HumanLight: Incentivizing ridesharing via human-centric deep reinforcement learning in traffic signal control
Single occupancy vehicles are the most attractive transportation alternative for many commuters, leading to increased traffic congestion and air pollution. Advancements in information technologies create opportunities for smart solutions that incentivize ridesharing and mode shift to higher occupanc...
Uloženo v:
| Vydáno v: | Transportation research. Part C, Emerging technologies Ročník 162; s. 104593 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
01.05.2024
Elsevier |
| Témata: | |
| ISSN: | 0968-090X, 1879-2359 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Single occupancy vehicles are the most attractive transportation alternative for many commuters, leading to increased traffic congestion and air pollution. Advancements in information technologies create opportunities for smart solutions that incentivize ridesharing and mode shift to higher occupancy vehicles (HOVs) to achieve the car lighter vision of cities. In this study, we present HumanLight, a novel decentralized adaptive traffic signal control algorithm designed to optimize people throughput at intersections. Our proposed controller is founded on reinforcement learning with the reward function embedding the transportation-inspired concept of pressure at the person-level. By rewarding HOV commuters with travel time savings for their efforts to merge into a single ride, HumanLight achieves equitable allocation of green times. Apart from adopting FRAP, a state-of-the-art (SOTA) base model, HumanLight introduces the concept of active vehicles, loosely defined as vehicles in proximity to the intersection within the action interval window. The proposed algorithm showcases significant headroom and scalability in different network configurations considering multimodal vehicle splits at various scenarios of HOV adoption. Improvements in person delays and queues range from 15% to over 55% compared to vehicle-level SOTA controllers. We quantify the impact of incorporating active vehicles in the formulation of our RL model for different network structures. HumanLight also enables regulation of the aggressiveness of the HOV prioritization. The impact of parameter setting on the generated phase profile is investigated as a key component of acyclic signal controllers affecting pedestrian waiting times. HumanLight’s scalable, decentralized design can reshape the resolution of traffic management to be more human-centric and empower policies that incentivize ridesharing and public transit systems.
[Display omitted]
•HumanLight is the first scalable human-centric RL-based adaptive signal controller.•Scalability is enabled from the decentralized design and algorithmic formulation.•HumanLight can democratize urban traffic by equitably allocating green times.•Active vehicles are proposed to handle the variance in occupancy of multimodal traffic.•HumanLight offers policymakers control of the aggressiveness in HOV prioritization. |
|---|---|
| AbstractList | Single occupancy vehicles are the most attractive transportation alternative for many commuters, leading to increased traffic congestion and air pollution. Advancements in information technologies create opportunities for smart solutions that incentivize ridesharing and mode shift to higher occupancy vehicles (HOVs) to achieve the car lighter vision of cities. In this study, we present HumanLight, a novel decentralized adaptive traffic signal control algorithm designed to optimize people throughput at intersections. Our proposed controller is founded on reinforcement learning with the reward function embedding the transportation-inspired concept of pressure at the person-level. By rewarding HOV commuters with travel time savings for their efforts to merge into a single ride, HumanLight achieves equitable allocation of green times. Apart from adopting FRAP, a state-of-the-art (SOTA) base model, HumanLight introduces the concept of active vehicles, loosely defined as vehicles in proximity to the intersection within the action interval window. The proposed algorithm showcases significant headroom and scalability in different network configurations considering multimodal vehicle splits at various scenarios of HOV adoption. Improvements in person delays and queues range from 15% to over 55% compared to vehicle-level SOTA controllers. We quantify the impact of incorporating active vehicles in the formulation of our RL model for different network structures. HumanLight also enables regulation of the aggressiveness of the HOV prioritization. The impact of parameter setting on the generated phase profile is investigated as a key component of acyclic signal controllers affecting pedestrian waiting times. HumanLight’s scalable, decentralized design can reshape the resolution of traffic management to be more human-centric and empower policies that incentivize ridesharing and public transit systems. Single occupancy vehicles are the most attractive transportation alternative for many commuters, leading to increased traffic congestion and air pollution. Advancements in information technologies create opportunities for smart solutions that incentivize ridesharing and mode shift to higher occupancy vehicles (HOVs) to achieve the car lighter vision of cities. In this study, we present HumanLight, a novel decentralized adaptive traffic signal control algorithm designed to optimize people throughput at intersections. Our proposed controller is founded on reinforcement learning with the reward function embedding the transportation-inspired concept of pressure at the person-level. By rewarding HOV commuters with travel time savings for their efforts to merge into a single ride, HumanLight achieves equitable allocation of green times. Apart from adopting FRAP, a state-of-the-art (SOTA) base model, HumanLight introduces the concept of active vehicles, loosely defined as vehicles in proximity to the intersection within the action interval window. The proposed algorithm showcases significant headroom and scalability in different network configurations considering multimodal vehicle splits at various scenarios of HOV adoption. Improvements in person delays and queues range from 15% to over 55% compared to vehicle-level SOTA controllers. We quantify the impact of incorporating active vehicles in the formulation of our RL model for different network structures. HumanLight also enables regulation of the aggressiveness of the HOV prioritization. The impact of parameter setting on the generated phase profile is investigated as a key component of acyclic signal controllers affecting pedestrian waiting times. HumanLight’s scalable, decentralized design can reshape the resolution of traffic management to be more human-centric and empower policies that incentivize ridesharing and public transit systems. [Display omitted] •HumanLight is the first scalable human-centric RL-based adaptive signal controller.•Scalability is enabled from the decentralized design and algorithmic formulation.•HumanLight can democratize urban traffic by equitably allocating green times.•Active vehicles are proposed to handle the variance in occupancy of multimodal traffic.•HumanLight offers policymakers control of the aggressiveness in HOV prioritization. |
| ArticleNumber | 104593 |
| Author | Moura, Scott Wei, Hua Macfarlane, Jane Vlachogiannis, Dimitris M. |
| Author_xml | – sequence: 1 givenname: Dimitris M. orcidid: 0000-0001-5486-0274 surname: Vlachogiannis fullname: Vlachogiannis, Dimitris M. email: d.vlachogiannis@berkeley.edu organization: Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, 94720, CA, United States – sequence: 2 givenname: Hua orcidid: 0000-0002-3735-1635 surname: Wei fullname: Wei, Hua organization: Department of Informatics, Ying Wu College of Computing, New Jersey Institute of Technology, Suite 5700 University Heights, Newark 07102, NJ, United States – sequence: 3 givenname: Scott orcidid: 0000-0002-6393-4375 surname: Moura fullname: Moura, Scott organization: Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, 94720, CA, United States – sequence: 4 givenname: Jane orcidid: 0000-0002-4683-5447 surname: Macfarlane fullname: Macfarlane, Jane email: janemacfarlane@berkeley.edu organization: Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, 94720, CA, United States |
| BackLink | https://www.osti.gov/biblio/2335413$$D View this record in Osti.gov |
| BookMark | eNp9kE1LAzEURYNUsH78AHeD-6nJzGTS6EpErVBwo-AuZDIv7SvTTEliQX-9CXXloqt8cM7jvntOJm50QMg1ozNGWXu7mUVvZhWtmvRuuKxPyJTNhSyrmssJmVLZzksq6ecZOQ9hQyllkosp2S6-ttotcbWOd8WrM-Ai7vEH3arw2ENYa5_ve9TFOpNlJjyaogfYFR7Q2dEb2KbfYgDtXabRFdFraxMWcOX0UJgxWeNwSU6tHgJc_Z0X5OP56f1xUS7fXl4fH5alqVsRy27ecaiMgErQrq8Nb-YWODCtmTCdYVXbdW0lLJcUmGG2aWQrmW45FZIZK-sLcnOYO4aIKhiMYNYpgwMTVVXXvGF1gsQBMn4MwYNVidMRc1SNg2JU5WrVRqVqVa5WHapNJvtn7jxutf8-6twfHEh77xF8jgWp8B59TtWPeMT-BbvEldg |
| CitedBy_id | crossref_primary_10_3390_vehicles7030072 crossref_primary_10_1016_j_chaos_2025_117024 crossref_primary_10_1080_03081060_2025_2457030 crossref_primary_10_1016_j_procs_2023_11_089 crossref_primary_10_1093_iti_liaf009 crossref_primary_10_3390_electronics14081664 crossref_primary_10_1007_s11831_025_10311_x |
| Cites_doi | 10.1080/01441647.2015.1005034 10.1109/ACCESS.2020.3034141 10.1016/j.trc.2017.09.020 10.1007/BF02125334 10.1109/TITS.2013.2255286 10.1016/j.trc.2013.08.014 10.1016/j.trc.2022.103814 10.1609/aaai.v34i04.5744 10.3141/2487-07 10.1007/978-3-319-25808-9_4 10.1016/j.trc.2014.12.005 10.1145/3357384.3357900 10.1109/MIC.2020.3018038 10.1109/TITS.2019.2901791 10.3141/2259-18 10.1016/j.trc.2023.104112 10.1145/3068287 10.1016/j.ijtst.2020.03.002 10.1145/3357384.3357902 10.1145/3308558.3314139 10.1016/j.knosys.2019.07.026 10.1145/3219819.3220096 10.1016/j.ifacol.2016.10.366 10.1016/j.trc.2015.11.009 10.1080/01441647.2018.1497728 10.3141/2620-04 10.1049/iet-its.2009.0070 10.1109/TITS.2022.3179893 10.1109/TITS.2013.2259623 10.1145/3292500.3330949 10.1016/j.tranpol.2016.01.003 10.1002/wcm.859 10.1609/aaai.v32i1.11694 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| DBID | 6I. AAFTH AAYXX CITATION OTOTI |
| DOI | 10.1016/j.trc.2024.104593 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-2359 |
| ExternalDocumentID | 2335413 10_1016_j_trc_2024_104593 S0968090X24001141 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS EFLBG ~HD OTOTI |
| ID | FETCH-LOGICAL-c367t-b8b5e2c7e270bd3c548fe5e1aa17cbc126bb627f590e1c1f449691a650791cf93 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001225456800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0968-090X |
| IngestDate | Thu Nov 27 01:46:40 EST 2025 Tue Nov 18 22:01:45 EST 2025 Sat Nov 29 03:01:11 EST 2025 Sat May 04 15:43:46 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Decentralized adaptive control Deep reinforcement learning Multimodal traffic environment Ridesharing Person-based traffic signal control |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-b8b5e2c7e270bd3c548fe5e1aa17cbc126bb627f590e1c1f449691a650791cf93 |
| Notes | AC02-05CH11231 USDOE Office of Energy Efficiency and Renewable Energy (EERE) USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO) |
| ORCID | 0000-0002-4683-5447 0000-0002-3735-1635 0000-0002-6393-4375 0000-0001-5486-0274 0000000263934375 0000000154860274 0000000237351635 0000000246835447 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.trc.2024.104593 |
| ParticipantIDs | osti_scitechconnect_2335413 crossref_citationtrail_10_1016_j_trc_2024_104593 crossref_primary_10_1016_j_trc_2024_104593 elsevier_sciencedirect_doi_10_1016_j_trc_2024_104593 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Transportation research. Part C, Emerging technologies |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Chen, C., Wei, H., Xu, N., Zheng, G., Yang, M., Xiong, Y., Xu, K., Li, Z., 2020. Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal control. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34, pp. 3414–3421. Oroojlooy, Nazari, Hajinezhad, Silva (b36) 2020; 33 Christofa, Papamichail, Skabardonis (b9) 2013; 14 Aslani, Mesgari, Wiering (b2) 2017; 85 Long, Zou, Zhou, Chung (b30) 2022; 142 Wei, Zheng, Gayah, Li (b57) 2019 Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D., 2018. Deep reinforcement learning that matters. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32, pp. 3207–3214. Cohen, Fiszer, Ratzon, Sasson (b12) 2021 Arel, Liu, Urbanik, Kohls (b1) 2010; 4 Kanis, Samson, Bloembergen, Bakker (b25) 2021 Vlachogiannis, Moura, Macfarlane (b52) 2023; 151 Shabestary, Abdulhai (b42) 2018 Diab, Badami, El-Geneidy (b15) 2015; 35 Cowan, Monteleone, Bellisario (b14) 2021 Bakker, Whiteson, Kester, Groen (b3) 2010 Bardaka, Hajibabai, Singh (b4) 2020; 24 Wei, H., Xu, N., Zhang, H., Zheng, G., Zang, X., Chen, C., Zhang, W., Zhu, Y., Xu, K., Li, Z., 2019b. Colight: Learning network-level cooperation for traffic signal control. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. pp. 1913–1922. Vlachogiannis, Vlahogianni, Golias (b53) 2020; 9 Chan, Wang, Bachan, Macfarlane (b6) 2018 Lioris, Kurzhanskiy, Varaiya (b29) 2016; 49 Sutton, Barto (b47) 2018 Christofa, Ampountolas, Skabardonis (b8) 2016; 66 Kuyer, Whiteson, Bakker, Vlassis (b27) 2008 Salkham, Cahill (b40) 2010 Varaiya (b50) 2013; 36 Gershenson (b21) 2004 Chu, Wang, Codecà, Li (b11) 2019; 21 Shaheen, Chan, Gaynor (b45) 2016; 51 Viegas, Martinez, Crist, Masterson (b51) 2016 Zhang, H., Feng, S., Liu, C., Ding, Y., Zhu, Y., Zhou, Z., Zhang, W., Yu, Y., Jin, H., Li, Z., 2019. Cityflow: A multi-agent reinforcement learning environment for large scale city traffic scenario. In: The World Wide Web Conference. pp. 3620–3624. Rasheed, Yau, Noor, Wu, Low (b38) 2020; 8 Wei, H., Chen, C., Zheng, G., Wu, K., Gayah, V., Xu, K., Li, Z., 2019a. Presslight: Learning max pressure control to coordinate traffic signals in arterial network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 1290–1298. Wei, H., Zheng, G., Yao, H., Li, Z., 2018. Intellilight: A reinforcement learning approach for intelligent traffic light control. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 2496–2505. Zhang, Wu, Shen, Lü, Du, Wu (b65) 2022 Giuliano, Levine, Teal (b22) 1990; 17 Yu, Gayah, Christofa (b61) 2017; 2620 Yang, Yang, Wong, Kang (b59) 2019; 183 Malalgoda, Lim (b31) 2019; 130 Casas (b5) 2017 Zeng, Sun, Zhang, Quadrifoglio (b63) 2015; 2487 Hu, Park, Lee (b24) 2015; 55 Van der Pol, E., Oliehoek, F.A., 2016. Coordinated deep reinforcement learners for traffic light control. In: Proceedings of Learning, Inference and Control of Multi-Agent Systems (at NIPS 2016). Vol. 8, pp. 21–38. Schank, Huang (b41) 2022 Urbanik, Tanaka, Lozner, Lindstrom, Lee, Quayle, Beaird, Tsoi, Ryus, Gettman (b49) 2015 Mei, Lei, Da, Shi, Wei (b34) 2022 El-Tantawy, Abdulhai (b18) 2010 Mannion, Duggan, Howley (b32) 2016 Zheng, G., Xiong, Y., Zang, X., Feng, J., Wei, H., Zhang, H., Li, Y., Xu, K., Li, Z., 2019. Learning phase competition for traffic signal control. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. pp. 1963–1972. Dietterich (b16) 1998; Vol. 98 Martinez, Toh, Cano, Calafate, Manzoni (b33) 2011; 11 United States Department of Transportation (b48) 2021 Lazarus, Caicedo, Bayen, Shaheen (b28) 2021; 148 Shabestary, Abdulhai (b43) 2022; 23 Shabestray, Abdulhai (b44) 2019 Wang, Ma, Dong, Wang (b54) 2022 Christofa, Skabardonis (b10) 2011; 2259 Nishi, Otaki, Hayakawa, Yoshimura (b35) 2018 Roess, Prassas, McShane (b39) 2004 Farid, Christofa (b20) 2017 Du, Ye, Gu, Li, Wei, Wang (b17) 2022 Yu, Gayah, Christofa (b62) 2018 Cools, Gershenson, D’Hooghe (b13) 2013 Shaheen, Cohen (b46) 2019; 39 Koonce, Rodegerdts (b26) 2008 Yau, Qadir, Khoo, Ling, Komisarczuk (b60) 2017; 50 El-Tantawy, Abdulhai, Abdelgawad (b19) 2013; 14 Shabestary (10.1016/j.trc.2024.104593_b42) 2018 Hu (10.1016/j.trc.2024.104593_b24) 2015; 55 Cowan (10.1016/j.trc.2024.104593_b14) 2021 10.1016/j.trc.2024.104593_b37 Urbanik (10.1016/j.trc.2024.104593_b49) 2015 Christofa (10.1016/j.trc.2024.104593_b10) 2011; 2259 Yau (10.1016/j.trc.2024.104593_b60) 2017; 50 Kanis (10.1016/j.trc.2024.104593_b25) 2021 Zeng (10.1016/j.trc.2024.104593_b63) 2015; 2487 Zhang (10.1016/j.trc.2024.104593_b65) 2022 Cohen (10.1016/j.trc.2024.104593_b12) 2021 Rasheed (10.1016/j.trc.2024.104593_b38) 2020; 8 Varaiya (10.1016/j.trc.2024.104593_b50) 2013; 36 Lioris (10.1016/j.trc.2024.104593_b29) 2016; 49 Yu (10.1016/j.trc.2024.104593_b62) 2018 Chu (10.1016/j.trc.2024.104593_b11) 2019; 21 Aslani (10.1016/j.trc.2024.104593_b2) 2017; 85 Kuyer (10.1016/j.trc.2024.104593_b27) 2008 Vlachogiannis (10.1016/j.trc.2024.104593_b52) 2023; 151 Martinez (10.1016/j.trc.2024.104593_b33) 2011; 11 El-Tantawy (10.1016/j.trc.2024.104593_b18) 2010 Gershenson (10.1016/j.trc.2024.104593_b21) 2004 Roess (10.1016/j.trc.2024.104593_b39) 2004 Yu (10.1016/j.trc.2024.104593_b61) 2017; 2620 Bardaka (10.1016/j.trc.2024.104593_b4) 2020; 24 Giuliano (10.1016/j.trc.2024.104593_b22) 1990; 17 Mei (10.1016/j.trc.2024.104593_b34) 2022 Wang (10.1016/j.trc.2024.104593_b54) 2022 Chan (10.1016/j.trc.2024.104593_b6) 2018 Salkham (10.1016/j.trc.2024.104593_b40) 2010 Christofa (10.1016/j.trc.2024.104593_b8) 2016; 66 Lazarus (10.1016/j.trc.2024.104593_b28) 2021; 148 10.1016/j.trc.2024.104593_b55 10.1016/j.trc.2024.104593_b56 Christofa (10.1016/j.trc.2024.104593_b9) 2013; 14 Shabestray (10.1016/j.trc.2024.104593_b44) 2019 10.1016/j.trc.2024.104593_b58 Oroojlooy (10.1016/j.trc.2024.104593_b36) 2020; 33 Cools (10.1016/j.trc.2024.104593_b13) 2013 Malalgoda (10.1016/j.trc.2024.104593_b31) 2019; 130 United States Department of Transportation (10.1016/j.trc.2024.104593_b48) 2021 Long (10.1016/j.trc.2024.104593_b30) 2022; 142 Koonce (10.1016/j.trc.2024.104593_b26) 2008 Bakker (10.1016/j.trc.2024.104593_b3) 2010 Shaheen (10.1016/j.trc.2024.104593_b45) 2016; 51 10.1016/j.trc.2024.104593_b7 10.1016/j.trc.2024.104593_b64 10.1016/j.trc.2024.104593_b66 10.1016/j.trc.2024.104593_b23 Viegas (10.1016/j.trc.2024.104593_b51) 2016 Casas (10.1016/j.trc.2024.104593_b5) 2017 El-Tantawy (10.1016/j.trc.2024.104593_b19) 2013; 14 Farid (10.1016/j.trc.2024.104593_b20) 2017 Schank (10.1016/j.trc.2024.104593_b41) 2022 Shabestary (10.1016/j.trc.2024.104593_b43) 2022; 23 Yang (10.1016/j.trc.2024.104593_b59) 2019; 183 Diab (10.1016/j.trc.2024.104593_b15) 2015; 35 Nishi (10.1016/j.trc.2024.104593_b35) 2018 Vlachogiannis (10.1016/j.trc.2024.104593_b53) 2020; 9 Arel (10.1016/j.trc.2024.104593_b1) 2010; 4 Dietterich (10.1016/j.trc.2024.104593_b16) 1998; Vol. 98 Wei (10.1016/j.trc.2024.104593_b57) 2019 Shaheen (10.1016/j.trc.2024.104593_b46) 2019; 39 Sutton (10.1016/j.trc.2024.104593_b47) 2018 Mannion (10.1016/j.trc.2024.104593_b32) 2016 Du (10.1016/j.trc.2024.104593_b17) 2022 |
| References_xml | – year: 2010 ident: b3 article-title: Traffic Light Control by Multiagent Reinforcement Learning Systems – start-page: 656 year: 2008 end-page: 671 ident: b27 article-title: Multiagent reinforcement learning for urban traffic control using coordination graphs publication-title: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part I 19 – year: 2015 ident: b49 publication-title: Signal Timing Manual – start-page: 47 year: 2016 end-page: 66 ident: b32 article-title: An experimental review of reinforcement learning algorithms for adaptive traffic signal control publication-title: Auton. Road Transp. Support Syst. – volume: 130 start-page: 351 year: 2019 end-page: 372 ident: b31 article-title: Do transportation network companies reduce public transit use in the US? publication-title: Transp. Res. A – start-page: 634 year: 2018 end-page: 641 ident: b6 article-title: Mobiliti: Scalable transportation simulation using high-performance parallel computing publication-title: 2018 21st International Conference on Intelligent Transportation Systems – volume: 23 start-page: 20021 year: 2022 end-page: 20035 ident: b43 article-title: Adaptive traffic signal control with deep reinforcement learning and high dimensional sensory inputs: Case study and comprehensive sensitivity analyses publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 142 year: 2022 ident: b30 article-title: Deep reinforcement learning for transit signal priority in a connected environment publication-title: Transp. Res. C – start-page: 4532 year: 2019 end-page: 4539 ident: b44 article-title: Multimodal intelligent deep (mind) traffic signal controller publication-title: 2019 IEEE Intelligent Transportation Systems Conference – volume: 51 start-page: 165 year: 2016 end-page: 173 ident: b45 article-title: Casual carpooling in the san Francisco Bay Area: Understanding user characteristics, behaviors, and motivations publication-title: Transp. Policy – start-page: 20 year: 2018 end-page: 25 ident: b62 article-title: Implementing phase rotation in a person-based signal timing optimization framework publication-title: 2018 21st International Conference on Intelligent Transportation Systems – year: 2022 ident: b41 article-title: Microtransit: A Good Idea Just Got Even Better – start-page: 1 year: 2016 end-page: 56 ident: b51 article-title: Shared mobility: Innovation for liveable cities publication-title: International Transport Forum’s Corporate Partnership Board – year: 2004 ident: b39 article-title: Traffic Engineering – volume: 11 start-page: 813 year: 2011 end-page: 828 ident: b33 article-title: A survey and comparative study of simulators for vehicular ad hoc networks (VANETs) publication-title: Wirel. Commun. Mob. Comput. – volume: 17 start-page: 159 year: 1990 end-page: 177 ident: b22 article-title: Impact of high occupancy vehicle lanes on carpooling behavior publication-title: Transportation – volume: 36 start-page: 177 year: 2013 end-page: 195 ident: b50 article-title: Max pressure control of a network of signalized intersections publication-title: Transp. Res. C – year: 2019 ident: b57 article-title: A survey on traffic signal control methods – start-page: 877 year: 2018 end-page: 883 ident: b35 article-title: Traffic signal control based on reinforcement learning with graph convolutional neural nets publication-title: 2018 21st International Conference on Intelligent Transportation Systems – volume: 24 start-page: 38 year: 2020 end-page: 44 ident: b4 article-title: Reimagining ride sharing: Efficient, equitable, sustainable public microtransit publication-title: IEEE Internet Comput. – reference: Wei, H., Zheng, G., Yao, H., Li, Z., 2018. Intellilight: A reinforcement learning approach for intelligent traffic light control. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 2496–2505. – start-page: 531 year: 2010 end-page: 538 ident: b40 article-title: Soilse: A decentralized approach to optimization of fluctuating urban traffic using reinforcement learning publication-title: 13th International IEEE Conference on Intelligent Transportation Systems – volume: Vol. 98 start-page: 118 year: 1998 end-page: 126 ident: b16 article-title: The MAXQ method for hierarchical reinforcement learning publication-title: ICML – start-page: 286 year: 2018 end-page: 293 ident: b42 article-title: Deep learning vs. discrete reinforcement learning for adaptive traffic signal control publication-title: 2018 21st International Conference on Intelligent Transportation Systems – year: 2017 ident: b5 article-title: Deep deterministic policy gradient for urban traffic light control – start-page: 26645 year: 2022 end-page: 26654 ident: b65 article-title: Expression might be enough: representing pressure and demand for reinforcement learning based traffic signal control publication-title: International Conference on Machine Learning – volume: 39 start-page: 427 year: 2019 end-page: 442 ident: b46 article-title: Shared ride services in North America: definitions, impacts, and the future of pooling publication-title: Transp. Rev. – volume: 14 start-page: 1278 year: 2013 end-page: 1289 ident: b9 article-title: Person-based traffic responsive signal control optimization publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 8 start-page: 208016 year: 2020 end-page: 208044 ident: b38 article-title: Deep reinforcement learning for traffic signal control: A review publication-title: IEEE Access – volume: 2487 start-page: 78 year: 2015 end-page: 87 ident: b63 article-title: Person-based adaptive priority signal control with connected-vehicle information publication-title: Transp. Res. Rec. – start-page: 45 year: 2013 end-page: 55 ident: b13 article-title: Self-organizing traffic lights: A realistic simulation publication-title: Advances in Applied Self-Organizing Systems – volume: 85 start-page: 732 year: 2017 end-page: 752 ident: b2 article-title: Adaptive traffic signal control with actor-critic methods in a real-world traffic network with different traffic disruption events publication-title: Transp. Res. C – reference: Wei, H., Xu, N., Zhang, H., Zheng, G., Zang, X., Chen, C., Zhang, W., Zhu, Y., Xu, K., Li, Z., 2019b. Colight: Learning network-level cooperation for traffic signal control. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. pp. 1913–1922. – volume: 2259 start-page: 192 year: 2011 end-page: 201 ident: b10 article-title: Traffic signal optimization with application of transit signal priority to an isolated intersection publication-title: Transp. Res. Rec. – volume: 151 year: 2023 ident: b52 article-title: Intersense: An xgboost model for traffic regulator identification at intersections through crowdsourced GPS data publication-title: Transp. Res. C – volume: 148 start-page: 199 year: 2021 end-page: 222 ident: b28 article-title: To pool or not to pool? Understanding opportunities, challenges, and equity considerations to expanding the market for pooling publication-title: Transp. Res. A – volume: 33 start-page: 4079 year: 2020 end-page: 4090 ident: b36 article-title: Attendlight: Universal attention-based reinforcement learning model for traffic signal control publication-title: Adv. Neural Inf. Process. Syst. – reference: Chen, C., Wei, H., Xu, N., Zheng, G., Yang, M., Xiong, Y., Xu, K., Li, Z., 2020. Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal control. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34, pp. 3414–3421. – volume: 50 start-page: 1 year: 2017 end-page: 38 ident: b60 article-title: A survey on reinforcement learning models and algorithms for traffic signal control publication-title: ACM Comput. Surv. – year: 2021 ident: b25 article-title: Back to basics: Deep reinforcement learning in traffic signal control – year: 2008 ident: b26 article-title: Traffic Signal Timing Manual – reference: Wei, H., Chen, C., Zheng, G., Wu, K., Gayah, V., Xu, K., Li, Z., 2019a. Presslight: Learning max pressure control to coordinate traffic signals in arterial network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 1290–1298. – year: 2017 ident: b20 article-title: Real-Time Signal Control with Transit Priority Window: A Person-Based Approach – volume: 49 start-page: 19 year: 2016 end-page: 24 ident: b29 article-title: Adaptive max pressure control of network of signalized intersections publication-title: IFAC-PapersOnLine – year: 2022 ident: b34 article-title: LibSignal: An open library for traffic signal control – volume: 9 start-page: 299 year: 2020 end-page: 308 ident: b53 article-title: A reinforcement learning model for personalized driving policies identification publication-title: Int. J. Transp. Sci. Technol. – volume: 2620 start-page: 31 year: 2017 end-page: 42 ident: b61 article-title: Person-based optimization of signal timing: Accounting for flexible cycle lengths and uncertain transit vehicle arrival times publication-title: Transp. Res. Rec. – volume: 66 start-page: 27 year: 2016 end-page: 47 ident: b8 article-title: Arterial traffic signal optimization: A person-based approach publication-title: Transp. Res. C – start-page: 56 year: 2021 ident: b14 article-title: The Megaregional Case for a New Transbay Rail Crossing – year: 2021 ident: b48 article-title: Commute mode: Bureau of transportation statistics – reference: Van der Pol, E., Oliehoek, F.A., 2016. Coordinated deep reinforcement learners for traffic light control. In: Proceedings of Learning, Inference and Control of Multi-Agent Systems (at NIPS 2016). Vol. 8, pp. 21–38. – volume: 14 start-page: 1140 year: 2013 end-page: 1150 ident: b19 article-title: Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC): methodology and large-scale application on downtown toronto publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 55 start-page: 393 year: 2015 end-page: 408 ident: b24 article-title: Coordinated transit signal priority supporting transit progression under connected vehicle technology publication-title: Transp. Res. C – year: 2022 ident: b17 article-title: SafeLight: A reinforcement learning method toward collision-free traffic signal control – year: 2004 ident: b21 article-title: Self-organizing traffic lights – start-page: 665 year: 2010 end-page: 670 ident: b18 article-title: An agent-based learning towards decentralized and coordinated traffic signal control publication-title: 13th International IEEE Conference on Intelligent Transportation Systems – year: 2022 ident: b54 article-title: Human-centric multimodal deep (HMD) traffic signal control publication-title: IET Intell. Transp. Syst. – reference: Zheng, G., Xiong, Y., Zang, X., Feng, J., Wei, H., Zhang, H., Li, Y., Xu, K., Li, Z., 2019. Learning phase competition for traffic signal control. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. pp. 1963–1972. – volume: 4 start-page: 128 year: 2010 end-page: 135 ident: b1 article-title: Reinforcement learning-based multi-agent system for network traffic signal control publication-title: IET Intell. Transp. Syst. – year: 2018 ident: b47 article-title: Reinforcement Learning: An Introduction – volume: 35 start-page: 292 year: 2015 end-page: 328 ident: b15 article-title: Bus transit service reliability and improvement strategies: Integrating the perspectives of passengers and transit agencies in North America publication-title: Transp. Rev. – reference: Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D., 2018. Deep reinforcement learning that matters. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32, pp. 3207–3214. – reference: Zhang, H., Feng, S., Liu, C., Ding, Y., Zhu, Y., Zhou, Z., Zhang, W., Yu, Y., Jin, H., Li, Z., 2019. Cityflow: A multi-agent reinforcement learning environment for large scale city traffic scenario. In: The World Wide Web Conference. pp. 3620–3624. – year: 2021 ident: b12 article-title: Incentivizing commuters to carpool: A large field experiment with waze publication-title: Manuf. Serv. Oper. Manage. – volume: 21 start-page: 1086 year: 2019 end-page: 1095 ident: b11 article-title: Multi-agent deep reinforcement learning for large-scale traffic signal control publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 183 year: 2019 ident: b59 article-title: Cooperative traffic signal control using multi-step return and off-policy asynchronous advantage actor-critic graph algorithm publication-title: Knowl.-Based Syst. – volume: 35 start-page: 292 issue: 3 year: 2015 ident: 10.1016/j.trc.2024.104593_b15 article-title: Bus transit service reliability and improvement strategies: Integrating the perspectives of passengers and transit agencies in North America publication-title: Transp. Rev. doi: 10.1080/01441647.2015.1005034 – volume: 130 start-page: 351 year: 2019 ident: 10.1016/j.trc.2024.104593_b31 article-title: Do transportation network companies reduce public transit use in the US? publication-title: Transp. Res. A – year: 2017 ident: 10.1016/j.trc.2024.104593_b5 – volume: 8 start-page: 208016 year: 2020 ident: 10.1016/j.trc.2024.104593_b38 article-title: Deep reinforcement learning for traffic signal control: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3034141 – ident: 10.1016/j.trc.2024.104593_b37 – volume: 148 start-page: 199 year: 2021 ident: 10.1016/j.trc.2024.104593_b28 article-title: To pool or not to pool? Understanding opportunities, challenges, and equity considerations to expanding the market for pooling publication-title: Transp. Res. A – volume: 85 start-page: 732 year: 2017 ident: 10.1016/j.trc.2024.104593_b2 article-title: Adaptive traffic signal control with actor-critic methods in a real-world traffic network with different traffic disruption events publication-title: Transp. Res. C doi: 10.1016/j.trc.2017.09.020 – volume: 17 start-page: 159 issue: 2 year: 1990 ident: 10.1016/j.trc.2024.104593_b22 article-title: Impact of high occupancy vehicle lanes on carpooling behavior publication-title: Transportation doi: 10.1007/BF02125334 – year: 2021 ident: 10.1016/j.trc.2024.104593_b25 – year: 2019 ident: 10.1016/j.trc.2024.104593_b57 – start-page: 20 year: 2018 ident: 10.1016/j.trc.2024.104593_b62 article-title: Implementing phase rotation in a person-based signal timing optimization framework – volume: 14 start-page: 1140 issue: 3 year: 2013 ident: 10.1016/j.trc.2024.104593_b19 article-title: Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC): methodology and large-scale application on downtown toronto publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2255286 – start-page: 286 year: 2018 ident: 10.1016/j.trc.2024.104593_b42 article-title: Deep learning vs. discrete reinforcement learning for adaptive traffic signal control – volume: 36 start-page: 177 year: 2013 ident: 10.1016/j.trc.2024.104593_b50 article-title: Max pressure control of a network of signalized intersections publication-title: Transp. Res. C doi: 10.1016/j.trc.2013.08.014 – year: 2015 ident: 10.1016/j.trc.2024.104593_b49 – volume: 142 year: 2022 ident: 10.1016/j.trc.2024.104593_b30 article-title: Deep reinforcement learning for transit signal priority in a connected environment publication-title: Transp. Res. C doi: 10.1016/j.trc.2022.103814 – year: 2021 ident: 10.1016/j.trc.2024.104593_b48 – start-page: 45 year: 2013 ident: 10.1016/j.trc.2024.104593_b13 article-title: Self-organizing traffic lights: A realistic simulation – ident: 10.1016/j.trc.2024.104593_b7 doi: 10.1609/aaai.v34i04.5744 – volume: 2487 start-page: 78 issue: 1 year: 2015 ident: 10.1016/j.trc.2024.104593_b63 article-title: Person-based adaptive priority signal control with connected-vehicle information publication-title: Transp. Res. Rec. doi: 10.3141/2487-07 – start-page: 634 year: 2018 ident: 10.1016/j.trc.2024.104593_b6 article-title: Mobiliti: Scalable transportation simulation using high-performance parallel computing – start-page: 47 year: 2016 ident: 10.1016/j.trc.2024.104593_b32 article-title: An experimental review of reinforcement learning algorithms for adaptive traffic signal control publication-title: Auton. Road Transp. Support Syst. doi: 10.1007/978-3-319-25808-9_4 – volume: 55 start-page: 393 year: 2015 ident: 10.1016/j.trc.2024.104593_b24 article-title: Coordinated transit signal priority supporting transit progression under connected vehicle technology publication-title: Transp. Res. C doi: 10.1016/j.trc.2014.12.005 – ident: 10.1016/j.trc.2024.104593_b66 doi: 10.1145/3357384.3357900 – volume: 24 start-page: 38 issue: 5 year: 2020 ident: 10.1016/j.trc.2024.104593_b4 article-title: Reimagining ride sharing: Efficient, equitable, sustainable public microtransit publication-title: IEEE Internet Comput. doi: 10.1109/MIC.2020.3018038 – volume: 21 start-page: 1086 issue: 3 year: 2019 ident: 10.1016/j.trc.2024.104593_b11 article-title: Multi-agent deep reinforcement learning for large-scale traffic signal control publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2901791 – year: 2004 ident: 10.1016/j.trc.2024.104593_b21 – year: 2010 ident: 10.1016/j.trc.2024.104593_b3 – year: 2008 ident: 10.1016/j.trc.2024.104593_b26 – volume: 2259 start-page: 192 issue: 1 year: 2011 ident: 10.1016/j.trc.2024.104593_b10 article-title: Traffic signal optimization with application of transit signal priority to an isolated intersection publication-title: Transp. Res. Rec. doi: 10.3141/2259-18 – volume: 151 year: 2023 ident: 10.1016/j.trc.2024.104593_b52 article-title: Intersense: An xgboost model for traffic regulator identification at intersections through crowdsourced GPS data publication-title: Transp. Res. C doi: 10.1016/j.trc.2023.104112 – volume: 50 start-page: 1 issue: 3 year: 2017 ident: 10.1016/j.trc.2024.104593_b60 article-title: A survey on reinforcement learning models and algorithms for traffic signal control publication-title: ACM Comput. Surv. doi: 10.1145/3068287 – volume: 9 start-page: 299 issue: 4 year: 2020 ident: 10.1016/j.trc.2024.104593_b53 article-title: A reinforcement learning model for personalized driving policies identification publication-title: Int. J. Transp. Sci. Technol. doi: 10.1016/j.ijtst.2020.03.002 – ident: 10.1016/j.trc.2024.104593_b56 doi: 10.1145/3357384.3357902 – year: 2018 ident: 10.1016/j.trc.2024.104593_b47 – ident: 10.1016/j.trc.2024.104593_b64 doi: 10.1145/3308558.3314139 – start-page: 665 year: 2010 ident: 10.1016/j.trc.2024.104593_b18 article-title: An agent-based learning towards decentralized and coordinated traffic signal control – year: 2022 ident: 10.1016/j.trc.2024.104593_b17 – year: 2022 ident: 10.1016/j.trc.2024.104593_b34 – start-page: 531 year: 2010 ident: 10.1016/j.trc.2024.104593_b40 article-title: Soilse: A decentralized approach to optimization of fluctuating urban traffic using reinforcement learning – volume: 183 year: 2019 ident: 10.1016/j.trc.2024.104593_b59 article-title: Cooperative traffic signal control using multi-step return and off-policy asynchronous advantage actor-critic graph algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.07.026 – year: 2022 ident: 10.1016/j.trc.2024.104593_b54 article-title: Human-centric multimodal deep (HMD) traffic signal control publication-title: IET Intell. Transp. Syst. – ident: 10.1016/j.trc.2024.104593_b58 doi: 10.1145/3219819.3220096 – year: 2022 ident: 10.1016/j.trc.2024.104593_b41 – volume: 49 start-page: 19 issue: 22 year: 2016 ident: 10.1016/j.trc.2024.104593_b29 article-title: Adaptive max pressure control of network of signalized intersections publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.10.366 – year: 2004 ident: 10.1016/j.trc.2024.104593_b39 – volume: 66 start-page: 27 year: 2016 ident: 10.1016/j.trc.2024.104593_b8 article-title: Arterial traffic signal optimization: A person-based approach publication-title: Transp. Res. C doi: 10.1016/j.trc.2015.11.009 – year: 2021 ident: 10.1016/j.trc.2024.104593_b12 article-title: Incentivizing commuters to carpool: A large field experiment with waze publication-title: Manuf. Serv. Oper. Manage. – volume: 39 start-page: 427 issue: 4 year: 2019 ident: 10.1016/j.trc.2024.104593_b46 article-title: Shared ride services in North America: definitions, impacts, and the future of pooling publication-title: Transp. Rev. doi: 10.1080/01441647.2018.1497728 – start-page: 26645 year: 2022 ident: 10.1016/j.trc.2024.104593_b65 article-title: Expression might be enough: representing pressure and demand for reinforcement learning based traffic signal control – volume: Vol. 98 start-page: 118 year: 1998 ident: 10.1016/j.trc.2024.104593_b16 article-title: The MAXQ method for hierarchical reinforcement learning – volume: 2620 start-page: 31 issue: 1 year: 2017 ident: 10.1016/j.trc.2024.104593_b61 article-title: Person-based optimization of signal timing: Accounting for flexible cycle lengths and uncertain transit vehicle arrival times publication-title: Transp. Res. Rec. doi: 10.3141/2620-04 – start-page: 1 year: 2016 ident: 10.1016/j.trc.2024.104593_b51 article-title: Shared mobility: Innovation for liveable cities – volume: 4 start-page: 128 issue: 2 year: 2010 ident: 10.1016/j.trc.2024.104593_b1 article-title: Reinforcement learning-based multi-agent system for network traffic signal control publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2009.0070 – volume: 23 start-page: 20021 issue: 11 year: 2022 ident: 10.1016/j.trc.2024.104593_b43 article-title: Adaptive traffic signal control with deep reinforcement learning and high dimensional sensory inputs: Case study and comprehensive sensitivity analyses publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3179893 – start-page: 656 year: 2008 ident: 10.1016/j.trc.2024.104593_b27 article-title: Multiagent reinforcement learning for urban traffic control using coordination graphs – start-page: 4532 year: 2019 ident: 10.1016/j.trc.2024.104593_b44 article-title: Multimodal intelligent deep (mind) traffic signal controller – volume: 14 start-page: 1278 issue: 3 year: 2013 ident: 10.1016/j.trc.2024.104593_b9 article-title: Person-based traffic responsive signal control optimization publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2259623 – ident: 10.1016/j.trc.2024.104593_b55 doi: 10.1145/3292500.3330949 – volume: 51 start-page: 165 year: 2016 ident: 10.1016/j.trc.2024.104593_b45 article-title: Casual carpooling in the san Francisco Bay Area: Understanding user characteristics, behaviors, and motivations publication-title: Transp. Policy doi: 10.1016/j.tranpol.2016.01.003 – volume: 11 start-page: 813 issue: 7 year: 2011 ident: 10.1016/j.trc.2024.104593_b33 article-title: A survey and comparative study of simulators for vehicular ad hoc networks (VANETs) publication-title: Wirel. Commun. Mob. Comput. doi: 10.1002/wcm.859 – ident: 10.1016/j.trc.2024.104593_b23 doi: 10.1609/aaai.v32i1.11694 – year: 2017 ident: 10.1016/j.trc.2024.104593_b20 – start-page: 56 year: 2021 ident: 10.1016/j.trc.2024.104593_b14 – volume: 33 start-page: 4079 year: 2020 ident: 10.1016/j.trc.2024.104593_b36 article-title: Attendlight: Universal attention-based reinforcement learning model for traffic signal control publication-title: Adv. Neural Inf. Process. Syst. – start-page: 877 year: 2018 ident: 10.1016/j.trc.2024.104593_b35 article-title: Traffic signal control based on reinforcement learning with graph convolutional neural nets |
| SSID | ssj0001957 |
| Score | 2.459434 |
| Snippet | Single occupancy vehicles are the most attractive transportation alternative for many commuters, leading to increased traffic congestion and air pollution.... |
| SourceID | osti crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 104593 |
| SubjectTerms | Decentralized adaptive control Deep reinforcement learning Multimodal traffic environment Person-based traffic signal control Ridesharing |
| Title | HumanLight: Incentivizing ridesharing via human-centric deep reinforcement learning in traffic signal control |
| URI | https://dx.doi.org/10.1016/j.trc.2024.104593 https://www.osti.gov/biblio/2335413 |
| Volume | 162 |
| WOSCitedRecordID | wos001225456800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELaqDgl4QDBAjAHyA09UqRLnh2PepmkIJjYhbaC-RY5rs0wlq7Ksmvib-CO5s-MmHWICJF6iKoqTyvf5fHf-7o6Q13Nj8MhQBjIrTQAIMaAHMxlkjOWl0nkSZ3PbbIIfH-ezmfg0Gv3wuTCrBa_r_PpaLP-rqOEeCBtTZ_9C3OuXwg34DUKHK4gdrn8keBuW_2h9bvD2Yf0jH2hVfceYQFPN8YjHcu5WlXQd-gJL0KzUZK71ctJoW0tV2bChbyph017aRmK9iQlSPmxVEUtyH1q360rpDlVdIaGzKdipTTvZt3oX0z1tipaP6Q9YjF8W2Lvla4V9lJx5j-lXoIYmR9P-CMn12b5a7ydHMCvWBD7BOhODELvpqbyHsqMPdAEOlvR0Qhd185k3Pc3Jhi8zpG2EM7ePOeWdcxGwuKsw7rW7U_a_7BQuaHE-bRssZMkSPOxOXbPGGwW4T_Bb-Cmk24L7CL72FuOpgG1ga-_DwexwvfNHwlWW9f_Nn6JbPuGND_3ODhpfgGofmDinD8mDzjehew5Tj8hI19vkrk9dv9wm9wfVKx-Tbz3S3tINnNEBzijgjG7gjCLO6AbOqMcZrWra4Yw6nNEOZ0_I53cHp_vvg657R6DijLdBmZepZoprxsNyHitwjY1OdSRlxFWpIpaVZca4SUWoIxWZJBGZiCR4DFxEyoj4KRnXF7V-RmiYykzAGCNzeKw0IilZmKYs0bzkXJodEvq5LFRX2h47rCwKz2E8L2D6C5z-wk3_DnmzHrJ0dV1uezjxAio6w9QZnAWg6bZhuyhMHIJrSiFzDcawOE7BdHz-by_dJff6RfKCjNvmSr8kd9SqrS6bVx0ifwKZeMEn |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HumanLight%3A+Incentivizing+ridesharing+via+human-centric+deep+reinforcement+learning+in+traffic+signal+control&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Vlachogiannis%2C+Dimitris+M.&rft.au=Wei%2C+Hua&rft.au=Moura%2C+Scott&rft.au=Macfarlane%2C+Jane&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=162&rft_id=info:doi/10.1016%2Fj.trc.2024.104593&rft.externalDocID=S0968090X24001141 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |