A Strongly Polynomial Cut Canceling Algorithm for Minimum Cost Submodular Flow

This paper presents a new strongly polynomial cut canceling algorithm for minimum cost submodular flow. The algorithm is a generalization of our similar cut canceling algorithm for ordinary min-cost flow. The algorithm scales a relaxed optimality parameter and creates a second, inner relaxation that...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM Journal on Discrete Mathematics Ročník 19; číslo 2; s. 304 - 320
Hlavní autoři: Iwata, Satoru, McCormick, S. Thomas, Shigeno, Maiko
Médium: Journal Article
Jazyk:angličtina
japonština
Vydáno: Philadelphia Society for Industrial & Applied Mathematics (SIAM) 01.01.2005
Society for Industrial and Applied Mathematics
Témata:
ISSN:0895-4801, 1095-7146
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a new strongly polynomial cut canceling algorithm for minimum cost submodular flow. The algorithm is a generalization of our similar cut canceling algorithm for ordinary min-cost flow. The algorithm scales a relaxed optimality parameter and creates a second, inner relaxation that is a kind of submodular max flow problem. The outer relaxation uses a novel technique for relaxing the submodular constraints that allows our previous proof techniques to work. The algorithm uses the min cuts from the max flow subproblem as the relaxed most positive cuts it chooses to cancel. We show that this algorithm needs to cancel only ${\mathrm O}(n^3)$ cuts per scaling phase, where $n$ is the number of nodes. Furthermore, we show how to slightly modify this algorithm to get a strongly polynomial running time. Finally, we briefly show how to extend this algorithm to the separable convex cost case and that the same technique can be used to construct a polynomial time maximum mean cut canceling algorithm for submodular flow.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0895-4801
1095-7146
DOI:10.1137/s0895480199361533