Clustering multivariate functional data using unsupervised binary trees

•An effective model-based clustering algorithm for multivariate functional data.•The algorithm is recursive and based on a set of binary trees.•The number of clusters is determined in a data-driven way.•New data are easily classified. A model-based clustering algorithm is proposed for a general clas...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis Vol. 168; p. 107376
Main Authors: Golovkine, Steven, Klutchnikoff, Nicolas, Patilea, Valentin
Format: Journal Article
Language:English
Published: Elsevier B.V 01.04.2022
Elsevier
Subjects:
ISSN:0167-9473, 1872-7352
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •An effective model-based clustering algorithm for multivariate functional data.•The algorithm is recursive and based on a set of binary trees.•The number of clusters is determined in a data-driven way.•New data are easily classified. A model-based clustering algorithm is proposed for a general class of functional data for which the components could be curves or images. The random functional data realizations could be measured with errors at discrete, and possibly random, points in the definition domain. The idea is to build a set of binary trees by recursive splitting of the observations. The number of groups are determined in a data-driven way. The new algorithm provides easily interpretable results and fast predictions for online data sets. Results on simulated datasets reveal good performance in various complex settings. The methodology is applied to the analysis of vehicle trajectories on a German roundabout.
AbstractList •An effective model-based clustering algorithm for multivariate functional data.•The algorithm is recursive and based on a set of binary trees.•The number of clusters is determined in a data-driven way.•New data are easily classified. A model-based clustering algorithm is proposed for a general class of functional data for which the components could be curves or images. The random functional data realizations could be measured with errors at discrete, and possibly random, points in the definition domain. The idea is to build a set of binary trees by recursive splitting of the observations. The number of groups are determined in a data-driven way. The new algorithm provides easily interpretable results and fast predictions for online data sets. Results on simulated datasets reveal good performance in various complex settings. The methodology is applied to the analysis of vehicle trajectories on a German roundabout.
We propose a model-based clustering algorithm for a general class of functional data for which the components could be curves or images. The random functional data realizations could be measured with error at discrete, and possibly random, points in the definition domain. The idea is to build a set of binary trees by recursive splitting of the observations. The number of groups are determined in a data-driven way. The new algorithm provides easily interpretable results and fast predictions for online data sets. Results on simulated datasets reveal good performance in various complex settings. The methodology is applied to the analysis of vehicle trajectories on a German roundabout.
A model-based clustering algorithm is proposed for a general class of functional data for which the components could be curves or images. The random functional data realizations could be measured with errors at discrete, and possibly random, points in the definition domain. The idea is to build a set of binary trees by recursive splitting of the observations. The number of groups are determined in a data-driven way. The new algorithm provides easily interpretable results and fast predictions for online data sets. Results on simulated datasets reveal good performance in various complex settings. The methodology is applied to the analysis of vehicle trajectories on a German roundabout.
ArticleNumber 107376
Author Golovkine, Steven
Patilea, Valentin
Klutchnikoff, Nicolas
Author_xml – sequence: 1
  givenname: Steven
  orcidid: 0000-0002-5994-2671
  surname: Golovkine
  fullname: Golovkine, Steven
  email: steven.golovkine@ensai.fr
  organization: Groupe Renault & Ensai, CREST - UMR 9194, Rennes, France
– sequence: 2
  givenname: Nicolas
  surname: Klutchnikoff
  fullname: Klutchnikoff, Nicolas
  email: nicolas.klutchnikoff@univ-rennes2.fr
  organization: Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
– sequence: 3
  givenname: Valentin
  surname: Patilea
  fullname: Patilea, Valentin
  email: valentin.patilea@ensai.fr
  organization: Ensai, CREST - UMR 9194, Rennes, France
BackLink https://hal.science/hal-03391643$$DView record in HAL
BookMark eNp9kM9LwzAUgIMoOKf_gKce9dCZH22SgpcxdBMGXvQc0uRVM7p0JunA_96W6sXDToHH9z1evit07jsPCN0SvCCY8IfdwkSrFxRTMgwEE_wMzYgUNBespOdoNkAirwrBLtFVjDuMMS2EnKH1qu1jguD8R7bv2-SOOjidIGt6b5LrvG4zq5PO-jgivY_9AcLRRbBZ7bwO31kKAPEaXTS6jXDz-87R-_PT22qTb1_XL6vlNjeMi5Rrw42tmrqQrLaWV6KoSdnUdVNwbWTRUFlaWgBhhlUlqRkQY6k0kuqqlARTNkf3095P3apDcPvhAtVppzbLrRpnmLGK8IIdycDeTewhdF89xKT2LhpoW-2h66OinHFeUjzQcyQn1IQuxgCNMi7p8f8paNcqgtXYWe3U2FmNndXUeVDpP_XvrJPS4yTB0OroIKhoHHgD1gUwSdnOndJ_ADJTmQ0
CitedBy_id crossref_primary_10_1007_s00180_024_01591_1
crossref_primary_10_1145_3581789
crossref_primary_10_1016_j_jspi_2023_106133
crossref_primary_10_1007_s00477_024_02700_8
crossref_primary_10_1093_jrsssc_qlad017
crossref_primary_10_1002_cjs_11838
crossref_primary_10_1007_s41060_023_00410_y
crossref_primary_10_1007_s11222_023_10324_1
crossref_primary_10_1109_TII_2022_3168011
Cites_doi 10.1007/s00180-020-00958-4
10.1146/annurev-statistics-041715-033624
10.1080/01621459.2016.1273115
10.1016/j.neucom.2012.11.042
10.1198/016214504000001745
10.1016/j.csda.2018.10.009
10.1007/s11634-013-0158-y
10.1007/s00180-018-00864-w
10.1007/s00357-010-9054-8
10.1214/15-AOAS861
10.1111/biom.12546
10.1017/9781108644181
10.1111/j.2517-6161.1977.tb01600.x
10.1155/S1110865704407100
10.1111/insr.12362
10.1007/s00180-006-0013-0
10.1111/j.1467-9868.2011.01003.x
10.1007/978-1-4614-3655-3
10.1080/01621459.2013.824893
10.1214/15-STS524
10.1007/s11634-011-0095-6
10.1007/s00357-003-0007-3
10.1111/rssb.12310
10.1007/s11634-013-0129-3
10.1214/aos/1176344136
10.1214/13-AOS1158
10.1007/BF01908075
10.1214/09-AOS741
10.1016/j.csda.2012.12.004
10.1111/j.1467-9876.2012.01062.x
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
VOOES
DOI 10.1016/j.csda.2021.107376
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1872-7352
ExternalDocumentID oai:HAL:hal-03391643v1
10_1016_j_csda_2021_107376
S0167947321002103
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c367t-ac6cd9fb483bdd6974b15fbbf46ac84f285d24e13c3951b3e1cd28c82a9581023
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000721109600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-9473
IngestDate Tue Oct 14 20:01:27 EDT 2025
Sun Sep 28 11:58:48 EDT 2025
Sat Nov 29 07:26:21 EST 2025
Tue Nov 18 21:56:35 EST 2025
Fri Feb 23 02:41:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Gaussian mixtures
Model-based clustering
Multivariate functional principal components
Multivariate Functional Principal Components
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-ac6cd9fb483bdd6974b15fbbf46ac84f285d24e13c3951b3e1cd28c82a9581023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5994-2671
0000-0001-9349-0771
OpenAccessLink https://hal.science/hal-03391643
PQID 2636652064
PQPubID 24069
ParticipantIDs hal_primary_oai_HAL_hal_03391643v1
proquest_miscellaneous_2636652064
crossref_citationtrail_10_1016_j_csda_2021_107376
crossref_primary_10_1016_j_csda_2021_107376
elsevier_sciencedirect_doi_10_1016_j_csda_2021_107376
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
2022-04
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Computational statistics & data analysis
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kayano, Dozono, Konishi (br0160) 2010; 27
Jacques, Preda (br0170) 2014; 71
Allen (br0250) 2013
Bouveyron, Côme, Jacques (br0130) 2015; 9
Happ, Greven (br0260) 2018; 113
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (br0410) 2011; 12
Tokushige, Yadohisa, Inada (br0140) 2007; 22
Schmutz, Jacques, Bouveyron (br0360) 2019
Marron, Ramsay, Sangalli, Srivastava (br0280) 2015; 30
Pelleg, Moore (br0220) 2000
Kokoszka, Oja, Park, Sangalli (br0040) 2017; 1
Ferraty, Kokoszka, Wang, Wu (br0050) 2019; 131
Horvàth, Kokoszka (br0020) 2012
Park, Ahn (br0190) 2017; 73
Dempster, Laird, Rubin (br0330) 1977; 39
Golovkine, Klutchnikoff, Patilea (br0310) 2020
Cheng, Wang, Fu (br0230) 2004; 2004
Wang, Chiou, Müller (br0030) 2016; 3
Delaigle, Hall (br0270) 2010; 38
Hubert, Arabie (br0390) 1985; 2
Rasmussen, Williams (br0420) 2006
Jacques, Preda (br0100) 2014; 8
Ieva, Paganoni, Pigoli, Vitelli (br0150) 2013; 62
Wang, Wong, Zhang (br0450) 0 2020
Fraiman, Ghattas, Svarc (br0210) 2013; 7
Hu, Yao (br0300) 2020
Staerman, Mozharovskyi, Clémençon, d’Alché Buc (br0240) 2019
Schwarz (br0340) 1978; 6
Jacques, Preda (br0370) 2013; 112
Delaigle, Hall (br0070) 2013; 108
Zambom, Collazos, Dias (br0400) 2019
Ramsay, Silverman (br0010) 2005
Yao, Müller, Wang (br0320) 2005; 100
Traore, Cristini, Favretto-Cristini, Pantera, Vieu, Viguier-Pla (br0200) 2019; 34
Delaigle, Hall (br0060) 2012; 74
Carroll, Delaigle, Hall (br0090) 2013; 41
Bouveyron, Celeux, Murphy, Raftery (br0110) 2019
Górecki, Horvàth, Kokoszka (br0440) 2020; 88
Reed, Simon (br0290) 1980
Schmutz, Jacques, Bouveyron, Cheze, Martin (br0180) 2020
Bouveyron, Jacques (br0350) 2011; 5
Delaigle, Hall, Pham (br0080) 2019; 81
Krajewski, Moers, Bock, Vater, Eckstein (br0430) 2020
Soueidatt, Preda, Jacques, Kubicki (br0380) 2014
Tarpey, Kinateder (br0120) 2003; 20
Reed (10.1016/j.csda.2021.107376_br0290) 1980
Cheng (10.1016/j.csda.2021.107376_br0230) 2004; 2004
Happ (10.1016/j.csda.2021.107376_br0260) 2018; 113
Hubert (10.1016/j.csda.2021.107376_br0390) 1985; 2
Traore (10.1016/j.csda.2021.107376_br0200) 2019; 34
Carroll (10.1016/j.csda.2021.107376_br0090) 2013; 41
Staerman (10.1016/j.csda.2021.107376_br0240) 2019
Kayano (10.1016/j.csda.2021.107376_br0160) 2010; 27
Marron (10.1016/j.csda.2021.107376_br0280) 2015; 30
Pedregosa (10.1016/j.csda.2021.107376_br0410) 2011; 12
Tarpey (10.1016/j.csda.2021.107376_br0120) 2003; 20
Bouveyron (10.1016/j.csda.2021.107376_br0350) 2011; 5
Dempster (10.1016/j.csda.2021.107376_br0330) 1977; 39
Allen (10.1016/j.csda.2021.107376_br0250) 2013
Kokoszka (10.1016/j.csda.2021.107376_br0040) 2017; 1
Yao (10.1016/j.csda.2021.107376_br0320) 2005; 100
Delaigle (10.1016/j.csda.2021.107376_br0080) 2019; 81
Schmutz (10.1016/j.csda.2021.107376_br0180) 2020
Tokushige (10.1016/j.csda.2021.107376_br0140) 2007; 22
Górecki (10.1016/j.csda.2021.107376_br0440) 2020; 88
Jacques (10.1016/j.csda.2021.107376_br0370) 2013; 112
Wang (10.1016/j.csda.2021.107376_br0030) 2016; 3
Zambom (10.1016/j.csda.2021.107376_br0400)
Park (10.1016/j.csda.2021.107376_br0190) 2017; 73
Bouveyron (10.1016/j.csda.2021.107376_br0110) 2019
Wang (10.1016/j.csda.2021.107376_br0450) 2020
Ieva (10.1016/j.csda.2021.107376_br0150) 2013; 62
Delaigle (10.1016/j.csda.2021.107376_br0270) 2010; 38
Krajewski (10.1016/j.csda.2021.107376_br0430) 2020
Schmutz (10.1016/j.csda.2021.107376_br0360)
Soueidatt (10.1016/j.csda.2021.107376_br0380)
Delaigle (10.1016/j.csda.2021.107376_br0060) 2012; 74
Jacques (10.1016/j.csda.2021.107376_br0170) 2014; 71
Golovkine (10.1016/j.csda.2021.107376_br0310)
Ferraty (10.1016/j.csda.2021.107376_br0050) 2019; 131
Ramsay (10.1016/j.csda.2021.107376_br0010) 2005
Hu (10.1016/j.csda.2021.107376_br0300)
Jacques (10.1016/j.csda.2021.107376_br0100) 2014; 8
Delaigle (10.1016/j.csda.2021.107376_br0070) 2013; 108
Rasmussen (10.1016/j.csda.2021.107376_br0420) 2006
Bouveyron (10.1016/j.csda.2021.107376_br0130) 2015; 9
Fraiman (10.1016/j.csda.2021.107376_br0210) 2013; 7
Schwarz (10.1016/j.csda.2021.107376_br0340) 1978; 6
Horvàth (10.1016/j.csda.2021.107376_br0020) 2012
Pelleg (10.1016/j.csda.2021.107376_br0220) 2000
References_xml – volume: 81
  start-page: 271
  year: 2019
  end-page: 304
  ident: br0080
  article-title: Clustering functional data into groups by using projections
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
– volume: 100
  start-page: 577
  year: 2005
  end-page: 590
  ident: br0320
  article-title: Functional data analysis for sparse longitudinal data
  publication-title: J. Am. Stat. Assoc.
– volume: 2004
  start-page: 2626
  year: 2004
  end-page: 2639
  ident: br0230
  article-title: A model-selection-based self-splitting Gaussian mixture learning with application to speaker identification
  publication-title: EURASIP J. Adv. Signal Process.
– year: 2020
  ident: br0310
  article-title: Learning the smoothness of noisy curves with application to online curve estimation
– year: 2005
  ident: br0010
  article-title: Functional Data Analysis
  publication-title: Springer Series in Statistics
– year: 2019
  ident: br0110
  article-title: Model-Based Clustering and Classification for Data Science: With Applications in R
  publication-title: Cambridge Series in Statistical and Probabilistic Mathematics
– start-page: 1
  year: 2020
  end-page: 6
  ident: br0430
  article-title: The round dataset: a drone dataset of road user trajectories at roundabouts in Germany
  publication-title: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: br0410
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 112
  start-page: 164
  year: 2013
  end-page: 171
  ident: br0370
  article-title: Funclust: a curves clustering method using functional random variables density approximation
  publication-title: Neurocomputing
– volume: 108
  start-page: 1269
  year: 2013
  end-page: 1283
  ident: br0070
  article-title: Classification using censored functional data
  publication-title: J. Am. Stat. Assoc.
– volume: 27
  start-page: 211
  year: 2010
  end-page: 230
  ident: br0160
  article-title: Functional cluster analysis via orthonormalized Gaussian basis expansions and its application
  publication-title: J. Classif.
– volume: 22
  start-page: 1
  year: 2007
  end-page: 16
  ident: br0140
  article-title: Crisp and fuzzy k-means clustering algorithms for multivariate functional data
  publication-title: Comput. Stat.
– volume: 9
  start-page: 1726
  year: 2015
  end-page: 1760
  ident: br0130
  article-title: The discriminative functional mixture model for a comparative analysis of bike sharing systems
  publication-title: Ann. Appl. Stat.
– volume: 74
  start-page: 267
  year: 2012
  end-page: 286
  ident: br0060
  article-title: Achieving near perfect classification for functional data
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
– volume: 20
  year: 2003
  ident: br0120
  article-title: Clustering functional data
  publication-title: J. Classif.
– volume: 30
  start-page: 468
  year: 2015
  end-page: 484
  ident: br0280
  article-title: Functional data analysis of amplitude and phase variation
  publication-title: Stat. Sci.
– year: 2006
  ident: br0420
  article-title: Gaussian Processes for Machine Learning, Adaptive Computation and Machine Learning
– volume: 71
  start-page: 92
  year: 2014
  end-page: 106
  ident: br0170
  article-title: Model-based clustering for multivariate functional data
  publication-title: Comput. Stat. Data Anal.
– volume: 3
  start-page: 257
  year: 2016
  end-page: 295
  ident: br0030
  article-title: Functional data analysis
  publication-title: Annu. Rev. Stat. Appl.
– volume: 8
  start-page: 24
  year: 2014
  ident: br0100
  article-title: Functional data clustering: a survey
  publication-title: Adv. Data Anal. Classif.
– start-page: 727
  year: 2000
  end-page: 734
  ident: br0220
  article-title: X-means: extending K-means with efficient estimation of the number of clusters
  publication-title: Proceedings of the 17th International Conf. on Machine Learning
– volume: 2
  start-page: 193
  year: 1985
  end-page: 218
  ident: br0390
  article-title: Comparing partitions
  publication-title: J. Classif.
– volume: 7
  year: 2013
  ident: br0210
  article-title: Interpretable clustering using unsupervised binary trees
  publication-title: Adv. Data Anal. Classif.
– volume: 1
  start-page: 99
  year: 2017
  end-page: 100
  ident: br0040
  publication-title: Econom. Stat.
– volume: 34
  start-page: 631
  year: 2019
  end-page: 652
  ident: br0200
  article-title: Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches
  publication-title: Comput. Stat.
– year: 2019
  ident: br0360
  article-title: FunHDDC: univariate and multivariate model-based clustering in group-specific functional subspaces
– volume: 41
  start-page: 2739
  year: 2013
  end-page: 2767
  ident: br0090
  article-title: Unexpected properties of bandwidth choice when smoothing discrete data for constructing a functional data classifier
  publication-title: Ann. Stat.
– year: 2014
  ident: br0380
  article-title: Funclustering: a package for functional data clustering
– start-page: 332
  year: 2019
  end-page: 347
  ident: br0240
  article-title: Functional isolation forest
  publication-title: Asian Conference on Machine Learning
– year: 2012
  ident: br0020
  article-title: Inference for Functional Data with Applications
  publication-title: Springer Series in Statistics
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: br0340
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
– volume: 131
  start-page: 10
  year: 2019
  end-page: 11
  ident: br0050
  article-title: Editorial for the special issue on high-dimensional and functional data analysis
  publication-title: Comput. Stat. Data Anal.
– year: 2020
  ident: br0180
  article-title: Clustering multivariate functional data in group-specific functional subspaces
  publication-title: Comput. Stat.
– start-page: 1
  year: 0 2020
  end-page: 14
  ident: br0450
  article-title: Low-rank covariance function estimation for multidimensional functional data
  publication-title: J. Am. Stat. Assoc.
– volume: 5
  start-page: 281
  year: 2011
  end-page: 300
  ident: br0350
  article-title: Model-based clustering of time series in group-specific functional subspaces
  publication-title: Adv. Data Anal. Classif.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: br0330
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc., Ser. B, Methodol.
– volume: 73
  start-page: 324
  year: 2017
  end-page: 333
  ident: br0190
  article-title: Clustering multivariate functional data with phase variation
  publication-title: Biometrics
– volume: 113
  start-page: 649
  year: 2018
  end-page: 659
  ident: br0260
  article-title: Multivariate functional principal component analysis for data observed on different (dimensional) domains
  publication-title: J. Am. Stat. Assoc.
– volume: 62
  start-page: 401
  year: 2013
  end-page: 418
  ident: br0150
  article-title: Multivariate functional clustering for the morphological analysis of electrocardiograph curves
  publication-title: J. R. Stat. Soc., Ser. C, Appl. Stat.
– year: 1980
  ident: br0290
  article-title: Methods of Modern Mathematical Physics: Functional Analysis
– year: 2019
  ident: br0400
  article-title: Selection of the number of clusters in functional data analysis
– start-page: 220
  year: 2013
  end-page: 223
  ident: br0250
  article-title: Multi-way functional principal components analysis
  publication-title: 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
– volume: 88
  start-page: 677
  year: 2020
  end-page: 697
  ident: br0440
  article-title: Tests of normality of functional data
  publication-title: Int. Stat. Rev.
– volume: 38
  start-page: 1171
  year: 2010
  end-page: 1193
  ident: br0270
  article-title: Defining probability density for a distribution of random functions
  publication-title: Ann. Stat.
– year: 2020
  ident: br0300
  article-title: Sparse functional principal component analysis in high dimensions
– year: 2020
  ident: 10.1016/j.csda.2021.107376_br0180
  article-title: Clustering multivariate functional data in group-specific functional subspaces
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-020-00958-4
– volume: 3
  start-page: 257
  year: 2016
  ident: 10.1016/j.csda.2021.107376_br0030
  article-title: Functional data analysis
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-041715-033624
– volume: 113
  start-page: 649
  year: 2018
  ident: 10.1016/j.csda.2021.107376_br0260
  article-title: Multivariate functional principal component analysis for data observed on different (dimensional) domains
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2016.1273115
– ident: 10.1016/j.csda.2021.107376_br0380
– volume: 112
  start-page: 164
  year: 2013
  ident: 10.1016/j.csda.2021.107376_br0370
  article-title: Funclust: a curves clustering method using functional random variables density approximation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.042
– volume: 100
  start-page: 577
  year: 2005
  ident: 10.1016/j.csda.2021.107376_br0320
  article-title: Functional data analysis for sparse longitudinal data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214504000001745
– volume: 131
  start-page: 10
  year: 2019
  ident: 10.1016/j.csda.2021.107376_br0050
  article-title: Editorial for the special issue on high-dimensional and functional data analysis
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2018.10.009
– volume: 8
  start-page: 24
  year: 2014
  ident: 10.1016/j.csda.2021.107376_br0100
  article-title: Functional data clustering: a survey
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-013-0158-y
– volume: 34
  start-page: 631
  year: 2019
  ident: 10.1016/j.csda.2021.107376_br0200
  article-title: Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-018-00864-w
– volume: 27
  start-page: 211
  year: 2010
  ident: 10.1016/j.csda.2021.107376_br0160
  article-title: Functional cluster analysis via orthonormalized Gaussian basis expansions and its application
  publication-title: J. Classif.
  doi: 10.1007/s00357-010-9054-8
– volume: 9
  start-page: 1726
  year: 2015
  ident: 10.1016/j.csda.2021.107376_br0130
  article-title: The discriminative functional mixture model for a comparative analysis of bike sharing systems
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/15-AOAS861
– volume: 73
  start-page: 324
  year: 2017
  ident: 10.1016/j.csda.2021.107376_br0190
  article-title: Clustering multivariate functional data with phase variation
  publication-title: Biometrics
  doi: 10.1111/biom.12546
– year: 2019
  ident: 10.1016/j.csda.2021.107376_br0110
  article-title: Model-Based Clustering and Classification for Data Science: With Applications in R
  doi: 10.1017/9781108644181
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.csda.2021.107376_br0330
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc., Ser. B, Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 10.1016/j.csda.2021.107376_br0310
– volume: 2004
  start-page: 2626
  year: 2004
  ident: 10.1016/j.csda.2021.107376_br0230
  article-title: A model-selection-based self-splitting Gaussian mixture learning with application to speaker identification
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1155/S1110865704407100
– start-page: 220
  year: 2013
  ident: 10.1016/j.csda.2021.107376_br0250
  article-title: Multi-way functional principal components analysis
– volume: 88
  start-page: 677
  year: 2020
  ident: 10.1016/j.csda.2021.107376_br0440
  article-title: Tests of normality of functional data
  publication-title: Int. Stat. Rev.
  doi: 10.1111/insr.12362
– volume: 22
  start-page: 1
  year: 2007
  ident: 10.1016/j.csda.2021.107376_br0140
  article-title: Crisp and fuzzy k-means clustering algorithms for multivariate functional data
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-006-0013-0
– volume: 74
  start-page: 267
  year: 2012
  ident: 10.1016/j.csda.2021.107376_br0060
  article-title: Achieving near perfect classification for functional data
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
  doi: 10.1111/j.1467-9868.2011.01003.x
– year: 2012
  ident: 10.1016/j.csda.2021.107376_br0020
  article-title: Inference for Functional Data with Applications
  doi: 10.1007/978-1-4614-3655-3
– volume: 108
  start-page: 1269
  year: 2013
  ident: 10.1016/j.csda.2021.107376_br0070
  article-title: Classification using censored functional data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2013.824893
– volume: 30
  start-page: 468
  year: 2015
  ident: 10.1016/j.csda.2021.107376_br0280
  article-title: Functional data analysis of amplitude and phase variation
  publication-title: Stat. Sci.
  doi: 10.1214/15-STS524
– volume: 5
  start-page: 281
  year: 2011
  ident: 10.1016/j.csda.2021.107376_br0350
  article-title: Model-based clustering of time series in group-specific functional subspaces
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-011-0095-6
– volume: 20
  year: 2003
  ident: 10.1016/j.csda.2021.107376_br0120
  article-title: Clustering functional data
  publication-title: J. Classif.
  doi: 10.1007/s00357-003-0007-3
– volume: 81
  start-page: 271
  year: 2019
  ident: 10.1016/j.csda.2021.107376_br0080
  article-title: Clustering functional data into groups by using projections
  publication-title: J. R. Stat. Soc., Ser. B, Stat. Methodol.
  doi: 10.1111/rssb.12310
– ident: 10.1016/j.csda.2021.107376_br0300
– year: 2005
  ident: 10.1016/j.csda.2021.107376_br0010
  article-title: Functional Data Analysis
– ident: 10.1016/j.csda.2021.107376_br0400
– start-page: 1
  year: 2020
  ident: 10.1016/j.csda.2021.107376_br0430
  article-title: The round dataset: a drone dataset of road user trajectories at roundabouts in Germany
– year: 1980
  ident: 10.1016/j.csda.2021.107376_br0290
– volume: 7
  year: 2013
  ident: 10.1016/j.csda.2021.107376_br0210
  article-title: Interpretable clustering using unsupervised binary trees
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-013-0129-3
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.csda.2021.107376_br0410
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– start-page: 727
  year: 2000
  ident: 10.1016/j.csda.2021.107376_br0220
  article-title: X-means: extending K-means with efficient estimation of the number of clusters
– volume: 6
  start-page: 461
  year: 1978
  ident: 10.1016/j.csda.2021.107376_br0340
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– year: 2006
  ident: 10.1016/j.csda.2021.107376_br0420
– volume: 1
  start-page: 99
  year: 2017
  ident: 10.1016/j.csda.2021.107376_br0040
  publication-title: Econom. Stat.
– start-page: 332
  year: 2019
  ident: 10.1016/j.csda.2021.107376_br0240
  article-title: Functional isolation forest
– volume: 41
  start-page: 2739
  year: 2013
  ident: 10.1016/j.csda.2021.107376_br0090
  article-title: Unexpected properties of bandwidth choice when smoothing discrete data for constructing a functional data classifier
  publication-title: Ann. Stat.
  doi: 10.1214/13-AOS1158
– volume: 2
  start-page: 193
  year: 1985
  ident: 10.1016/j.csda.2021.107376_br0390
  article-title: Comparing partitions
  publication-title: J. Classif.
  doi: 10.1007/BF01908075
– ident: 10.1016/j.csda.2021.107376_br0360
– volume: 38
  start-page: 1171
  year: 2010
  ident: 10.1016/j.csda.2021.107376_br0270
  article-title: Defining probability density for a distribution of random functions
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS741
– volume: 71
  start-page: 92
  year: 2014
  ident: 10.1016/j.csda.2021.107376_br0170
  article-title: Model-based clustering for multivariate functional data
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2012.12.004
– volume: 62
  start-page: 401
  year: 2013
  ident: 10.1016/j.csda.2021.107376_br0150
  article-title: Multivariate functional clustering for the morphological analysis of electrocardiograph curves
  publication-title: J. R. Stat. Soc., Ser. C, Appl. Stat.
  doi: 10.1111/j.1467-9876.2012.01062.x
– start-page: 1
  year: 2020
  ident: 10.1016/j.csda.2021.107376_br0450
  article-title: Low-rank covariance function estimation for multidimensional functional data
  publication-title: J. Am. Stat. Assoc.
SSID ssj0002478
Score 2.4260454
Snippet •An effective model-based clustering algorithm for multivariate functional data.•The algorithm is recursive and based on a set of binary trees.•The number of...
A model-based clustering algorithm is proposed for a general class of functional data for which the components could be curves or images. The random functional...
We propose a model-based clustering algorithm for a general class of functional data for which the components could be curves or images. The random functional...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107376
SubjectTerms algorithms
data analysis
data collection
Gaussian mixtures
Machine Learning
Model-based clustering
Multivariate functional principal components
Statistics
Title Clustering multivariate functional data using unsupervised binary trees
URI https://dx.doi.org/10.1016/j.csda.2021.107376
https://www.proquest.com/docview/2636652064
https://hal.science/hal-03391643
Volume 168
WOSCitedRecordID wos000721109600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002478
  issn: 0167-9473
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdYx8N4QDBAdHwoIPZUZWrsfNiP1WgZqJRJdKhvluM4gq1Ks2Wp9udzFztpNcE0HniJqsh2Uv8u57vz-XeEfDABQ4oX4ec8Mj5WOfIF06kfpkwJEYKNzJuDwtNkNuOLhTh1ac1VU04gKQp-cyPK_wo13AOw8ejsP8DdDQo34DeADleAHa73Av54WSP5AYYAmmzBNXjDYFAOcAVzgT9MCx3UTZSgLqq6RH1RoSlqD-fiRnW1bbXa0g9t2BDPIDl6Z5SbZjDluE26dB7QqeuLXzZcaiundaod_jzyxl6sLCFkI4uq63kKgy9NY9L-ULgkOmpwF5kAp3aT0OKClaCERWhLlXTaNuaD8gicTtBs_h91uA0nnB_pKkNiKBq41psVq92ln32Tk7PpVM7Hi_khm5SXPlYTw133Q_bRIrtDdmkSCd4ju6PP48WXbpWmoV2l23d0B6ps7t_tR__NaNn5idmztxbxxjKZPyGPnUvhjawoPCUPTLFPHn3t-HirfbL3vcPsGfm0kRBvW0K8jYR4CKrXSIi3LSGelRCvkZDn5Gwynh-f-K6ehq9ZnFz7Ssc6E3kacpZmWQyeZBpEeZrmYaw0D3PKo4yG8PVqBnZ3ykygM8o1p0pEHCk-XpBesSrMS-KhZ5oJmqkhVaHOhmlg8igF41kleRxkpk-CdsKkdmTzWPNkKduswnOJkyxxkqWd5D4ZdH1KS7VyZ-uoxUE6Y9EagRLk6M5-7wG07gHIrn4ymkq8N2R4Cj1k66BP3rWYSlC3uIemCrOqK0ljFscRBUP-4B5tXpG9zYfxmvSur2rzhjzUa4D86q0Tyd-pjKPe
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+multivariate+functional+data+using+unsupervised+binary+trees&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Golovkine%2C+Steven&rft.au=Klutchnikoff%2C+Nicolas&rft.au=Patilea%2C+Valentin&rft.date=2022-04-01&rft.issn=0167-9473&rft.volume=168+p.107376-&rft_id=info:doi/10.1016%2Fj.csda.2021.107376&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon