Fast Training Set Size Reduction Using Simple Space Partitioning Algorithms

The Reduction by Space Partitioning (RSP3) algorithm is a well-known data reduction technique. It summarizes the training data and generates representative prototypes. Its goal is to reduce the computational cost of an instance-based classifier without penalty in accuracy. The algorithm keeps on div...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information (Basel) Ročník 13; číslo 12; s. 572
Hlavní autoři: Ougiaroglou, Stefanos, Mastromanolis, Theodoros, Evangelidis, Georgios, Margaris, Dionisis
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.12.2022
Témata:
ISSN:2078-2489, 2078-2489
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Reduction by Space Partitioning (RSP3) algorithm is a well-known data reduction technique. It summarizes the training data and generates representative prototypes. Its goal is to reduce the computational cost of an instance-based classifier without penalty in accuracy. The algorithm keeps on dividing the initial training data into subsets until all of them become homogeneous, i.e., they contain instances of the same class. To divide a non-homogeneous subset, the algorithm computes its two furthest instances and assigns all instances to their closest furthest instance. This is a very expensive computational task, since all distances among the instances of a non-homogeneous subset must be calculated. Moreover, noise in the training data leads to a large number of small homogeneous subsets, many of which have only one instance. These instances are probably noise, but the algorithm mistakenly generates prototypes for these subsets. This paper proposes simple and fast variations of RSP3 that avoid the computationally costly partitioning tasks and remove the noisy training instances. The experimental study conducted on sixteen datasets and the corresponding statistical tests show that the proposed variations of the algorithm are much faster and achieve higher reduction rates than the conventional RSP3 without negatively affecting the accuracy.
AbstractList The Reduction by Space Partitioning (RSP3) algorithm is a well-known data reduction technique. It summarizes the training data and generates representative prototypes. Its goal is to reduce the computational cost of an instance-based classifier without penalty in accuracy. The algorithm keeps on dividing the initial training data into subsets until all of them become homogeneous, i.e., they contain instances of the same class. To divide a non-homogeneous subset, the algorithm computes its two furthest instances and assigns all instances to their closest furthest instance. This is a very expensive computational task, since all distances among the instances of a non-homogeneous subset must be calculated. Moreover, noise in the training data leads to a large number of small homogeneous subsets, many of which have only one instance. These instances are probably noise, but the algorithm mistakenly generates prototypes for these subsets. This paper proposes simple and fast variations of RSP3 that avoid the computationally costly partitioning tasks and remove the noisy training instances. The experimental study conducted on sixteen datasets and the corresponding statistical tests show that the proposed variations of the algorithm are much faster and achieve higher reduction rates than the conventional RSP3 without negatively affecting the accuracy.
Author Ougiaroglou, Stefanos
Margaris, Dionisis
Evangelidis, Georgios
Mastromanolis, Theodoros
Author_xml – sequence: 1
  givenname: Stefanos
  orcidid: 0000-0003-1094-2520
  surname: Ougiaroglou
  fullname: Ougiaroglou, Stefanos
– sequence: 2
  givenname: Theodoros
  surname: Mastromanolis
  fullname: Mastromanolis, Theodoros
– sequence: 3
  givenname: Georgios
  orcidid: 0000-0003-1639-2152
  surname: Evangelidis
  fullname: Evangelidis, Georgios
– sequence: 4
  givenname: Dionisis
  orcidid: 0000-0002-7487-374X
  surname: Margaris
  fullname: Margaris, Dionisis
BookMark eNptUU1LAzEQDVLBWnvzByx4tZqP3czusRSrxYJi23PIZpOast3UJD3or3e3VSjiHGaGeW8ej5lL1GtcoxG6JviOsQLf28Y4wgjFGdAz1KcY8hFN86J30l-gYQgb3AZAnuakj56nMsRk6aVtbLNOFjomC_ulkzdd7VW0rklW4QDY7a7WyWInlU5epY-2AztkXK-dt_F9G67QuZF10MOfOkCr6cNy8jSavzzOJuP5SDEOcVRmiqbaACmVIUa1GUyeaplzUBI4I1qVhOAqrzihhgEGJjPJKcaGVKXWbIBmR93KyY3YebuV_lM4acVh4PxadAZVrQVXlVE6LQrIspRXWBaYKaOYKiUAHLRujlo77z72OkSxcXvftPYFhYwDzSjjLYseWcq7ELw2QtkouwvE9nK1IFh0PxCnP2iXbv8s_Vr9l_4NghCK6A
CitedBy_id crossref_primary_10_1007_s42979_024_03007_9
Cites_doi 10.1016/j.asoc.2015.12.015
10.1093/jigpal/jzv015
10.1109/TPAMI.2011.142
10.1007/s10044-015-0454-6
10.1007/s10044-014-0393-7
10.1007/978-3-642-29807-3
10.1109/TSMCC.2010.2103939
10.1007/978-3-319-04939-7_14
10.1016/j.patcog.2013.04.016
10.1109/TIT.1967.1053964
10.1016/j.patcog.2022.108553
10.7717/peerj-cs.464
10.1016/j.patcog.2021.108356
10.1016/0167-8655(96)00041-4
10.1016/j.ins.2009.03.004
10.3390/app10103356
10.1007/s00521-016-2278-8
10.1016/j.patcog.2003.12.012
10.1145/2801081.2801116
10.1007/s00500-021-06178-2
10.1007/978-0-387-30164-8
10.1109/TCYB.2015.2487318
10.1016/j.neucom.2015.01.008
10.1016/j.patcog.2017.09.038
10.1007/978-3-319-10247-4
10.1016/j.neucom.2018.01.056
10.1016/j.patcog.2017.10.029
10.1007/s10462-013-9411-1
10.1007/s00500-016-2042-0
10.3233/IDA-205123
10.1007/s10472-015-9472-8
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/info13120572
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2078-2489
ExternalDocumentID oai_doaj_org_article_6cdfce49975546d0a903cfc3cba777ee
10_3390_info13120572
GroupedDBID .4I
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
MK~
ML~
MODMG
M~E
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
XH6
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ITC
ID FETCH-LOGICAL-c367t-b5c24ef71bcf1fcbcf7f84ea867ca7631ecb110d8d612f37073a5a6200f1dbee3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000901182900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2078-2489
IngestDate Fri Oct 03 12:52:36 EDT 2025
Sun Jul 13 05:10:57 EDT 2025
Sat Nov 29 07:15:37 EST 2025
Tue Nov 18 22:28:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-b5c24ef71bcf1fcbcf7f84ea867ca7631ecb110d8d612f37073a5a6200f1dbee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7487-374X
0000-0003-1094-2520
0000-0003-1639-2152
OpenAccessLink https://doaj.org/article/6cdfce49975546d0a903cfc3cba777ee
PQID 2756725236
PQPubID 2032384
ParticipantIDs doaj_primary_oai_doaj_org_article_6cdfce49975546d0a903cfc3cba777ee
proquest_journals_2756725236
crossref_citationtrail_10_3390_info13120572
crossref_primary_10_3390_info13120572
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Information (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Castellanos (ref_11) 2021; 25
Triguero (ref_4) 2012; 42
Sucholutsky (ref_30) 2021; 7
ref_36
ref_35
ref_12
(ref_25) 2017; 28
Giorginis (ref_7) 2022; 126
Luengo (ref_34) 2011; 17
Hu (ref_22) 2016; 46
Sanchez (ref_32) 2008; 13
ref_19
Rashedi (ref_21) 2009; 179
Elkano (ref_23) 2018; 287
Escalante (ref_26) 2017; 21
Ougiaroglou (ref_10) 2016; 19
Garcia (ref_3) 2012; 34
Ougiaroglou (ref_15) 2013; 42
Escalante (ref_27) 2017; 20
Silva (ref_29) 2021; 25
Gallego (ref_14) 2018; 74
Beierle (ref_33) 2014; Volume 8367
Impedovo (ref_18) 2014; 47
Chen (ref_31) 1996; 17
Gallego (ref_17) 2022; 122
Jain (ref_28) 2018; 76
Ougiaroglou (ref_16) 2015; 23
ref_1
(ref_5) 2004; 37
Ougiaroglou (ref_13) 2015; 76
Cover (ref_2) 1967; 13
ref_9
Rezaei (ref_20) 2015; 157
Escalante (ref_24) 2016; 40
ref_8
ref_6
References_xml – volume: 40
  start-page: 569
  year: 2016
  ident: ref_24
  article-title: PGGP: Prototype Generation via Genetic Programming
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.12.015
– volume: 23
  start-page: 431
  year: 2015
  ident: ref_16
  article-title: FHC: An adaptive fast hybrid method for k-NN classification
  publication-title: Log. J. IGPL
  doi: 10.1093/jigpal/jzv015
– volume: 34
  start-page: 417
  year: 2012
  ident: ref_3
  article-title: Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.142
– volume: 20
  start-page: 33
  year: 2017
  ident: ref_27
  article-title: MOPG: A Multi-Objective Evolutionary Algorithm for Prototype Generation
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-015-0454-6
– volume: 19
  start-page: 93
  year: 2016
  ident: ref_10
  article-title: RHC: Non-Parametric Cluster-Based Data Reduction for Efficient k-NN Classification
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-014-0393-7
– ident: ref_9
  doi: 10.1007/978-3-642-29807-3
– volume: 42
  start-page: 86
  year: 2012
  ident: ref_4
  article-title: A Taxonomy and Experimental Study on Prototype Generation for Nearest Neighbor Classification
  publication-title: Trans. Syst. Man Cyber Part C
  doi: 10.1109/TSMCC.2010.2103939
– volume: 13
  start-page: 307
  year: 2008
  ident: ref_32
  article-title: KEEL: A software tool to assess evolutionary algorithms for data mining problems
  publication-title: Soft Comput.
– volume: Volume 8367
  start-page: 290
  year: 2014
  ident: ref_33
  article-title: EHC: Non-parametric Editing by Finding Homogeneous Clusters
  publication-title: Foundations of Information and Knowledge Systems
  doi: 10.1007/978-3-319-04939-7_14
– volume: 47
  start-page: 1002
  year: 2014
  ident: ref_18
  article-title: A Novel Prototype Generation Technique for Handwriting Digit Recognition
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2013.04.016
– volume: 17
  start-page: 255
  year: 2011
  ident: ref_34
  article-title: KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework
  publication-title: J. Multiple Valued Log. Soft Comput.
– ident: ref_35
– volume: 13
  start-page: 21
  year: 1967
  ident: ref_2
  article-title: Nearest Neighbor Pattern Classification
  publication-title: IEEE Trans. Inf. Theor.
  doi: 10.1109/TIT.1967.1053964
– volume: 126
  start-page: 108553
  year: 2022
  ident: ref_7
  article-title: Fast data reduction by space partitioning via convex hull and MBR computation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108553
– volume: 7
  start-page: e464
  year: 2021
  ident: ref_30
  article-title: Optimal 1-NN prototypes for pathological geometries
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.464
– volume: 122
  start-page: 108356
  year: 2022
  ident: ref_17
  article-title: Efficient k-nearest neighbor search based on clustering and adaptive k values
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108356
– volume: 17
  start-page: 819
  year: 1996
  ident: ref_31
  article-title: A sample set condensation algorithm for the class sensitive artificial neural network
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/0167-8655(96)00041-4
– volume: 179
  start-page: 2232
  year: 2009
  ident: ref_21
  article-title: GSA: A Gravitational Search Algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– ident: ref_12
  doi: 10.3390/app10103356
– volume: 28
  start-page: 2415
  year: 2017
  ident: ref_25
  article-title: Prototype Generation on Structural Data Using Dissimilarity Space Representation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2278-8
– volume: 37
  start-page: 1561
  year: 2004
  ident: ref_5
  article-title: High training set size reduction by space partitioning and prototype abstraction
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2003.12.012
– ident: ref_6
  doi: 10.1145/2801081.2801116
– volume: 25
  start-page: 15403
  year: 2021
  ident: ref_11
  article-title: Prototype generation in the string space via approximate median for data reduction in nearest neighbor classification
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-06178-2
– ident: ref_8
  doi: 10.1007/978-0-387-30164-8
– volume: 46
  start-page: 2719
  year: 2016
  ident: ref_22
  article-title: Prototype Generation Using Multiobjective Particle Swarm Optimization for Nearest Neighbor Classification
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2487318
– volume: 157
  start-page: 256
  year: 2015
  ident: ref_20
  article-title: Using gravitational search algorithm in prototype generation for nearest neighbor classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.008
– volume: 74
  start-page: 531
  year: 2018
  ident: ref_14
  article-title: Clustering-Based k-Nearest Neighbor Classification for Large-Scale Data with Neural Codes Representation
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2017.09.038
– ident: ref_1
  doi: 10.1007/978-3-319-10247-4
– volume: 287
  start-page: 22
  year: 2018
  ident: ref_23
  article-title: CHI-PG: A fast prototype generation algorithm for Big Data classification problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.056
– volume: 76
  start-page: 349
  year: 2018
  ident: ref_28
  article-title: Asymmetric learning vector quantization for efficient nearest neighbor classification in dynamic time warping spaces
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.029
– ident: ref_36
– volume: 42
  start-page: 491
  year: 2013
  ident: ref_15
  article-title: Efficient k-NN classification based on homogeneous clusters
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-013-9411-1
– ident: ref_19
– volume: 21
  start-page: 3931
  year: 2017
  ident: ref_26
  article-title: An Online and Incremental GRLVQ Algorithm for Prototype Generation Based on Granular Computing
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2042-0
– volume: 25
  start-page: 321
  year: 2021
  ident: ref_29
  article-title: A Model to Estimate the Self-Organizing Maps Grid Dimension for Prototype Generation
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-205123
– volume: 76
  start-page: 327
  year: 2015
  ident: ref_13
  article-title: Efficient editing and data abstraction by finding homogeneous clusters
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/s10472-015-9472-8
SSID ssj0000778481
Score 2.241055
Snippet The Reduction by Space Partitioning (RSP3) algorithm is a well-known data reduction technique. It summarizes the training data and generates representative...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 572
SubjectTerms Accuracy
Algorithms
Classification
Clustering
Computing costs
Data reduction
instance-based classification
kNN classifier
Partitioning
prototype generation
Prototypes
Reduction by Space Partitioning
RSP3
Size reduction
Statistical tests
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI6AcYADb8R4KQc4oYq26Zr0hAZiQkKaJgYStyp1EkCCDdbCgV-P3WUDhODCpYfUaqt-tmO77mfGDhQUsQJwQQu9X5DYRAeZDbMgdYlpxRmmJKDqYROy21W3t1nPF9xK31Y58Ym1ozZDoBr5MdGUyxjTpvTk-SWgqVH0ddWP0JhlDWIqQz1vnJ53e1fTKksoJfHFjzveBeb3x4RbJKIY45T4215UU_b_8Mj1NtNZ_u8DrrAlH2Dy9lgjVtmMHayxxS-0g-vssqPLil_74RC8byvef3i3_IpoXAkoXjcS4CJRB_M-ptWW90jHfPWWtx_v8NbV_VO5wW4659dnF4EfqhCASGUVFC2IE-tkVICLHOBROpVYrVIJGp1NZKHAkMAog7GPExJdgG7pFI3JRaawVmyyucFwYLcYd04ZoXWSmiJM8OoacdeRAKMyCCMIm-xo8npz8IzjNPjiMcfMg8DIv4LRZIdT6ecx08YvcqeE1FSG-LHrheHoLvfmlqdgHFjM5iR14ZlQZ6EABwIKLaW0tsl2JyDm3mjL_BPB7b9P77CFmP6CqLtadtlcNXq1e2we3qqHcrTvdfADfAPopQ
  priority: 102
  providerName: ProQuest
Title Fast Training Set Size Reduction Using Simple Space Partitioning Algorithms
URI https://www.proquest.com/docview/2756725236
https://doaj.org/article/6cdfce49975546d0a903cfc3cba777ee
Volume 13
WOSCitedRecordID wos000901182900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: P5Z
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: K7-
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: PIMPY
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQMMCAeIpCqTzAhKImcRI7Y4tagapWUVukwhI5FxsqlRa1gYGB3845SasihFhYbnBOeXwXn--cy3eEXApIXAGgLR-9n-UpT1qhskMr0F7quyGmJCDyZhO81xOjURittfoyNWEFPXABXD2AVIPCuJybeqrUlqHNQAODRHLOlTLe1-bhWjKV-2DODU98UenOMK-vG3s5zHExPnG_rUE5Vf8PT5wvL-19slfGhbRR3M8B2VDTQ7K7xhZ4RDptucjosOzpQAcqo4Pxh6J9w75q8KX5938cNIy_dIDZsKKRecJy05U2Jk-z-Th7flkck_t2a3hza5W9ECxgAc-sxAfXU5o7CWhHA0quhaekCDhI9BGOggRX8lSkGLJoxnHmSl8GOAe0kyZKsROyOZ1N1SmhWouUSYlgJraHZ5doLukwSEUItgN2hVwv0YmhJAo3_SomMSYMBst4HcsKuVppvxYEGb_oNQ3QKx1Da50PoLHj0tjxX8aukOrSTHE51xaxIbDnLibUwdl_XOOc7LjmF4e8ZKVKNrP5m7og2_CejRfzGtlqtnpRv5a_big73ELZ_WyhjPxHPB7ddaOHLzJJ4OA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aHRJw4DdaYYAP7ISiOXYaOweExo9qVbeqokUap8x5tsekrS1NAMEfxd_Ic5qUIQS3Hbjk4FiWnPf5PT_n-fsAnmkshEb0UY-8X5S4xESZ41mU-sT2REYpCepabEKNRvroKBtvwI_2Lkwoq2x9Yu2o7RzDGfluoClXgtKm9OXiUxRUo8Lf1VZCYwWLofv2lVK28sXgDdl3R4j-2-nr_ahRFYhQpqqKih6KxHkVF-hjj_RUXifO6FShodUWOywoJlptKfh7qWgNmJ5JCU0-toVzksa9ApsJgZ13YHM8OBx_WJ_qcKUCP_2qwl7KjO8GnMQyFrQvEr_Fvloi4I8IUIe1_q3_7YPchpvNBprtrRB_Bzbc7C7cuECreA-GfVNWbNqIX7CJq9jk9Ltj7wJNbQAiqwslqDFQI7PJwqBj47CGmtNptnd2QlOtPp6X9-H9pczmAXRm85nbAua9ttKYJLUFT2h0Q7g2sUSrM-Qx8i48b82ZY8OoHoQ9znLKrILx84vG78LOuvdixSTyl36vAjLWfQL_d90wX57kjTvJU7QeHWWrKlQZWm4yLtGjxMIopZzrwnYLmrxxSmX-CzEP__36KVzbnx4e5AeD0fARXBfhxkddwbMNnWr52T2Gq_ilOi2XTxr8Mzi-bIT9BISrSKw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aHULjwPg1rbCBD-yEoiZ2GjsHhDa2iqmoqtYh7RacZ3tM2trSBBD8afx1PKdOGUJw24FLDo5lyfH33vNznr8P4IXCkitEF_XJ-0WpTXWU2ziPMpeaPs8pJUHViE3I0UidneXjNfjR3oXxZZWtT2wctZmhPyPveZpyySltynoulEWMDwev558iryDl_7S2chpLiAztt6-UvlWvjg9prfc4HxydvnkbBYWBCEUm66jsI0-tk0mJLnFIT-lUarXKJGqyvMRiSfHRKEMbASck2YPu64yQ5RJTWito3FuwLgUlPR1YPzgajU9WJzyxlJ6rflltL0Qe9zxmEpFw2iPx3-JgIxfwRzRoQtxg83_-OPfhXthYs_2lJTyANTt9CHev0S0-guFAVzU7DaIYbGJrNrn4btmJp6_1AGVNAQU1espkNplrtGzsbSucWrP9y3Oaav3xqnoM729kNlvQmc6mdhuYc8oIrdPMlHFKo2vCu04EGpVjnGDchZft0hYYmNa94MdlQRmXB0JxHQhd2Fv1ni8ZRv7S78CjZNXH84I3DbPFeRHcTJGhcWgpi5W--tDEOo8FOhRYaimltV3YaQFUBGdVFb_Q8-Tfr5_DHYJV8e54NHwKG9xfBGkKe3agUy8-2124jV_qi2rxLJgCgw83DbCfyIBRRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Training+Set+Size+Reduction+Using+Simple+Space+Partitioning+Algorithms&rft.jtitle=Information+%28Basel%29&rft.au=Stefanos+Ougiaroglou&rft.au=Theodoros+Mastromanolis&rft.au=Georgios+Evangelidis&rft.au=Dionisis+Margaris&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=2078-2489&rft.volume=13&rft.issue=12&rft.spage=572&rft_id=info:doi/10.3390%2Finfo13120572&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6cdfce49975546d0a903cfc3cba777ee
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon