transportation Systems
– year: 2017
  ident: b5
  article-title: Deep deterministic policy gradient for urban traffic light control
– start-page: 26645
  year: 2022
  end-page: 26654
  ident: b65
  article-title: Expression might be enough: representing pressure and demand for reinforcement learning based traffic signal control
  publication-title: International Conference on Machine Learning
– volume: 39
  start-page: 427
  year: 2019
  end-page: 442
  ident: b46
  article-title: Shared ride services in North America: definitions, impacts, and the future of pooling
  publication-title: Transp. Rev.
– volume: 14
  start-page: 1278
  year: 2013
  end-page: 1289
  ident: b9
  article-title: Person-based traffic responsive signal control optimization
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 8
  start-page: 208016
  year: 2020
  end-page: 208044
  ident: b38
  article-title: Deep reinforcement learning for traffic signal control: A review
  publication-title: IEEE Access
– volume: 2487
  start-page: 78
  year: 2015
  end-page: 87
  ident: b63
  article-title: Person-based adaptive priority signal control with connected-vehicle information
  publication-title: Transp. Res. Rec.
– start-page: 45
  year: 2013
  end-page: 55
  ident: b13
  article-title: Self-organizing traffic lights: A realistic simulation
  publication-title: Advances in Applied Self-Organizing Systems
– volume: 85
  start-page: 732
  year: 2017
  end-page: 752
  ident: b2
  article-title: Adaptive traffic signal control with actor-critic methods in a real-world traffic network with different traffic disruption events
  publication-title: Transp. Res. C
– reference: Wei, H., Xu, N., Zhang, H., Zheng, G., Zang, X., Chen, C., Zhang, W., Zhu, Y., Xu, K., Li, Z., 2019b. Colight: Learning network-level cooperation for traffic signal control. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. pp. 1913–1922.
– volume: 2259
  start-page: 192
  year: 2011
  end-page: 201
  ident: b10
  article-title: Traffic signal optimization with application of transit signal priority to an isolated intersection
  publication-title: Transp. Res. Rec.
– volume: 151
  year: 2023
  ident: b52
  article-title: Intersense: An xgboost model for traffic regulator identification at intersections through crowdsourced GPS data
  publication-title: Transp. Res. C
– volume: 148
  start-page: 199
  year: 2021
  end-page: 222
  ident: b28
  article-title: To pool or not to pool? Understanding opportunities, challenges, and equity considerations to expanding the market for pooling
  publication-title: Transp. Res. A
– volume: 33
  start-page: 4079
  year: 2020
  end-page: 4090
  ident: b36
  article-title: Attendlight: Universal attention-based reinforcement learning model for traffic signal control
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Chen, C., Wei, H., Xu, N., Zheng, G., Yang, M., Xiong, Y., Xu, K., Li, Z., 2020. Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal control. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34, pp. 3414–3421.
– volume: 50
  start-page: 1
  year: 2017
  end-page: 38
  ident: b60
  article-title: A survey on reinforcement learning models and algorithms for traffic signal control
  publication-title: ACM Comput. Surv.
– year: 2021
  ident: b25
  article-title: Back to basics: Deep reinforcement learning in traffic signal control
– year: 2008
  ident: b26
  article-title: Traffic Signal Timing Manual
– reference: Wei, H., Chen, C., Zheng, G., Wu, K., Gayah, V., Xu, K., Li, Z., 2019a. Presslight: Learning max pressure control to coordinate traffic signals in arterial network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 1290–1298.
– year: 2017
  ident: b20
  article-title: Real-Time Signal Control with Transit Priority Window: A Person-Based Approach
– volume: 49
  start-page: 19
  year: 2016
  end-page: 24
  ident: b29
  article-title: Adaptive max pressure control of network of signalized intersections
  publication-title: IFAC-PapersOnLine
– year: 2022
  ident: b34
  article-title: LibSignal: An open library for traffic signal control
– volume: 9
  start-page: 299
  year: 2020
  end-page: 308
  ident: b53
  article-title: A reinforcement learning model for personalized driving policies identification
  publication-title: Int. J. Transp. Sci. Technol.
– volume: 2620
  start-page: 31
  year: 2017
  end-page: 42
  ident: b61
  article-title: Person-based optimization of signal timing: Accounting for flexible cycle lengths and uncertain transit vehicle arrival times
  publication-title: Transp. Res. Rec.
– volume: 66
  start-page: 27
  year: 2016
  end-page: 47
  ident: b8
  article-title: Arterial traffic signal optimization: A person-based approach
  publication-title: Transp. Res. C
– start-page: 56
  year: 2021
  ident: b14
  article-title: The Megaregional Case for a New Transbay Rail Crossing
– year: 2021
  ident: b48
  article-title: Commute mode: Bureau of transportation statistics
– reference: Van der Pol, E., Oliehoek, F.A., 2016. Coordinated deep reinforcement learners for traffic light control. In: Proceedings of Learning, Inference and Control of Multi-Agent Systems (at NIPS 2016). Vol. 8, pp. 21–38.
– volume: 14
  start-page: 1140
  year: 2013
  end-page: 1150
  ident: b19
  article-title: Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC): methodology and large-scale application on downtown toronto
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 55
  start-page: 393
  year: 2015
  end-page: 408
  ident: b24
  article-title: Coordinated transit signal priority supporting transit progression under connected vehicle technology
  publication-title: Transp. Res. C
– year: 2022
  ident: b17
  article-title: SafeLight: A reinforcement learning method toward collision-free traffic signal control
– year: 2004
  ident: b21
  article-title: Self-organizing traffic lights
– start-page: 665
  year: 2010
  end-page: 670
  ident: b18
  article-title: An agent-based learning towards decentralized and coordinated traffic signal control
  publication-title: 13th International IEEE Conference on Intelligent Transportation Systems
– year: 2022
  ident: b54
  article-title: Human-centric multimodal deep (HMD) traffic signal control
  publication-title: IET Intell. Transp. Syst.
– reference: Zheng, G., Xiong, Y., Zang, X., Feng, J., Wei, H., Zhang, H., Li, Y., Xu, K., Li, Z., 2019. Learning phase competition for traffic signal control. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. pp. 1963–1972.
– volume: 4
  start-page: 128
  year: 2010
  end-page: 135
  ident: b1
  article-title: Reinforcement learning-based multi-agent system for network traffic signal control
  publication-title: IET Intell. Transp. Syst.
– year: 2018
  ident: b47
  article-title: Reinforcement Learning: An Introduction
– volume: 35
  start-page: 292
  year: 2015
  end-page: 328
  ident: b15
  article-title: Bus transit service reliability and improvement strategies: Integrating the perspectives of passengers and transit agencies in North America
  publication-title: Transp. Rev.
– reference: Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D., 2018. Deep reinforcement learning that matters. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32, pp. 3207–3214.
– reference: Zhang, H., Feng, S., Liu, C., Ding, Y., Zhu, Y., Zhou, Z., Zhang, W., Yu, Y., Jin, H., Li, Z., 2019. Cityflow: A multi-agent reinforcement learning environment for large scale city traffic scenario. In: The World Wide Web Conference. pp. 3620–3624.
– year: 2021
  ident: b12
  article-title: Incentivizing commuters to carpool: A large field experiment with waze
  publication-title: Manuf. Serv. Oper. Manage.
– volume: 21
  start-page: 1086
  year: 2019
  end-page: 1095
  ident: b11
  article-title: Multi-agent deep reinforcement learning for large-scale traffic signal control
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 183
  year: 2019
  ident: b59
  article-title: Cooperative traffic signal control using multi-step return and off-policy asynchronous advantage actor-critic graph algorithm
  publication-title: Knowl.-Based Syst.
– volume: 35
  start-page: 292
  issue: 3
  year: 2015
  ident: 10.1016/j.trc.2024.104593_b15
  article-title: Bus transit service reliability and improvement strategies: Integrating the perspectives of passengers and transit agencies in North America
  publication-title: Transp. Rev.
  doi: 10.1080/01441647.2015.1005034
– volume: 130
  start-page: 351
  year: 2019
  ident: 10.1016/j.trc.2024.104593_b31
  article-title: Do transportation network companies reduce public transit use in the US?
  publication-title: Transp. Res. A
– year: 2017
  ident: 10.1016/j.trc.2024.104593_b5
– volume: 8
  start-page: 208016
  year: 2020
  ident: 10.1016/j.trc.2024.104593_b38
  article-title: Deep reinforcement learning for traffic signal control: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3034141
– ident: 10.1016/j.trc.2024.104593_b37
– volume: 148
  start-page: 199
  year: 2021
  ident: 10.1016/j.trc.2024.104593_b28
  article-title: To pool or not to pool? Understanding opportunities, challenges, and equity considerations to expanding the market for pooling
  publication-title: Transp. Res. A
– volume: 85
  start-page: 732
  year: 2017
  ident: 10.1016/j.trc.2024.104593_b2
  article-title: Adaptive traffic signal control with actor-critic methods in a real-world traffic network with different traffic disruption events
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2017.09.020
– volume: 17
  start-page: 159
  issue: 2
  year: 1990
  ident: 10.1016/j.trc.2024.104593_b22
  article-title: Impact of high occupancy vehicle lanes on carpooling behavior
  publication-title: Transportation
  doi: 10.1007/BF02125334
– year: 2021
  ident: 10.1016/j.trc.2024.104593_b25
– year: 2019
  ident: 10.1016/j.trc.2024.104593_b57
– start-page: 20
  year: 2018
  ident: 10.1016/j.trc.2024.104593_b62
  article-title: Implementing phase rotation in a person-based signal timing optimization framework
– volume: 14
  start-page: 1140
  issue: 3
  year: 2013
  ident: 10.1016/j.trc.2024.104593_b19
  article-title: Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC): methodology and large-scale application on downtown toronto
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2255286
– start-page: 286
  year: 2018
  ident: 10.1016/j.trc.2024.104593_b42
  article-title: Deep learning vs. discrete reinforcement learning for adaptive traffic signal control
– volume: 36
  start-page: 177
  year: 2013
  ident: 10.1016/j.trc.2024.104593_b50
  article-title: Max pressure control of a network of signalized intersections
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2013.08.014
– year: 2015
  ident: 10.1016/j.trc.2024.104593_b49
– volume: 142
  year: 2022
  ident: 10.1016/j.trc.2024.104593_b30
  article-title: Deep reinforcement learning for transit signal priority in a connected environment
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2022.103814
– year: 2021
  ident: 10.1016/j.trc.2024.104593_b48
– start-page: 45
  year: 2013
  ident: 10.1016/j.trc.2024.104593_b13
  article-title: Self-organizing traffic lights: A realistic simulation
– ident: 10.1016/j.trc.2024.104593_b7
  doi: 10.1609/aaai.v34i04.5744
– volume: 2487
  start-page: 78
  issue: 1
  year: 2015
  ident: 10.1016/j.trc.2024.104593_b63
  article-title: Person-based adaptive priority signal control with connected-vehicle information
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2487-07
– start-page: 634
  year: 2018
  ident: 10.1016/j.trc.2024.104593_b6
  article-title: Mobiliti: Scalable transportation simulation using high-performance parallel computing
– start-page: 47
  year: 2016
  ident: 10.1016/j.trc.2024.104593_b32
  article-title: An experimental review of reinforcement learning algorithms for adaptive traffic signal control
  publication-title: Auton. Road Transp. Support Syst.
  doi: 10.1007/978-3-319-25808-9_4
– volume: 55
  start-page: 393
  year: 2015
  ident: 10.1016/j.trc.2024.104593_b24
  article-title: Coordinated transit signal priority supporting transit progression under connected vehicle technology
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2014.12.005
– ident: 10.1016/j.trc.2024.104593_b66
  doi: 10.1145/3357384.3357900
– volume: 24
  start-page: 38
  issue: 5
  year: 2020
  ident: 10.1016/j.trc.2024.104593_b4
  article-title: Reimagining ride sharing: Efficient, equitable, sustainable public microtransit
  publication-title: IEEE Internet Comput.
  doi: 10.1109/MIC.2020.3018038
– volume: 21
  start-page: 1086
  issue: 3
  year: 2019
  ident: 10.1016/j.trc.2024.104593_b11
  article-title: Multi-agent deep reinforcement learning for large-scale traffic signal control
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2901791
– year: 2004
  ident: 10.1016/j.trc.2024.104593_b21
– year: 2010
  ident: 10.1016/j.trc.2024.104593_b3
– year: 2008
  ident: 10.1016/j.trc.2024.104593_b26
– volume: 2259
  start-page: 192
  issue: 1
  year: 2011
  ident: 10.1016/j.trc.2024.104593_b10
  article-title: Traffic signal optimization with application of transit signal priority to an isolated intersection
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2259-18
– volume: 151
  year: 2023
  ident: 10.1016/j.trc.2024.104593_b52
  article-title: Intersense: An xgboost model for traffic regulator identification at intersections through crowdsourced GPS data
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2023.104112
– volume: 50
  start-page: 1
  issue: 3
  year: 2017
  ident: 10.1016/j.trc.2024.104593_b60
  article-title: A survey on reinforcement learning models and algorithms for traffic signal control
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3068287
– volume: 9
  start-page: 299
  issue: 4
  year: 2020
  ident: 10.1016/j.trc.2024.104593_b53
  article-title: A reinforcement learning model for personalized driving policies identification
  publication-title: Int. J. Transp. Sci. Technol.
  doi: 10.1016/j.ijtst.2020.03.002
– ident: 10.1016/j.trc.2024.104593_b56
  doi: 10.1145/3357384.3357902
– year: 2018
  ident: 10.1016/j.trc.2024.104593_b47
– ident: 10.1016/j.trc.2024.104593_b64
  doi: 10.1145/3308558.3314139
– start-page: 665
  year: 2010
  ident: 10.1016/j.trc.2024.104593_b18
  article-title: An agent-based learning towards decentralized and coordinated traffic signal control
– year: 2022
  ident: 10.1016/j.trc.2024.104593_b17
– year: 2022
  ident: 10.1016/j.trc.2024.104593_b34
– start-page: 531
  year: 2010
  ident: 10.1016/j.trc.2024.104593_b40
  article-title: Soilse: A decentralized approach to optimization of fluctuating urban traffic using reinforcement learning
– volume: 183
  year: 2019
  ident: 10.1016/j.trc.2024.104593_b59
  article-title: Cooperative traffic signal control using multi-step return and off-policy asynchronous advantage actor-critic graph algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.07.026
– year: 2022
  ident: 10.1016/j.trc.2024.104593_b54
  article-title: Human-centric multimodal deep (HMD) traffic signal control
  publication-title: IET Intell. Transp. Syst.
– ident: 10.1016/j.trc.2024.104593_b58
  doi: 10.1145/3219819.3220096
– year: 2022
  ident: 10.1016/j.trc.2024.104593_b41
– volume: 49
  start-page: 19
  issue: 22
  year: 2016
  ident: 10.1016/j.trc.2024.104593_b29
  article-title: Adaptive max pressure control of network of signalized intersections
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.10.366
– year: 2004
  ident: 10.1016/j.trc.2024.104593_b39
– volume: 66
  start-page: 27
  year: 2016
  ident: 10.1016/j.trc.2024.104593_b8
  article-title: Arterial traffic signal optimization: A person-based approach
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2015.11.009
– year: 2021
  ident: 10.1016/j.trc.2024.104593_b12
  article-title: Incentivizing commuters to carpool: A large field experiment with waze
  publication-title: Manuf. Serv. Oper. Manage.
– volume: 39
  start-page: 427
  issue: 4
  year: 2019
  ident: 10.1016/j.trc.2024.104593_b46
  article-title: Shared ride services in North America: definitions, impacts, and the future of pooling
  publication-title: Transp. Rev.
  doi: 10.1080/01441647.2018.1497728
– start-page: 26645
  year: 2022
  ident: 10.1016/j.trc.2024.104593_b65
  article-title: Expression might be enough: representing pressure and demand for reinforcement learning based traffic signal control
– volume: Vol. 98
  start-page: 118
  year: 1998
  ident: 10.1016/j.trc.2024.104593_b16
  article-title: The MAXQ method for hierarchical reinforcement learning
– volume: 2620
  start-page: 31
  issue: 1
  year: 2017
  ident: 10.1016/j.trc.2024.104593_b61
  article-title: Person-based optimization of signal timing: Accounting for flexible cycle lengths and uncertain transit vehicle arrival times
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2620-04
– start-page: 1
  year: 2016
  ident: 10.1016/j.trc.2024.104593_b51
  article-title: Shared mobility: Innovation for liveable cities
– volume: 4
  start-page: 128
  issue: 2
  year: 2010
  ident: 10.1016/j.trc.2024.104593_b1
  article-title: Reinforcement learning-based multi-agent system for network traffic signal control
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2009.0070
– volume: 23
  start-page: 20021
  issue: 11
  year: 2022
  ident: 10.1016/j.trc.2024.104593_b43
  article-title: Adaptive traffic signal control with deep reinforcement learning and high dimensional sensory inputs: Case study and comprehensive sensitivity analyses
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3179893
– start-page: 656
  year: 2008
  ident: 10.1016/j.trc.2024.104593_b27
  article-title: Multiagent reinforcement learning for urban traffic control using coordination graphs
– start-page: 4532
  year: 2019
  ident: 10.1016/j.trc.2024.104593_b44
  article-title: Multimodal intelligent deep (mind) traffic signal controller
– volume: 14
  start-page: 1278
  issue: 3
  year: 2013
  ident: 10.1016/j.trc.2024.104593_b9
  article-title: Person-based traffic responsive signal control optimization
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2259623
– ident: 10.1016/j.trc.2024.104593_b55
  doi: 10.1145/3292500.3330949
– volume: 51
  start-page: 165
  year: 2016
  ident: 10.1016/j.trc.2024.104593_b45
  article-title: Casual carpooling in the san Francisco Bay Area: Understanding user characteristics, behaviors, and motivations
  publication-title: Transp. Policy
  doi: 10.1016/j.tranpol.2016.01.003
– volume: 11
  start-page: 813
  issue: 7
  year: 2011
  ident: 10.1016/j.trc.2024.104593_b33
  article-title: A survey and comparative study of simulators for vehicular ad hoc networks (VANETs)
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1002/wcm.859
– ident: 10.1016/j.trc.2024.104593_b23
  doi: 10.1609/aaai.v32i1.11694
– year: 2017
  ident: 10.1016/j.trc.2024.104593_b20
– start-page: 56
  year: 2021
  ident: 10.1016/j.trc.2024.104593_b14
– volume: 33
  start-page: 4079
  year: 2020
  ident: 10.1016/j.trc.2024.104593_b36
  article-title: Attendlight: Universal attention-based reinforcement learning model for traffic signal control
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 877
  year: 2018
  ident: 10.1016/j.trc.2024.104593_b35
  article-title: Traffic signal control based on reinforcement learning with graph convolutional neural nets
SSID ssj0001957
Score 2.459434
Snippet Single occupancy vehicles are the most attractive transportation alternative for many commuters, leading to increased traffic congestion and air pollution....
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 104593
SubjectTerms Decentralized adaptive control
Deep reinforcement learning
Multimodal traffic environment
Person-based traffic signal control
Ridesharing
Title HumanLight: Incentivizing ridesharing via human-centric deep reinforcement learning in traffic signal control
URI https://dx.doi.org/10.1016/j.trc.2024.104593
https://www.osti.gov/biblio/2335413
Volume 162
WOSCitedRecordID wos001225456800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELaqDgl4QDBAjAHyA09UqRLnh2PepmkIJjYhbaC-RY5rs0wlq7Ksmvib-CO5s-MmHWICJF6iKoqTyvf5fHf-7o6Q13Nj8MhQBjIrTQAIMaAHMxlkjOWl0nkSZ3PbbIIfH-ezmfg0Gv3wuTCrBa_r_PpaLP-rqOEeCBtTZ_9C3OuXwg34DUKHK4gdrn8keBuW_2h9bvD2Yf0jH2hVfceYQFPN8YjHcu5WlXQd-gJL0KzUZK71ctJoW0tV2bChbyph017aRmK9iQlSPmxVEUtyH1q360rpDlVdIaGzKdipTTvZt3oX0z1tipaP6Q9YjF8W2Lvla4V9lJx5j-lXoIYmR9P-CMn12b5a7ydHMCvWBD7BOhODELvpqbyHsqMPdAEOlvR0Qhd185k3Pc3Jhi8zpG2EM7ePOeWdcxGwuKsw7rW7U_a_7BQuaHE-bRssZMkSPOxOXbPGGwW4T_Bb-Cmk24L7CL72FuOpgG1ga-_DwexwvfNHwlWW9f_Nn6JbPuGND_3ODhpfgGofmDinD8mDzjehew5Tj8hI19vkrk9dv9wm9wfVKx-Tbz3S3tINnNEBzijgjG7gjCLO6AbOqMcZrWra4Yw6nNEOZ0_I53cHp_vvg657R6DijLdBmZepZoprxsNyHitwjY1OdSRlxFWpIpaVZca4SUWoIxWZJBGZiCR4DFxEyoj4KRnXF7V-RmiYykzAGCNzeKw0IilZmKYs0bzkXJodEvq5LFRX2h47rCwKz2E8L2D6C5z-wk3_DnmzHrJ0dV1uezjxAio6w9QZnAWg6bZhuyhMHIJrSiFzDcawOE7BdHz-by_dJff6RfKCjNvmSr8kd9SqrS6bVx0ifwKZeMEn
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HumanLight%3A+Incentivizing+ridesharing+via+human-centric+deep+reinforcement+learning+in+traffic+signal+control&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Vlachogiannis%2C+Dimitris+M.&rft.au=Wei%2C+Hua&rft.au=Moura%2C+Scott&rft.au=Macfarlane%2C+Jane&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=162&rft_id=info:doi/10.1016%2Fj.trc.2024.104593&rft.externalDocID=S0968090X24001141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon