Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs
Purpose To develop and validate a deep learning-based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare its performance with physicians including thoracic radiologists. Materials and Methods For this retrospective study, DLAD was developed by us...
Uloženo v:
| Vydáno v: | Radiology Ročník 290; číslo 1; s. 218 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.01.2019
|
| ISSN: | 1527-1315, 1527-1315 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Purpose To develop and validate a deep learning-based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare its performance with physicians including thoracic radiologists. Materials and Methods For this retrospective study, DLAD was developed by using 43 292 chest radiographs (normal radiograph-to-nodule radiograph ratio, 34 067:9225) in 34 676 patients (healthy-to-nodule ratio, 30 784:3892; 19 230 men [mean age, 52.8 years; age range, 18-99 years]; 15 446 women [mean age, 52.3 years; age range, 18-98 years]) obtained between 2010 and 2015, which were labeled and partially annotated by 13 board-certified radiologists, in a convolutional neural network. Radiograph classification and nodule detection performances of DLAD were validated by using one internal and four external data sets from three South Korean hospitals and one U.S. hospital. For internal and external validation, radiograph classification and nodule detection performances of DLAD were evaluated by using the area under the receiver operating characteristic curve (AUROC) and jackknife alternative free-response receiver-operating characteristic (JAFROC) figure of merit (FOM), respectively. An observer performance test involving 18 physicians, including nine board-certified radiologists, was conducted by using one of the four external validation data sets. Performances of DLAD, physicians, and physicians assisted with DLAD were evaluated and compared. Results According to one internal and four external validation data sets, radiograph classification and nodule detection performances of DLAD were a range of 0.92-0.99 (AUROC) and 0.831-0.924 (JAFROC FOM), respectively. DLAD showed a higher AUROC and JAFROC FOM at the observer performance test than 17 of 18 and 15 of 18 physicians, respectively (P < .05), and all physicians showed improved nodule detection performances with DLAD (mean JAFROC FOM improvement, 0.043; range, 0.006-0.190; P < .05). Conclusion This deep learning-based automatic detection algorithm outperformed physicians in radiograph classification and nodule detection performance for malignant pulmonary nodules on chest radiographs, and it enhanced physicians' performances when used as a second reader. © RSNA, 2018 Online supplemental material is available for this article. |
|---|---|
| AbstractList | Purpose To develop and validate a deep learning-based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare its performance with physicians including thoracic radiologists. Materials and Methods For this retrospective study, DLAD was developed by using 43 292 chest radiographs (normal radiograph-to-nodule radiograph ratio, 34 067:9225) in 34 676 patients (healthy-to-nodule ratio, 30 784:3892; 19 230 men [mean age, 52.8 years; age range, 18-99 years]; 15 446 women [mean age, 52.3 years; age range, 18-98 years]) obtained between 2010 and 2015, which were labeled and partially annotated by 13 board-certified radiologists, in a convolutional neural network. Radiograph classification and nodule detection performances of DLAD were validated by using one internal and four external data sets from three South Korean hospitals and one U.S. hospital. For internal and external validation, radiograph classification and nodule detection performances of DLAD were evaluated by using the area under the receiver operating characteristic curve (AUROC) and jackknife alternative free-response receiver-operating characteristic (JAFROC) figure of merit (FOM), respectively. An observer performance test involving 18 physicians, including nine board-certified radiologists, was conducted by using one of the four external validation data sets. Performances of DLAD, physicians, and physicians assisted with DLAD were evaluated and compared. Results According to one internal and four external validation data sets, radiograph classification and nodule detection performances of DLAD were a range of 0.92-0.99 (AUROC) and 0.831-0.924 (JAFROC FOM), respectively. DLAD showed a higher AUROC and JAFROC FOM at the observer performance test than 17 of 18 and 15 of 18 physicians, respectively (P < .05), and all physicians showed improved nodule detection performances with DLAD (mean JAFROC FOM improvement, 0.043; range, 0.006-0.190; P < .05). Conclusion This deep learning-based automatic detection algorithm outperformed physicians in radiograph classification and nodule detection performance for malignant pulmonary nodules on chest radiographs, and it enhanced physicians' performances when used as a second reader. © RSNA, 2018 Online supplemental material is available for this article.Purpose To develop and validate a deep learning-based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare its performance with physicians including thoracic radiologists. Materials and Methods For this retrospective study, DLAD was developed by using 43 292 chest radiographs (normal radiograph-to-nodule radiograph ratio, 34 067:9225) in 34 676 patients (healthy-to-nodule ratio, 30 784:3892; 19 230 men [mean age, 52.8 years; age range, 18-99 years]; 15 446 women [mean age, 52.3 years; age range, 18-98 years]) obtained between 2010 and 2015, which were labeled and partially annotated by 13 board-certified radiologists, in a convolutional neural network. Radiograph classification and nodule detection performances of DLAD were validated by using one internal and four external data sets from three South Korean hospitals and one U.S. hospital. For internal and external validation, radiograph classification and nodule detection performances of DLAD were evaluated by using the area under the receiver operating characteristic curve (AUROC) and jackknife alternative free-response receiver-operating characteristic (JAFROC) figure of merit (FOM), respectively. An observer performance test involving 18 physicians, including nine board-certified radiologists, was conducted by using one of the four external validation data sets. Performances of DLAD, physicians, and physicians assisted with DLAD were evaluated and compared. Results According to one internal and four external validation data sets, radiograph classification and nodule detection performances of DLAD were a range of 0.92-0.99 (AUROC) and 0.831-0.924 (JAFROC FOM), respectively. DLAD showed a higher AUROC and JAFROC FOM at the observer performance test than 17 of 18 and 15 of 18 physicians, respectively (P < .05), and all physicians showed improved nodule detection performances with DLAD (mean JAFROC FOM improvement, 0.043; range, 0.006-0.190; P < .05). Conclusion This deep learning-based automatic detection algorithm outperformed physicians in radiograph classification and nodule detection performance for malignant pulmonary nodules on chest radiographs, and it enhanced physicians' performances when used as a second reader. © RSNA, 2018 Online supplemental material is available for this article. Purpose To develop and validate a deep learning-based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare its performance with physicians including thoracic radiologists. Materials and Methods For this retrospective study, DLAD was developed by using 43 292 chest radiographs (normal radiograph-to-nodule radiograph ratio, 34 067:9225) in 34 676 patients (healthy-to-nodule ratio, 30 784:3892; 19 230 men [mean age, 52.8 years; age range, 18-99 years]; 15 446 women [mean age, 52.3 years; age range, 18-98 years]) obtained between 2010 and 2015, which were labeled and partially annotated by 13 board-certified radiologists, in a convolutional neural network. Radiograph classification and nodule detection performances of DLAD were validated by using one internal and four external data sets from three South Korean hospitals and one U.S. hospital. For internal and external validation, radiograph classification and nodule detection performances of DLAD were evaluated by using the area under the receiver operating characteristic curve (AUROC) and jackknife alternative free-response receiver-operating characteristic (JAFROC) figure of merit (FOM), respectively. An observer performance test involving 18 physicians, including nine board-certified radiologists, was conducted by using one of the four external validation data sets. Performances of DLAD, physicians, and physicians assisted with DLAD were evaluated and compared. Results According to one internal and four external validation data sets, radiograph classification and nodule detection performances of DLAD were a range of 0.92-0.99 (AUROC) and 0.831-0.924 (JAFROC FOM), respectively. DLAD showed a higher AUROC and JAFROC FOM at the observer performance test than 17 of 18 and 15 of 18 physicians, respectively (P < .05), and all physicians showed improved nodule detection performances with DLAD (mean JAFROC FOM improvement, 0.043; range, 0.006-0.190; P < .05). Conclusion This deep learning-based automatic detection algorithm outperformed physicians in radiograph classification and nodule detection performance for malignant pulmonary nodules on chest radiographs, and it enhanced physicians' performances when used as a second reader. © RSNA, 2018 Online supplemental material is available for this article. |
| Author | Hwang, Sangheum Goo, Jin Mo Nam, Ju Gang Lee, Jong Hyuk Lim, Kun Young Hwang, Eui Jin Vu, Thienkai Huy Sohn, Jae Ho Park, Chang Min Park, Sunggyun Jin, Kwang-Nam |
| Author_xml | – sequence: 1 givenname: Ju Gang orcidid: 0000-0003-3991-4523 surname: Nam fullname: Nam, Ju Gang organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.) – sequence: 2 givenname: Sunggyun surname: Park fullname: Park, Sunggyun organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.) – sequence: 3 givenname: Eui Jin surname: Hwang fullname: Hwang, Eui Jin organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.) – sequence: 4 givenname: Jong Hyuk surname: Lee fullname: Lee, Jong Hyuk organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.) – sequence: 5 givenname: Kwang-Nam surname: Jin fullname: Jin, Kwang-Nam organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.) – sequence: 6 givenname: Kun Young surname: Lim fullname: Lim, Kun Young organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.) – sequence: 7 givenname: Thienkai Huy surname: Vu fullname: Vu, Thienkai Huy organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.) – sequence: 8 givenname: Jae Ho orcidid: 0000-0002-6733-7551 surname: Sohn fullname: Sohn, Jae Ho organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.) – sequence: 9 givenname: Sangheum surname: Hwang fullname: Hwang, Sangheum organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.) – sequence: 10 givenname: Jin Mo orcidid: 0000-0003-1791-7942 surname: Goo fullname: Goo, Jin Mo organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.) – sequence: 11 givenname: Chang Min surname: Park fullname: Park, Chang Min organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30251934$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMlKxEAQhhsZcRZ9AC_SRy8Zuzr7cZhxg3FB1GuodCqZSKc7phPBuw9u3MBTFdTHx1__nE2MNcTYMYglQJCcdVjUVi-lgAQSIf14j80glLEHPoSTf_uUzZ17EQKCMIkP2NQXMoTUD2bsY0NvpG3bkOk5moI_o64L7GtruC35hqjlW8LO1KbycnRU8NXQ22Yk1HjtSX2jK13Zru53DS9tx29GR2VwNN4PurEGu3d-a4tBk-MjvN6R6_nDV_iqw3bnDtl-idrR0e9csKeL88f1lbe9u7xer7ae8qO49zCVSggqKFUF5SikjCkqfSWCVIQypETkZaJSFYWgygARIz9ABShFJGQOUi7Y6Y-37ezrMIbImtop0hoN2cFlEkBCKuIQRvTkFx3yhoqs7epmfCP7a05-Ah3vdU0 |
| CitedBy_id | crossref_primary_10_1038_s41598_024_70780_1 crossref_primary_10_1016_j_crad_2019_08_005 crossref_primary_10_2196_10010 crossref_primary_10_1007_s00330_022_08593_x crossref_primary_10_1148_radiol_232139 crossref_primary_10_1016_j_acra_2021_05_023 crossref_primary_10_1007_s10140_021_02000_6 crossref_primary_10_1109_TPAMI_2021_3085983 crossref_primary_10_1038_s41598_022_24721_5 crossref_primary_10_1186_s12910_023_00983_0 crossref_primary_10_1186_s40537_024_01018_0 crossref_primary_10_1016_j_desal_2021_115107 crossref_primary_10_1177_01622439241262854 crossref_primary_10_1109_TMI_2020_3042773 crossref_primary_10_3389_fonc_2023_1140635 crossref_primary_10_1001_jamanetworkopen_2022_53820 crossref_primary_10_1109_ACCESS_2020_3010800 crossref_primary_10_1007_s00330_020_07044_9 crossref_primary_10_1038_s41598_024_65488_1 crossref_primary_10_1109_ACCESS_2025_3564633 crossref_primary_10_1007_s10278_021_00494_7 crossref_primary_10_1109_TMI_2021_3054817 crossref_primary_10_1002_ima_23176 crossref_primary_10_1016_j_radi_2023_12_019 crossref_primary_10_1016_j_canlet_2019_12_007 crossref_primary_10_3389_fonc_2021_725599 crossref_primary_10_1513_AnnalsATS_202206_481OC crossref_primary_10_3390_children10081372 crossref_primary_10_3389_fonc_2021_747250 crossref_primary_10_1186_s13244_023_01497_4 crossref_primary_10_1016_j_crad_2021_03_021 crossref_primary_10_20935_AcadMed7509 crossref_primary_10_32604_cmes_2022_022322 crossref_primary_10_1016_j_crad_2020_08_027 crossref_primary_10_3390_diagnostics11122206 crossref_primary_10_3390_diagnostics13122060 crossref_primary_10_1097_MPA_0000000000001603 crossref_primary_10_3348_kjr_2023_0255 crossref_primary_10_1007_s11882_023_01097_8 crossref_primary_10_1148_radiol_2021204531 crossref_primary_10_2174_0929867329666220105121754 crossref_primary_10_1148_radiol_230860 crossref_primary_10_1038_s41746_019_0142_9 crossref_primary_10_1007_s11604_023_01503_1 crossref_primary_10_1016_j_radi_2025_01_011 crossref_primary_10_1007_s00464_024_10939_z crossref_primary_10_1016_j_ejrad_2021_109526 crossref_primary_10_3390_diagnostics13061043 crossref_primary_10_1148_radiol_2019192252 crossref_primary_10_3390_app10020559 crossref_primary_10_3390_vetsci12050404 crossref_primary_10_1016_j_arthro_2020_09_012 crossref_primary_10_1016_j_ucl_2020_09_004 crossref_primary_10_1109_ACCESS_2021_3118694 crossref_primary_10_1111_cpf_12611 crossref_primary_10_1186_s12874_025_02463_y crossref_primary_10_3390_diagnostics13122090 crossref_primary_10_1016_j_jmir_2021_02_005 crossref_primary_10_1016_j_imu_2021_100596 crossref_primary_10_1038_s41598_021_83515_3 crossref_primary_10_3389_fimmu_2024_1357217 crossref_primary_10_3390_diagnostics13162617 crossref_primary_10_3390_e25030431 crossref_primary_10_3748_wjg_v29_i3_536 crossref_primary_10_1001_jamanetworkopen_2022_29289 crossref_primary_10_2196_28114 crossref_primary_10_1371_journal_pone_0242759 crossref_primary_10_1016_j_acra_2024_11_003 crossref_primary_10_3390_jcm14134635 crossref_primary_10_1080_08820538_2021_1889617 crossref_primary_10_3171_2019_6_SPINE19463 crossref_primary_10_3348_kjr_2022_0189 crossref_primary_10_3348_kjr_2023_0393 crossref_primary_10_1038_s41746_023_00829_4 crossref_primary_10_1148_radiol_2021202818 crossref_primary_10_1183_16000617_0181_2020 crossref_primary_10_3390_biomedicines11030760 crossref_primary_10_3390_diagnostics14131456 crossref_primary_10_1002_adfm_202305136 crossref_primary_10_1016_j_radi_2021_12_006 crossref_primary_10_1007_s00330_021_08162_8 crossref_primary_10_1002_lary_31338 crossref_primary_10_3390_diagnostics11101868 crossref_primary_10_1016_j_media_2021_102125 crossref_primary_10_3389_fmed_2024_1290729 crossref_primary_10_2196_64649 crossref_primary_10_3390_app11104573 crossref_primary_10_1117_1_JMI_10_4_044503 crossref_primary_10_1590_1983_803420243739es crossref_primary_10_1007_s15004_021_8912_3 crossref_primary_10_1002_pd_6220 crossref_primary_10_1053_j_ro_2023_02_001 crossref_primary_10_3389_fonc_2022_945053 crossref_primary_10_1038_s41746_022_00648_z crossref_primary_10_1038_s41598_021_89686_3 crossref_primary_10_1148_radiol_2019191225 crossref_primary_10_1007_s10462_023_10638_6 crossref_primary_10_1038_s41746_021_00438_z crossref_primary_10_1007_s00330_022_09315_z crossref_primary_10_1148_radiol_2020201240 crossref_primary_10_1109_ACCESS_2020_2977669 crossref_primary_10_1038_s41467_022_29437_8 crossref_primary_10_1016_j_jaip_2021_02_014 crossref_primary_10_1161_CIRCIMAGING_122_014744 crossref_primary_10_1016_j_acra_2020_04_011 crossref_primary_10_1007_s13721_024_00448_3 crossref_primary_10_1016_j_bas_2025_104208 crossref_primary_10_1109_TAI_2023_3266418 crossref_primary_10_3390_diagnostics13030557 crossref_primary_10_1007_s00330_020_07219_4 crossref_primary_10_1007_s00423_021_02348_w crossref_primary_10_1111_coin_12526 crossref_primary_10_1186_s13014_020_01562_y crossref_primary_10_1038_s41598_023_37270_2 crossref_primary_10_1007_s00138_020_01101_5 crossref_primary_10_1016_j_bdr_2021_100185 crossref_primary_10_3390_jpm13101426 crossref_primary_10_1001_jamanetworkopen_2021_41096 crossref_primary_10_3389_fonc_2021_661244 crossref_primary_10_1001_jamanetworkopen_2022_55113 crossref_primary_10_1016_j_compbiomed_2020_103675 crossref_primary_10_1093_jamia_ocad094 crossref_primary_10_1067_j_cpradiol_2022_11_004 crossref_primary_10_1097_EJA_0000000000001720 crossref_primary_10_3348_kjr_2019_0821 crossref_primary_10_1148_ryai_210064 crossref_primary_10_1155_2021_5801662 crossref_primary_10_1371_journal_pone_0249399 crossref_primary_10_1371_journal_pone_0252440 crossref_primary_10_1148_ryai_2019180069 crossref_primary_10_3390_jcm9061981 crossref_primary_10_1590_1983_803420243739en crossref_primary_10_2478_bjlp_2023_0013 crossref_primary_10_1007_s11547_022_01512_6 crossref_primary_10_1007_s00330_021_08074_7 crossref_primary_10_1016_j_radi_2023_10_014 crossref_primary_10_1109_TCBB_2023_3265394 crossref_primary_10_1148_radiol_222831 crossref_primary_10_1371_journal_pone_0281690 crossref_primary_10_1016_j_psychres_2019_112732 crossref_primary_10_1093_cid_ciy967 crossref_primary_10_1007_s44206_023_00072_0 crossref_primary_10_3390_jpm14020164 crossref_primary_10_1038_s41598_021_93967_2 crossref_primary_10_1016_j_compbiomed_2021_104357 crossref_primary_10_1016_j_ebiom_2020_102933 crossref_primary_10_1038_s41598_024_65703_z crossref_primary_10_1186_s12911_021_01679_4 crossref_primary_10_1007_s00256_022_04081_x crossref_primary_10_1007_s00408_023_00655_1 crossref_primary_10_1038_s41598_021_96855_x crossref_primary_10_1148_radiol_211706 crossref_primary_10_1007_s11547_023_01691_w crossref_primary_10_1002_jmri_27202 crossref_primary_10_1016_j_gaitpost_2021_10_028 crossref_primary_10_3348_jksr_2019_80_2_176 crossref_primary_10_1371_journal_pone_0246472 crossref_primary_10_1148_radiol_222268 crossref_primary_10_1259_dmfr_20210515 crossref_primary_10_1093_jamia_ocad191 crossref_primary_10_4103_lungindia_lungindia_144_22 crossref_primary_10_4274_dir_2024_242835 crossref_primary_10_1148_radiol_2020200165 crossref_primary_10_1088_1361_6560_ad2013 crossref_primary_10_3233_THC_241079 crossref_primary_10_1016_j_crad_2019_04_024 crossref_primary_10_3390_jcm10020301 crossref_primary_10_1038_s41598_020_69789_z crossref_primary_10_1183_13993003_00625_2021 crossref_primary_10_17749_2070_4909_farmakoekonomika_2025_287 crossref_primary_10_1148_ryai_220062 crossref_primary_10_1002_btm2_10359 crossref_primary_10_1148_radiol_2019192079 crossref_primary_10_1007_s00330_021_08036_z crossref_primary_10_3390_healthcare9070834 crossref_primary_10_1016_j_compbiomed_2021_105143 crossref_primary_10_1016_j_medj_2025_100668 crossref_primary_10_1136_bmjopen_2021_054411 crossref_primary_10_1148_radiol_222976 crossref_primary_10_1007_s00330_020_06892_9 crossref_primary_10_3389_fmed_2022_945698 crossref_primary_10_3390_healthcare11182518 crossref_primary_10_1007_s10815_020_01950_z crossref_primary_10_1016_j_rcl_2021_07_001 crossref_primary_10_1080_0954898X_2022_2147231 crossref_primary_10_1371_journal_pone_0302641 crossref_primary_10_1177_15330338221141793 crossref_primary_10_1093_bjrai_ubaf002 crossref_primary_10_3389_frai_2023_1227091 crossref_primary_10_1001_jamanetworkopen_2020_17135 crossref_primary_10_1111_1754_9485_13105 crossref_primary_10_1080_13813455_2025_2524182 crossref_primary_10_3390_jcm12185852 crossref_primary_10_1016_j_acra_2019_05_018 crossref_primary_10_1002_hsr2_1543 crossref_primary_10_1109_ACCESS_2020_3044646 crossref_primary_10_1183_16000617_0010_2020 crossref_primary_10_3390_diagnostics13132145 crossref_primary_10_1016_j_ejrad_2023_111002 crossref_primary_10_1148_radiol_232085 crossref_primary_10_1088_1757_899X_1020_1_012008 crossref_primary_10_2217_fon_2020_0987 crossref_primary_10_1016_j_gie_2021_08_022 crossref_primary_10_1007_s00247_021_05146_0 crossref_primary_10_1109_TMI_2024_3382042 crossref_primary_10_1183_13993003_03061_2020 crossref_primary_10_1016_j_arbres_2020_10_008 crossref_primary_10_3390_healthcare10071269 crossref_primary_10_1007_s00330_020_07062_7 crossref_primary_10_1161_CIRCRESAHA_121_318224 crossref_primary_10_3389_fmed_2024_1449537 crossref_primary_10_2196_34724 crossref_primary_10_1007_s10462_024_10807_1 crossref_primary_10_3390_diagnostics13040743 crossref_primary_10_1007_s00259_021_05242_1 crossref_primary_10_1038_s41416_025_03147_6 crossref_primary_10_1148_radiol_2019192527 crossref_primary_10_1038_s41598_020_64205_y crossref_primary_10_1038_s41746_021_00393_9 crossref_primary_10_1038_s41598_023_47194_6 crossref_primary_10_1186_s41747_023_00386_1 crossref_primary_10_3348_kjr_2020_0447 crossref_primary_10_1088_1742_6596_2949_1_012007 crossref_primary_10_1016_j_clinimag_2022_11_003 crossref_primary_10_1016_j_jacr_2024_11_009 crossref_primary_10_1038_s41598_023_40708_2 crossref_primary_10_3389_frai_2025_1512910 crossref_primary_10_1038_s41591_018_0300_7 crossref_primary_10_1016_j_compmedimag_2023_102220 crossref_primary_10_1038_s41598_024_82775_z crossref_primary_10_1016_j_media_2020_101813 crossref_primary_10_1016_j_knosys_2020_106445 crossref_primary_10_1148_radiol_221894 crossref_primary_10_1148_ryai_220270 crossref_primary_10_1007_s42835_023_01777_5 crossref_primary_10_1016_j_media_2022_102708 crossref_primary_10_1007_s00330_020_06771_3 crossref_primary_10_1145_3472291 crossref_primary_10_1002_pd_5892 crossref_primary_10_1007_s11548_024_03227_7 crossref_primary_10_1080_17476348_2020_1697853 crossref_primary_10_1111_jgh_15522 crossref_primary_10_1007_s00330_021_08397_5 crossref_primary_10_1038_s41598_024_76608_2 crossref_primary_10_1186_s12916_019_1426_2 crossref_primary_10_1080_14622416_2024_2428587 crossref_primary_10_1093_nutrit_nuac033 crossref_primary_10_3390_diagnostics14111183 crossref_primary_10_1016_j_jmir_2019_09_001 crossref_primary_10_3390_jpm13020204 crossref_primary_10_1055_s_0042_1755571 crossref_primary_10_3390_app12126269 crossref_primary_10_1136_thoraxjnl_2020_214556 crossref_primary_10_1111_exsy_13697 crossref_primary_10_1148_radiol_2021210578 crossref_primary_10_1108_FS_04_2023_0059 crossref_primary_10_1007_s40123_021_00430_6 crossref_primary_10_1038_s41746_020_0273_z crossref_primary_10_1016_S1470_2045_19_30149_4 crossref_primary_10_1111_1754_9485_13273 crossref_primary_10_1155_2021_6665573 crossref_primary_10_1016_j_smrv_2021_101512 crossref_primary_10_1177_02841851231202323 crossref_primary_10_3390_sym13010102 crossref_primary_10_1016_j_ejrad_2021_109582 crossref_primary_10_3390_jcm9123860 crossref_primary_10_1148_radiol_222536 crossref_primary_10_1007_s12599_022_00764_w crossref_primary_10_1001_jamanetworkopen_2019_1095 crossref_primary_10_1007_s10278_023_00851_8 crossref_primary_10_1038_s41598_024_84804_3 crossref_primary_10_3390_cancers15215236 crossref_primary_10_3389_fpubh_2021_813717 crossref_primary_10_1148_radiol_2019191293 crossref_primary_10_1007_s00432_019_03098_5 crossref_primary_10_1371_journal_pone_0264383 crossref_primary_10_1016_j_media_2020_101911 crossref_primary_10_1080_23080477_2023_2246285 crossref_primary_10_1001_jamanetworkopen_2020_5842 crossref_primary_10_3390_diagnostics14222592 crossref_primary_10_1016_j_ejrad_2025_112409 crossref_primary_10_1146_annurev_anchem_091520_091450 crossref_primary_10_1007_s40290_021_00403_x crossref_primary_10_1016_j_ejrad_2019_108774 crossref_primary_10_1148_radiol_240650 crossref_primary_10_1007_s10278_020_00413_2 crossref_primary_10_1016_j_cson_2025_100086 crossref_primary_10_1038_s41598_021_00557_3 crossref_primary_10_1371_journal_pone_0238908 crossref_primary_10_3389_fvets_2021_731936 crossref_primary_10_1136_bmjopen_2023_077348 crossref_primary_10_1016_j_ijrobp_2024_11_064 crossref_primary_10_1038_s41598_021_04667_w crossref_primary_10_3348_kjr_2021_0544 crossref_primary_10_1002_jmri_27266 crossref_primary_10_1016_j_acra_2023_02_016 crossref_primary_10_1089_omi_2019_0038 crossref_primary_10_1016_j_xnsj_2022_100142 crossref_primary_10_1038_s41568_020_00327_9 crossref_primary_10_1007_s10994_024_06562_7 crossref_primary_10_3390_diagnostics13122020 crossref_primary_10_1038_s41598_024_55792_1 crossref_primary_10_1148_radiol_2019182465 crossref_primary_10_1155_2023_5933003 crossref_primary_10_3389_fimmu_2022_1024707 crossref_primary_10_2196_39536 crossref_primary_10_3348_kjr_2022_0651 crossref_primary_10_1148_radiol_2019190791 crossref_primary_10_1016_j_ejso_2024_108014 crossref_primary_10_3390_jcm13133850 crossref_primary_10_1088_1402_4896_ad3305 crossref_primary_10_1109_ACCESS_2022_3211651 crossref_primary_10_21292_2075_1230_2021_99_4_58_64 crossref_primary_10_1590_1983_803420243739pt crossref_primary_10_1038_s41598_024_66530_y crossref_primary_10_1371_journal_pdig_0000612 crossref_primary_10_1016_j_diii_2022_11_007 crossref_primary_10_1145_3617999 crossref_primary_10_1007_s00330_019_06589_8 crossref_primary_10_1007_s11517_024_03022_1 crossref_primary_10_1007_s12559_025_10408_2 crossref_primary_10_1016_j_chest_2022_12_003 crossref_primary_10_2196_48142 crossref_primary_10_3348_kjr_2022_0548 crossref_primary_10_3389_fdgth_2020_569178 crossref_primary_10_1053_j_ajkd_2019_05_020 crossref_primary_10_1002_mp_15549 crossref_primary_10_3390_app12073341 crossref_primary_10_1007_s10278_024_01323_3 crossref_primary_10_1186_s12885_021_08847_9 crossref_primary_10_1136_bjophthalmol_2020_317817 crossref_primary_10_1007_s00330_020_07071_6 crossref_primary_10_1007_s00330_019_06532_x crossref_primary_10_1016_j_ipm_2021_102657 crossref_primary_10_1016_j_ebiom_2020_102780 crossref_primary_10_1016_j_knosys_2025_114034 crossref_primary_10_1109_ACCESS_2020_3028390 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1148/radiol.2018180237 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1527-1315 |
| ExternalDocumentID | 30251934 |
| Genre | Journal Article |
| GroupedDBID | --- .55 .GJ 123 18M 1CY 1KJ 29P 2WC 34G 39C 4.4 53G 5RE 6NX 6PF 7FM AAEJM AAQQT AAWTL ABDPE ABHFT ABOCM ACFQH ACGFO ACJAN ACRZS ADBBV AENEX AENYM AFFNX AFOSN AJJEV AJWWR ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 J5H KO8 L7B LMP LSO MJL MV1 N4W NPM OK1 P2P R.V RKKAF RXW SJN TAE TR2 TRS TWZ VXZ W8F WH7 WOQ X7M YQI YQJ ZGI ZKG ZVN ZXP 7X8 |
| ID | FETCH-LOGICAL-c367t-a92c00ede9cdeba0227e6f3c0490525e80bf8c9c651cf4aaa634ac1a20602b122 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 385 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453784400040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1527-1315 |
| IngestDate | Sat Sep 27 23:31:09 EDT 2025 Wed Feb 19 02:36:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-a92c00ede9cdeba0227e6f3c0490525e80bf8c9c651cf4aaa634ac1a20602b122 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1791-7942 0000-0003-3991-4523 0000-0002-6733-7551 |
| PMID | 30251934 |
| PQID | 2112190751 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2112190751 pubmed_primary_30251934 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Jan 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-Jan |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Radiology |
| PublicationTitleAlternate | Radiology |
| PublicationYear | 2019 |
| SSID | ssj0014587 |
| Score | 2.6884937 |
| Snippet | Purpose To develop and validate a deep learning-based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 218 |
| Title | Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30251934 https://www.proquest.com/docview/2112190751 |
| Volume | 290 |
| WOSCitedRecordID | wos000453784400040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwHA7qRLz4fswXEbwGmybN2pOM6fCyMURlt5HmMQeznWsnePcP95e0Mi-C4KWXJm345fUl34_vQ-hKaKq4UIDcZGgJ56kmKQ8M0ZqlXDshw1h6s4lWvx8Ph8mgvnAr6rTK7zXRL9Q6V-6O_BoOKjC5YIOjN7M34lyjHLtaW2isogYDKOMmZmu4ZBF45A3ynHMroYxGNasJJ4DrudST3FEPNPYaaK3fEabfabrb_23jDtqqMSZuV4NiF62YbA9t9GoWfR99_sgUwjLT-BnAeOWthHOLb42Z4Vp3dUzcNqdxe1HmXtwV3pY-eyvD7ekYfl6-vGIAvrgH3xi7rBo8WEyhIXL-gfu5XkxNgaFwx_ly4QcXD6-RXRygp-7dY-ee1G4MRDHRKolMQhUERptEaZNKJz1ohGXKUYdRGJk4SG2sEiUiqiyXUgrGpaIyDEQQpjQMD9FalmfmGOGAKStCqiKdAGBkNmUCyidWCw2IQ4omuvyO7whGu6MwZGbyRTFaRriJjqpOGs0qWY4Rc8elhPGTP9Q-RZvQ9Ul1l3KGGhbmujlH6-q9nBTzCz-M4Nkf9L4AXDrUwA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Validation+of+Deep+Learning-based+Automatic+Detection+Algorithm+for+Malignant+Pulmonary+Nodules+on+Chest+Radiographs&rft.jtitle=Radiology&rft.au=Nam%2C+Ju+Gang&rft.au=Park%2C+Sunggyun&rft.au=Hwang%2C+Eui+Jin&rft.au=Lee%2C+Jong+Hyuk&rft.date=2019-01-01&rft.issn=1527-1315&rft.eissn=1527-1315&rft.volume=290&rft.issue=1&rft.spage=218&rft_id=info:doi/10.1148%2Fradiol.2018180237&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-1315&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-1315&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-1315&client=summon |