State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network

To reduce the influence of the measurement data noise on state of charge (SOC) estimation, a novel neural network method is proposed by combining an input data processing method with the conventional gated recurrent unit recurrent neural network (GRU-RNN) method. First, a denoising autoencoder neura...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy (Oxford) Ročník 227; s. 120451
Hlavní autori: Chen, Junxiong, Feng, Xiong, Jiang, Lin, Zhu, Qiao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 15.07.2021
Elsevier BV
Predmet:
ISSN:0360-5442, 1873-6785
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract To reduce the influence of the measurement data noise on state of charge (SOC) estimation, a novel neural network method is proposed by combining an input data processing method with the conventional gated recurrent unit recurrent neural network (GRU-RNN) method. First, a denoising autoencoder neural network (DAE-NN) is introduced to extract the useful data features by reducing the noise and increasing the dimensions of the battery measurement data. Then, the feature-extracted data is utilized to train the GRU-RNN, which is widely used in SOC estimation. Notice that a good input data processing method plays a key role in the SOC estimation performance and the generalization ability. Therefore, it is not trivial to combine the data processing method (DAE-NN), and the SOC estimation method (GRU-RNN), which is named DAE-GRU. Compared with the traditional GRU-RNN, the new DAE-GRU method shows a better nonlinear mapping relation between the measurement data and the SOC because of the involvement of the DAE-NN. Finally, three different driving cycles are given in the experiment to cross-train and verify the proposed DAE-GRU, GRU-RNN and RNN. Compared with the GRU-RNN and the RNN, it is demonstrated that the proposed DAE-GRU has better accuracy and robustness in the SOC estimation. •A combined neural network method is proposed for the SOC estimation.•A DAE-NN is introduced to extract the useful battery data features.•A GRU-RNN is used to achieve the SOC estimation using the feature-extracted data.•The method exhibits accurate SOC estimation and excellent generalization ability.
AbstractList To reduce the influence of the measurement data noise on state of charge (SOC) estimation, a novel neural network method is proposed by combining an input data processing method with the conventional gated recurrent unit recurrent neural network (GRU-RNN) method. First, a denoising autoencoder neural network (DAE-NN) is introduced to extract the useful data features by reducing the noise and increasing the dimensions of the battery measurement data. Then, the feature-extracted data is utilized to train the GRU-RNN, which is widely used in SOC estimation. Notice that a good input data processing method plays a key role in the SOC estimation performance and the generalization ability. Therefore, it is not trivial to combine the data processing method (DAE-NN), and the SOC estimation method (GRU-RNN), which is named DAE-GRU. Compared with the traditional GRU-RNN, the new DAE-GRU method shows a better nonlinear mapping relation between the measurement data and the SOC because of the involvement of the DAE-NN. Finally, three different driving cycles are given in the experiment to cross-train and verify the proposed DAE-GRU, GRU-RNN and RNN. Compared with the GRU-RNN and the RNN, it is demonstrated that the proposed DAE-GRU has better accuracy and robustness in the SOC estimation.
To reduce the influence of the measurement data noise on state of charge (SOC) estimation, a novel neural network method is proposed by combining an input data processing method with the conventional gated recurrent unit recurrent neural network (GRU-RNN) method. First, a denoising autoencoder neural network (DAE-NN) is introduced to extract the useful data features by reducing the noise and increasing the dimensions of the battery measurement data. Then, the feature-extracted data is utilized to train the GRU-RNN, which is widely used in SOC estimation. Notice that a good input data processing method plays a key role in the SOC estimation performance and the generalization ability. Therefore, it is not trivial to combine the data processing method (DAE-NN), and the SOC estimation method (GRU-RNN), which is named DAE-GRU. Compared with the traditional GRU-RNN, the new DAE-GRU method shows a better nonlinear mapping relation between the measurement data and the SOC because of the involvement of the DAE-NN. Finally, three different driving cycles are given in the experiment to cross-train and verify the proposed DAE-GRU, GRU-RNN and RNN. Compared with the GRU-RNN and the RNN, it is demonstrated that the proposed DAE-GRU has better accuracy and robustness in the SOC estimation. •A combined neural network method is proposed for the SOC estimation.•A DAE-NN is introduced to extract the useful battery data features.•A GRU-RNN is used to achieve the SOC estimation using the feature-extracted data.•The method exhibits accurate SOC estimation and excellent generalization ability.
ArticleNumber 120451
Author Jiang, Lin
Feng, Xiong
Zhu, Qiao
Chen, Junxiong
Author_xml – sequence: 1
  givenname: Junxiong
  surname: Chen
  fullname: Chen, Junxiong
  email: cjxzlm@my.swjtu.edu.cn
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
– sequence: 2
  givenname: Xiong
  surname: Feng
  fullname: Feng, Xiong
  email: tiga@my.swjtu.edu.cn
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
– sequence: 3
  givenname: Lin
  surname: Jiang
  fullname: Jiang, Lin
  email: trover@163.com
  organization: Sichuan Aerospace System Engineering Research Institute, Chengdu, 610100, China
– sequence: 4
  givenname: Qiao
  surname: Zhu
  fullname: Zhu, Qiao
  email: zhuqiao@swjtu.edu.cn
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
BookMark eNqFkTtvFDEUhS0UJDaBf0BhiYZmFr9mxqZAQhEkSJEoktSW176z8TJrBz-CtuKvx5uhQCmgur7WOUf2d07RSYgBEHpLyZoSOnzYrSFA2h7WjDC6poyInr5AKypH3g2j7E_QivCBdL0Q7BU6zXlHCOmlUiv0-7qYAjhO2N6ZtAUMufi9KT6G4-Xsy52v--64bkwpkA64Zh-22EGI_ulkaokQbHSQsAkOb1ugwwlsTQlCwTX48tcaoCYzt1F-xfTjNXo5mTnDmz_zDN1-_XJzftldfb_4dv75qrN8GEu34VJZNzopjLKWKaYko3bkozRiGuwgTe-sooNgynA3qZEzwh2IDQzWcdnzM_R-yb1P8Wdtn9R7ny3MswkQa9asHwVv5AbVpO-eSXexptBe11SC9D0hgjSVWFQ2xZwTTPo-NXDpoCnRx1b0Ti-t6GMremml2T4-s1lfnnCXZPz8P_OnxQyN1IOHpLP1DT043_gW7aL_d8Aj4oyvEg
CitedBy_id crossref_primary_10_3390_pr11030887
crossref_primary_10_3390_en16010023
crossref_primary_10_3390_condmat6030028
crossref_primary_10_3390_en15134670
crossref_primary_10_1016_j_engappai_2023_107698
crossref_primary_10_1016_j_epsr_2024_110284
crossref_primary_10_1016_j_est_2024_111626
crossref_primary_10_1016_j_est_2025_115833
crossref_primary_10_1016_j_egyai_2025_100585
crossref_primary_10_1039_D2SE01209J
crossref_primary_10_1016_j_energy_2022_125375
crossref_primary_10_1016_j_apenergy_2024_122666
crossref_primary_10_1016_j_energy_2022_123233
crossref_primary_10_1016_j_ress_2023_109123
crossref_primary_10_1007_s00202_025_03235_z
crossref_primary_10_1016_j_est_2023_108974
crossref_primary_10_1016_j_est_2022_104664
crossref_primary_10_1016_j_energy_2025_137539
crossref_primary_10_3390_ma17174193
crossref_primary_10_1016_j_energy_2024_132583
crossref_primary_10_1007_s43236_021_00294_w
crossref_primary_10_1016_j_est_2023_110004
crossref_primary_10_1109_ACCESS_2024_3408220
crossref_primary_10_1016_j_est_2025_116899
crossref_primary_10_1016_j_renene_2022_08_123
crossref_primary_10_3390_s23062924
crossref_primary_10_1109_ACCESS_2023_3326725
crossref_primary_10_3390_en16042008
crossref_primary_10_1016_j_jobe_2023_105961
crossref_primary_10_1016_j_engappai_2025_110913
crossref_primary_10_1016_j_est_2021_103319
crossref_primary_10_1016_j_apenergy_2025_126040
crossref_primary_10_1016_j_procs_2025_04_108
crossref_primary_10_1016_j_rser_2023_114262
crossref_primary_10_1016_j_est_2025_115575
crossref_primary_10_1016_j_est_2024_111527
crossref_primary_10_1007_s11431_021_2068_8
crossref_primary_10_1016_j_apenergy_2024_123056
crossref_primary_10_1007_s11581_024_05811_y
crossref_primary_10_1016_j_jpowsour_2022_231441
crossref_primary_10_1016_j_etran_2024_100322
crossref_primary_10_1016_j_est_2024_112571
crossref_primary_10_1016_j_energy_2021_121236
crossref_primary_10_1016_j_energy_2025_136264
crossref_primary_10_1002_we_2761
crossref_primary_10_1007_s00202_024_02371_2
crossref_primary_10_3390_en15062064
crossref_primary_10_1109_TTE_2023_3334826
crossref_primary_10_1007_s11581_025_06560_2
crossref_primary_10_1016_j_energy_2024_133417
crossref_primary_10_1016_j_est_2024_112107
crossref_primary_10_1016_j_est_2023_107495
crossref_primary_10_1016_j_jpowsour_2024_235312
crossref_primary_10_1016_j_est_2023_107650
crossref_primary_10_1016_j_energy_2022_124915
crossref_primary_10_1109_ACCESS_2024_3509472
crossref_primary_10_1016_j_energy_2023_127409
crossref_primary_10_1016_j_energy_2024_130492
crossref_primary_10_1016_j_est_2023_107728
crossref_primary_10_1016_j_est_2022_105384
crossref_primary_10_1016_j_apenergy_2022_120037
crossref_primary_10_1016_j_est_2025_116202
crossref_primary_10_1016_j_est_2024_110575
crossref_primary_10_1016_j_jpowsour_2024_235272
crossref_primary_10_1016_j_est_2023_108774
crossref_primary_10_3390_jmse11010200
crossref_primary_10_1016_j_jpowsour_2024_235827
crossref_primary_10_1149_1945_7111_adee4d
crossref_primary_10_1016_j_est_2023_106904
crossref_primary_10_1016_j_energy_2023_130025
crossref_primary_10_1016_j_energy_2025_137974
crossref_primary_10_1016_j_est_2022_105396
crossref_primary_10_1016_j_fuel_2023_129797
crossref_primary_10_1016_j_apenergy_2022_120043
crossref_primary_10_1016_j_est_2024_112887
crossref_primary_10_3233_JIFS_232465
crossref_primary_10_3390_wevj16060291
crossref_primary_10_1002_er_8596
crossref_primary_10_1016_j_est_2023_109056
crossref_primary_10_1016_j_est_2023_109696
crossref_primary_10_1016_j_etran_2024_100378
crossref_primary_10_1016_j_egyr_2023_01_109
crossref_primary_10_1051_e3sconf_202340904008
crossref_primary_10_1002_adma_202101474
crossref_primary_10_1016_j_energy_2023_129801
crossref_primary_10_1016_j_est_2023_107677
crossref_primary_10_1016_j_energy_2022_124933
crossref_primary_10_1016_j_energy_2022_124538
crossref_primary_10_3390_wevj13090159
crossref_primary_10_1103_PhysRevD_111_024067
crossref_primary_10_1109_TTE_2023_3291501
crossref_primary_10_3390_fractalfract7050391
crossref_primary_10_1016_j_jpowsour_2024_235374
crossref_primary_10_1109_TVT_2023_3267500
crossref_primary_10_1016_j_egyr_2022_07_017
crossref_primary_10_1016_j_energy_2024_130913
crossref_primary_10_1016_j_est_2024_113986
crossref_primary_10_1016_j_eswa_2023_121609
crossref_primary_10_1016_j_est_2025_115934
crossref_primary_10_1109_TII_2023_3316289
crossref_primary_10_1088_1361_6501_ac95b2
crossref_primary_10_3390_app14156648
crossref_primary_10_1016_j_etran_2023_100286
crossref_primary_10_1016_j_energy_2021_122406
crossref_primary_10_1016_j_rser_2025_115803
crossref_primary_10_1109_TEC_2024_3446168
crossref_primary_10_1016_j_engappai_2024_107946
crossref_primary_10_1016_j_energy_2023_127846
crossref_primary_10_1016_j_est_2023_109196
crossref_primary_10_3390_batteries10030089
crossref_primary_10_1016_j_est_2023_107296
crossref_primary_10_3390_app12052305
crossref_primary_10_1016_j_est_2023_108421
crossref_primary_10_1002_er_7643
crossref_primary_10_1002_ente_202200921
Cites_doi 10.1016/j.rser.2019.06.040
10.1016/j.rser.2019.109334
10.1109/ACCESS.2018.2797976
10.3390/en12091592
10.1016/j.neucom.2015.02.096
10.1016/j.jclepro.2020.124110
10.1016/j.energy.2020.119025
10.1016/j.apenergy.2020.115494
10.1016/j.jpowsour.2015.01.145
10.1016/j.jpowsour.2018.06.104
10.1016/j.energy.2019.03.059
10.1162/neco.1997.9.8.1735
10.1016/j.jpowsour.2019.227558
10.1007/s00521-016-2790-x
10.1016/j.est.2020.101980
10.1016/j.jpowsour.2020.228691
10.1016/j.jpowsour.2020.228375
10.1016/j.est.2020.101459
10.1016/j.energy.2019.116538
10.1016/j.est.2020.101978
10.1109/72.279181
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jul 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 15, 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2021.120451
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2021_120451
S0360544221007003
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-b389cd7d84a9cc2929821c7378a4f6c68a5dc916429a3df973203de4be6cd3853
ISICitedReferencesCount 148
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652610900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Wed Oct 01 13:28:09 EDT 2025
Wed Aug 13 09:31:31 EDT 2025
Sat Nov 29 07:21:56 EST 2025
Tue Nov 18 21:49:27 EST 2025
Fri Feb 23 02:46:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Gated recurrent unit
Denoising autoencoder
State of charge estimation
Electric vehicle
Recurrent neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-b389cd7d84a9cc2929821c7378a4f6c68a5dc916429a3df973203de4be6cd3853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2540550040
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2574312069
proquest_journals_2540550040
crossref_primary_10_1016_j_energy_2021_120451
crossref_citationtrail_10_1016_j_energy_2021_120451
elsevier_sciencedirect_doi_10_1016_j_energy_2021_120451
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhu, Duan, Zhang, Zhang, Zhang (bib5) 2020; 277
Hannan, Lipu, Hussain, Saad, Ayob (bib10) 2018; 6
Yang, Li, Li, Miao (bib16) 2019; 175
Li, Xiao, Fan (bib17) 2019; 12
Hu, Feng, Liu, Zhang, Xie, Liu (bib1) 2019; 114
Hossain Lipu, Hannan, Hussain, Ayob, Saad, Karim, How (bib2) 2020; 277
Ben Sassi, Errahimi, ES-Sbai (bib7) 2020; 32
Goodfellow, Bengio, Courville (bib21) 2016
Chemali, Kollmeyer, Preindl, Emadi (bib9) 2018; 400
Meng, Ding, Zhang, Zhang (bib24) 2018; 30
Gorgel, Simsek (bib22) 2019; 355
K. Cho, B. van Merriënboer, D. Bahdanau, Y. Bengio, On the Properties of Neural Machine Translation: Encoder-Decoder Approaches, arXiv e-prints abs/1409.1259, URL
Fasahat, Manthouri (bib15) 2020; 469
Bian, He, Yang, Huang (bib13) 2020; 449
Hochreiter, Schmidhuber (bib19) 1997; 9
Bian, He, Yang (bib12) 2020; 191
Bengio, Simard, Frasconi (bib18) 1994; 5
Sheng, Xiao (bib8) 2015; 281
Sun, Yu, Wang, Zhang, Huang, Zhou, Amietszajew, Bhagat (bib4) 2021; 214
Zhang, Guo, Zhang (bib6) 2020; 32
.
le Cao, bing Huang, chun Sun (bib23) 2016; 174
Hong, Wang, Chen, Wang, Qu (bib11) 2020; 30
Shrivastava, Soon, Idris, Mekhilef (bib3) 2019; 113
Ma, Wang, Yang, Cheng, Lu, Tao, Zhou (bib14) 2020; 474
Hannan (10.1016/j.energy.2021.120451_bib10) 2018; 6
le Cao (10.1016/j.energy.2021.120451_bib23) 2016; 174
Sun (10.1016/j.energy.2021.120451_bib4) 2021; 214
Ma (10.1016/j.energy.2021.120451_bib14) 2020; 474
Yang (10.1016/j.energy.2021.120451_bib16) 2019; 175
Ben Sassi (10.1016/j.energy.2021.120451_bib7) 2020; 32
Goodfellow (10.1016/j.energy.2021.120451_bib21) 2016
Hochreiter (10.1016/j.energy.2021.120451_bib19) 1997; 9
Zhang (10.1016/j.energy.2021.120451_bib6) 2020; 32
Sheng (10.1016/j.energy.2021.120451_bib8) 2015; 281
Hossain Lipu (10.1016/j.energy.2021.120451_bib2) 2020; 277
Shrivastava (10.1016/j.energy.2021.120451_bib3) 2019; 113
Bengio (10.1016/j.energy.2021.120451_bib18) 1994; 5
Zhu (10.1016/j.energy.2021.120451_bib5) 2020; 277
Hong (10.1016/j.energy.2021.120451_bib11) 2020; 30
Li (10.1016/j.energy.2021.120451_bib17) 2019; 12
Gorgel (10.1016/j.energy.2021.120451_bib22) 2019; 355
10.1016/j.energy.2021.120451_bib20
Hu (10.1016/j.energy.2021.120451_bib1) 2019; 114
Chemali (10.1016/j.energy.2021.120451_bib9) 2018; 400
Bian (10.1016/j.energy.2021.120451_bib13) 2020; 449
Bian (10.1016/j.energy.2021.120451_bib12) 2020; 191
Fasahat (10.1016/j.energy.2021.120451_bib15) 2020; 469
Meng (10.1016/j.energy.2021.120451_bib24) 2018; 30
References_xml – volume: 277
  start-page: 115494
  year: 2020
  ident: bib5
  article-title: Co-estimation of model parameters and state-of-charge for lithium-ion batteries with recursive restricted total least squares and unscented Kalman filter
  publication-title: Appl Energy
– year: 2016
  ident: bib21
  article-title: Deep learning
– volume: 355
  start-page: 325
  year: 2019
  end-page: 342
  ident: bib22
  article-title: Face recognition via deep stacked denoising sparse autoencoders (DSDSA)
  publication-title: Appl Math Comput
– volume: 174
  start-page: 60
  year: 2016
  end-page: 71
  ident: bib23
  article-title: Building feature space of extreme learning machine with sparse denoising stacked-autoencoder
  publication-title: Neurocomputing
– volume: 281
  start-page: 131
  year: 2015
  end-page: 137
  ident: bib8
  article-title: Electric vehicle state of charge estimation: nonlinear correlation and fuzzy support vector machine
  publication-title: J Power Sources
– volume: 449
  start-page: 227558
  year: 2020
  ident: bib13
  article-title: State-of-charge sequence estimation of lithium-ion battery based on bidirectional long short-term memory encoder-decoder architecture
  publication-title: J Power Sources
– volume: 114
  start-page: 109334
  year: 2019
  ident: bib1
  article-title: State estimation for advanced battery management: key challenges and future trends
  publication-title: Renew Sustain Energy Rev
– volume: 30
  start-page: 2083
  year: 2018
  end-page: 2100
  ident: bib24
  article-title: Research of stacked denoising sparse autoencoder
  publication-title: Neural Comput Appl
– volume: 6
  start-page: 10069
  year: 2018
  end-page: 10079
  ident: bib10
  article-title: Neural network approach for estimating state of charge of lithium-ion battery using backtracking search algorithm
  publication-title: IEEE Access
– volume: 12
  start-page: 1592
  year: 2019
  ident: bib17
  article-title: An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit
  publication-title: Energies
– volume: 32
  start-page: 101980
  year: 2020
  ident: bib6
  article-title: An improved adaptive unscented kalman filtering for state of charge online estimation of lithium-ion battery
  publication-title: J Energy Storage
– reference: K. Cho, B. van Merriënboer, D. Bahdanau, Y. Bengio, On the Properties of Neural Machine Translation: Encoder-Decoder Approaches, arXiv e-prints abs/1409.1259, URL
– volume: 191
  start-page: 116538
  year: 2020
  ident: bib12
  article-title: Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries
  publication-title: Energy
– volume: 175
  start-page: 66
  year: 2019
  end-page: 75
  ident: bib16
  article-title: State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network
  publication-title: Energy
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib19
  article-title: Long short-term memory
  publication-title: Neural Comput
– volume: 113
  start-page: 109233
  year: 2019
  ident: bib3
  article-title: Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries
  publication-title: Renew Sustain Energy Rev
– volume: 32
  start-page: 101978
  year: 2020
  ident: bib7
  article-title: State of charge estimation by multi-innovation unscented Kalman filter for vehicular applications
  publication-title: J Energy Storage
– volume: 400
  start-page: 242
  year: 2018
  end-page: 255
  ident: bib9
  article-title: State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach
  publication-title: J Power Sources
– volume: 214
  start-page: 119025
  year: 2021
  ident: bib4
  article-title: State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator
  publication-title: Energy
– volume: 30
  start-page: 101459
  year: 2020
  ident: bib11
  article-title: Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles
  publication-title: J Energy Storage
– reference: .
– volume: 474
  start-page: 228691
  year: 2020
  ident: bib14
  article-title: Robust state of charge estimation based on a sequence-to-sequence mapping model with process information
  publication-title: J Power Sources
– volume: 277
  start-page: 124110
  year: 2020
  ident: bib2
  article-title: Data-driven state of charge estimation of lithium-ion batteries: algorithms, implementation factors, limitations and future trends
  publication-title: J Clean Prod
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: bib18
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans Neural Network
– volume: 469
  start-page: 228375
  year: 2020
  ident: bib15
  article-title: State of charge estimation of lithium-ion batteries using hybrid autoencoder and Long Short Term Memory neural networks
  publication-title: J Power Sources
– volume: 355
  start-page: 325
  year: 2019
  ident: 10.1016/j.energy.2021.120451_bib22
  article-title: Face recognition via deep stacked denoising sparse autoencoders (DSDSA)
  publication-title: Appl Math Comput
– volume: 113
  start-page: 109233
  year: 2019
  ident: 10.1016/j.energy.2021.120451_bib3
  article-title: Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.06.040
– volume: 114
  start-page: 109334
  year: 2019
  ident: 10.1016/j.energy.2021.120451_bib1
  article-title: State estimation for advanced battery management: key challenges and future trends
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.109334
– volume: 6
  start-page: 10069
  year: 2018
  ident: 10.1016/j.energy.2021.120451_bib10
  article-title: Neural network approach for estimating state of charge of lithium-ion battery using backtracking search algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2797976
– volume: 12
  start-page: 1592
  issue: 9
  year: 2019
  ident: 10.1016/j.energy.2021.120451_bib17
  article-title: An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit
  publication-title: Energies
  doi: 10.3390/en12091592
– volume: 174
  start-page: 60
  year: 2016
  ident: 10.1016/j.energy.2021.120451_bib23
  article-title: Building feature space of extreme learning machine with sparse denoising stacked-autoencoder
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.096
– year: 2016
  ident: 10.1016/j.energy.2021.120451_bib21
– volume: 277
  start-page: 124110
  year: 2020
  ident: 10.1016/j.energy.2021.120451_bib2
  article-title: Data-driven state of charge estimation of lithium-ion batteries: algorithms, implementation factors, limitations and future trends
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.124110
– volume: 214
  start-page: 119025
  year: 2021
  ident: 10.1016/j.energy.2021.120451_bib4
  article-title: State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119025
– volume: 277
  start-page: 115494
  year: 2020
  ident: 10.1016/j.energy.2021.120451_bib5
  article-title: Co-estimation of model parameters and state-of-charge for lithium-ion batteries with recursive restricted total least squares and unscented Kalman filter
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115494
– volume: 281
  start-page: 131
  year: 2015
  ident: 10.1016/j.energy.2021.120451_bib8
  article-title: Electric vehicle state of charge estimation: nonlinear correlation and fuzzy support vector machine
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.01.145
– volume: 400
  start-page: 242
  year: 2018
  ident: 10.1016/j.energy.2021.120451_bib9
  article-title: State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.06.104
– volume: 175
  start-page: 66
  year: 2019
  ident: 10.1016/j.energy.2021.120451_bib16
  article-title: State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.059
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.energy.2021.120451_bib19
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 449
  start-page: 227558
  year: 2020
  ident: 10.1016/j.energy.2021.120451_bib13
  article-title: State-of-charge sequence estimation of lithium-ion battery based on bidirectional long short-term memory encoder-decoder architecture
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2019.227558
– volume: 30
  start-page: 2083
  issue: 7
  year: 2018
  ident: 10.1016/j.energy.2021.120451_bib24
  article-title: Research of stacked denoising sparse autoencoder
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2790-x
– ident: 10.1016/j.energy.2021.120451_bib20
– volume: 32
  start-page: 101980
  year: 2020
  ident: 10.1016/j.energy.2021.120451_bib6
  article-title: An improved adaptive unscented kalman filtering for state of charge online estimation of lithium-ion battery
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2020.101980
– volume: 474
  start-page: 228691
  year: 2020
  ident: 10.1016/j.energy.2021.120451_bib14
  article-title: Robust state of charge estimation based on a sequence-to-sequence mapping model with process information
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228691
– volume: 469
  start-page: 228375
  year: 2020
  ident: 10.1016/j.energy.2021.120451_bib15
  article-title: State of charge estimation of lithium-ion batteries using hybrid autoencoder and Long Short Term Memory neural networks
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228375
– volume: 30
  start-page: 101459
  year: 2020
  ident: 10.1016/j.energy.2021.120451_bib11
  article-title: Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2020.101459
– volume: 191
  start-page: 116538
  year: 2020
  ident: 10.1016/j.energy.2021.120451_bib12
  article-title: Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116538
– volume: 32
  start-page: 101978
  year: 2020
  ident: 10.1016/j.energy.2021.120451_bib7
  article-title: State of charge estimation by multi-innovation unscented Kalman filter for vehicular applications
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2020.101978
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 10.1016/j.energy.2021.120451_bib18
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans Neural Network
  doi: 10.1109/72.279181
SSID ssj0005899
Score 2.6494398
Snippet To reduce the influence of the measurement data noise on state of charge (SOC) estimation, a novel neural network method is proposed by combining an input data...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120451
SubjectTerms Data processing
Denoising autoencoder
Electric vehicle
energy
extracts
Feature extraction
Gated recurrent unit
gates
information processing
Lithium
lithium batteries
Lithium-ion batteries
Lithium-ion battery
Neural networks
Noise measurement
Noise reduction
processing technology
Rechargeable batteries
Recurrent neural network
Recurrent neural networks
State of charge
State of charge estimation
Title State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network
URI https://dx.doi.org/10.1016/j.energy.2021.120451
https://www.proquest.com/docview/2540550040
https://www.proquest.com/docview/2574312069
Volume 227
WOSCitedRecordID wos000652610900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKhgQXBIOJsoGMhLhUqVrnh5PjNHWCqSogdVLFxUoch2XakrI2VXfiX-c923E7fmjjwCVKXCdN874-f3557zMh77IwinmSxV4Wq8KD8Rolb4PCC-WQ8yT0VVEM9GITfDKJZ7Pkc6ezamthVpe8quL1Opn_V1NDGxgbS2f_wdzuotAA-2B02ILZYXsvw2v6qLPFUQRJ9VBG48oRQ2Dd52Vz5eFhprU1b3qNjheAA6pLvZc2yxr1LVFmAuPqGGnDIhdptZwacANbhyiJCYauTEL5rVC_KSxERdO1SaJ3YYdjVxVSreFevrXts9LmCMMzdY2npY1qj0uH5a_nDbZ8KdN6O3LBhhgSNbWbrmJr4IVBcMsbM8Z78_4QVfKH3h99vAk3XPSV_g19vLLtvxnT2vf4k0_i5Gw8FtPRbPp-_t3D1cbwrbxdeuUB2WU8TMAb7h59HM1ON8lBsV551N1hW3SpMwN__-K_kZpfhnfNWaZPyRM72aBHBiTPSEdVe-RRW4u-2CP7o02dI3S0jn7xnPzQKKJ1QQ2K6AZF2LiFImpRRDWKqEMR3UIRBRRRjSLqYEMRRVuHBkXUougFOTsZTY8_eHatDk_6EV96GRBfmfM8DtJESgakO2ZDyX0ep0ERyShOw1zCVAToT-rnBWpEDfxcBZmKZO4DZ9wnO1VdqZeEMharQDKZ5dIPMhgieKZSpng6yBJg10mX-O3DFtIK2eN6KpeizVi8EMZEAk0kjIm6xHNnzY2Qyx39eWtHYcmoIZkCcHjHmYet2YX1CwvBcGYU4pDZJW_dx-DK8f1cWqm6wT5I59kgSl7do88Bebz5Ux2SneV1o16Th3K1LBfXbyygfwIflsXG
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+charge+estimation+of+lithium-ion+battery+using+denoising+autoencoder+and+gated+recurrent+unit+recurrent+neural+network&rft.jtitle=Energy+%28Oxford%29&rft.au=Chen%2C+Junxiong&rft.au=Xiong%2C+Feng&rft.au=Jiang%2C+Lin&rft.au=Zhu%2C+Qiao&rft.date=2021-07-15&rft.issn=0360-5442&rft.volume=227+p.120451-&rft_id=info:doi/10.1016%2Fj.energy.2021.120451&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon