Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs

Purpose To develop and validate a deep learning-based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare its performance with physicians including thoracic radiologists. Materials and Methods For this retrospective study, DLAD was developed by us...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Radiology Ročník 290; číslo 1; s. 218
Hlavní autoři: Nam, Ju Gang, Park, Sunggyun, Hwang, Eui Jin, Lee, Jong Hyuk, Jin, Kwang-Nam, Lim, Kun Young, Vu, Thienkai Huy, Sohn, Jae Ho, Hwang, Sangheum, Goo, Jin Mo, Park, Chang Min
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.01.2019
ISSN:1527-1315, 1527-1315
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose To develop and validate a deep learning-based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare its performance with physicians including thoracic radiologists. Materials and Methods For this retrospective study, DLAD was developed by using 43 292 chest radiographs (normal radiograph-to-nodule radiograph ratio, 34 067:9225) in 34 676 patients (healthy-to-nodule ratio, 30 784:3892; 19 230 men [mean age, 52.8 years; age range, 18-99 years]; 15 446 women [mean age, 52.3 years; age range, 18-98 years]) obtained between 2010 and 2015, which were labeled and partially annotated by 13 board-certified radiologists, in a convolutional neural network. Radiograph classification and nodule detection performances of DLAD were validated by using one internal and four external data sets from three South Korean hospitals and one U.S. hospital. For internal and external validation, radiograph classification and nodule detection performances of DLAD were evaluated by using the area under the receiver operating characteristic curve (AUROC) and jackknife alternative free-response receiver-operating characteristic (JAFROC) figure of merit (FOM), respectively. An observer performance test involving 18 physicians, including nine board-certified radiologists, was conducted by using one of the four external validation data sets. Performances of DLAD, physicians, and physicians assisted with DLAD were evaluated and compared. Results According to one internal and four external validation data sets, radiograph classification and nodule detection performances of DLAD were a range of 0.92-0.99 (AUROC) and 0.831-0.924 (JAFROC FOM), respectively. DLAD showed a higher AUROC and JAFROC FOM at the observer performance test than 17 of 18 and 15 of 18 physicians, respectively (P < .05), and all physicians showed improved nodule detection performances with DLAD (mean JAFROC FOM improvement, 0.043; range, 0.006-0.190; P < .05). Conclusion This deep learning-based automatic detection algorithm outperformed physicians in radiograph classification and nodule detection performance for malignant pulmonary nodules on chest radiographs, and it enhanced physicians' performances when used as a second reader. © RSNA, 2018 Online supplemental material is available for this article.
AbstractList Purpose To develop and validate a deep learning-based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare its performance with physicians including thoracic radiologists. Materials and Methods For this retrospective study, DLAD was developed by using 43 292 chest radiographs (normal radiograph-to-nodule radiograph ratio, 34 067:9225) in 34 676 patients (healthy-to-nodule ratio, 30 784:3892; 19 230 men [mean age, 52.8 years; age range, 18-99 years]; 15 446 women [mean age, 52.3 years; age range, 18-98 years]) obtained between 2010 and 2015, which were labeled and partially annotated by 13 board-certified radiologists, in a convolutional neural network. Radiograph classification and nodule detection performances of DLAD were validated by using one internal and four external data sets from three South Korean hospitals and one U.S. hospital. For internal and external validation, radiograph classification and nodule detection performances of DLAD were evaluated by using the area under the receiver operating characteristic curve (AUROC) and jackknife alternative free-response receiver-operating characteristic (JAFROC) figure of merit (FOM), respectively. An observer performance test involving 18 physicians, including nine board-certified radiologists, was conducted by using one of the four external validation data sets. Performances of DLAD, physicians, and physicians assisted with DLAD were evaluated and compared. Results According to one internal and four external validation data sets, radiograph classification and nodule detection performances of DLAD were a range of 0.92-0.99 (AUROC) and 0.831-0.924 (JAFROC FOM), respectively. DLAD showed a higher AUROC and JAFROC FOM at the observer performance test than 17 of 18 and 15 of 18 physicians, respectively (P < .05), and all physicians showed improved nodule detection performances with DLAD (mean JAFROC FOM improvement, 0.043; range, 0.006-0.190; P < .05). Conclusion This deep learning-based automatic detection algorithm outperformed physicians in radiograph classification and nodule detection performance for malignant pulmonary nodules on chest radiographs, and it enhanced physicians' performances when used as a second reader. © RSNA, 2018 Online supplemental material is available for this article.Purpose To develop and validate a deep learning-based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare its performance with physicians including thoracic radiologists. Materials and Methods For this retrospective study, DLAD was developed by using 43 292 chest radiographs (normal radiograph-to-nodule radiograph ratio, 34 067:9225) in 34 676 patients (healthy-to-nodule ratio, 30 784:3892; 19 230 men [mean age, 52.8 years; age range, 18-99 years]; 15 446 women [mean age, 52.3 years; age range, 18-98 years]) obtained between 2010 and 2015, which were labeled and partially annotated by 13 board-certified radiologists, in a convolutional neural network. Radiograph classification and nodule detection performances of DLAD were validated by using one internal and four external data sets from three South Korean hospitals and one U.S. hospital. For internal and external validation, radiograph classification and nodule detection performances of DLAD were evaluated by using the area under the receiver operating characteristic curve (AUROC) and jackknife alternative free-response receiver-operating characteristic (JAFROC) figure of merit (FOM), respectively. An observer performance test involving 18 physicians, including nine board-certified radiologists, was conducted by using one of the four external validation data sets. Performances of DLAD, physicians, and physicians assisted with DLAD were evaluated and compared. Results According to one internal and four external validation data sets, radiograph classification and nodule detection performances of DLAD were a range of 0.92-0.99 (AUROC) and 0.831-0.924 (JAFROC FOM), respectively. DLAD showed a higher AUROC and JAFROC FOM at the observer performance test than 17 of 18 and 15 of 18 physicians, respectively (P < .05), and all physicians showed improved nodule detection performances with DLAD (mean JAFROC FOM improvement, 0.043; range, 0.006-0.190; P < .05). Conclusion This deep learning-based automatic detection algorithm outperformed physicians in radiograph classification and nodule detection performance for malignant pulmonary nodules on chest radiographs, and it enhanced physicians' performances when used as a second reader. © RSNA, 2018 Online supplemental material is available for this article.
Purpose To develop and validate a deep learning-based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare its performance with physicians including thoracic radiologists. Materials and Methods For this retrospective study, DLAD was developed by using 43 292 chest radiographs (normal radiograph-to-nodule radiograph ratio, 34 067:9225) in 34 676 patients (healthy-to-nodule ratio, 30 784:3892; 19 230 men [mean age, 52.8 years; age range, 18-99 years]; 15 446 women [mean age, 52.3 years; age range, 18-98 years]) obtained between 2010 and 2015, which were labeled and partially annotated by 13 board-certified radiologists, in a convolutional neural network. Radiograph classification and nodule detection performances of DLAD were validated by using one internal and four external data sets from three South Korean hospitals and one U.S. hospital. For internal and external validation, radiograph classification and nodule detection performances of DLAD were evaluated by using the area under the receiver operating characteristic curve (AUROC) and jackknife alternative free-response receiver-operating characteristic (JAFROC) figure of merit (FOM), respectively. An observer performance test involving 18 physicians, including nine board-certified radiologists, was conducted by using one of the four external validation data sets. Performances of DLAD, physicians, and physicians assisted with DLAD were evaluated and compared. Results According to one internal and four external validation data sets, radiograph classification and nodule detection performances of DLAD were a range of 0.92-0.99 (AUROC) and 0.831-0.924 (JAFROC FOM), respectively. DLAD showed a higher AUROC and JAFROC FOM at the observer performance test than 17 of 18 and 15 of 18 physicians, respectively (P < .05), and all physicians showed improved nodule detection performances with DLAD (mean JAFROC FOM improvement, 0.043; range, 0.006-0.190; P < .05). Conclusion This deep learning-based automatic detection algorithm outperformed physicians in radiograph classification and nodule detection performance for malignant pulmonary nodules on chest radiographs, and it enhanced physicians' performances when used as a second reader. © RSNA, 2018 Online supplemental material is available for this article.
Author Hwang, Sangheum
Goo, Jin Mo
Nam, Ju Gang
Lee, Jong Hyuk
Lim, Kun Young
Hwang, Eui Jin
Vu, Thienkai Huy
Sohn, Jae Ho
Park, Chang Min
Park, Sunggyun
Jin, Kwang-Nam
Author_xml – sequence: 1
  givenname: Ju Gang
  orcidid: 0000-0003-3991-4523
  surname: Nam
  fullname: Nam, Ju Gang
  organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.)
– sequence: 2
  givenname: Sunggyun
  surname: Park
  fullname: Park, Sunggyun
  organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.)
– sequence: 3
  givenname: Eui Jin
  surname: Hwang
  fullname: Hwang, Eui Jin
  organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.)
– sequence: 4
  givenname: Jong Hyuk
  surname: Lee
  fullname: Lee, Jong Hyuk
  organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.)
– sequence: 5
  givenname: Kwang-Nam
  surname: Jin
  fullname: Jin, Kwang-Nam
  organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.)
– sequence: 6
  givenname: Kun Young
  surname: Lim
  fullname: Lim, Kun Young
  organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.)
– sequence: 7
  givenname: Thienkai Huy
  surname: Vu
  fullname: Vu, Thienkai Huy
  organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.)
– sequence: 8
  givenname: Jae Ho
  orcidid: 0000-0002-6733-7551
  surname: Sohn
  fullname: Sohn, Jae Ho
  organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.)
– sequence: 9
  givenname: Sangheum
  surname: Hwang
  fullname: Hwang, Sangheum
  organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.)
– sequence: 10
  givenname: Jin Mo
  orcidid: 0000-0003-1791-7942
  surname: Goo
  fullname: Goo, Jin Mo
  organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.)
– sequence: 11
  givenname: Chang Min
  surname: Park
  fullname: Park, Chang Min
  organization: From the Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., E.J.H., J.M.G., C.M.P.); Lunit Incorporated, Seoul, Republic of Korea (S.P.); Department of Radiology, Armed Forces Seoul Hospital, Seoul, Republic of Korea (J.H.L.); Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Republic of Korea (K.N.J.); Department of Radiology, National Cancer Center, Goyang, Republic of Korea (K.Y.L.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (T.H.V., J.H.S.); and Department of Industrial & Information Systems Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea (S.H.)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30251934$$D View this record in MEDLINE/PubMed
BookMark eNpNkMlKxEAQhhsZcRZ9AC_SRy8Zuzr7cZhxg3FB1GuodCqZSKc7phPBuw9u3MBTFdTHx1__nE2MNcTYMYglQJCcdVjUVi-lgAQSIf14j80glLEHPoSTf_uUzZ17EQKCMIkP2NQXMoTUD2bsY0NvpG3bkOk5moI_o64L7GtruC35hqjlW8LO1KbycnRU8NXQ22Yk1HjtSX2jK13Zru53DS9tx29GR2VwNN4PurEGu3d-a4tBk-MjvN6R6_nDV_iqw3bnDtl-idrR0e9csKeL88f1lbe9u7xer7ae8qO49zCVSggqKFUF5SikjCkqfSWCVIQypETkZaJSFYWgygARIz9ABShFJGQOUi7Y6Y-37ezrMIbImtop0hoN2cFlEkBCKuIQRvTkFx3yhoqs7epmfCP7a05-Ah3vdU0
CitedBy_id crossref_primary_10_1038_s41598_024_70780_1
crossref_primary_10_1016_j_crad_2019_08_005
crossref_primary_10_2196_10010
crossref_primary_10_1007_s00330_022_08593_x
crossref_primary_10_1148_radiol_232139
crossref_primary_10_1016_j_acra_2021_05_023
crossref_primary_10_1007_s10140_021_02000_6
crossref_primary_10_1109_TPAMI_2021_3085983
crossref_primary_10_1038_s41598_022_24721_5
crossref_primary_10_1186_s12910_023_00983_0
crossref_primary_10_1186_s40537_024_01018_0
crossref_primary_10_1016_j_desal_2021_115107
crossref_primary_10_1177_01622439241262854
crossref_primary_10_1109_TMI_2020_3042773
crossref_primary_10_3389_fonc_2023_1140635
crossref_primary_10_1001_jamanetworkopen_2022_53820
crossref_primary_10_1109_ACCESS_2020_3010800
crossref_primary_10_1007_s00330_020_07044_9
crossref_primary_10_1038_s41598_024_65488_1
crossref_primary_10_1109_ACCESS_2025_3564633
crossref_primary_10_1007_s10278_021_00494_7
crossref_primary_10_1109_TMI_2021_3054817
crossref_primary_10_1002_ima_23176
crossref_primary_10_1016_j_radi_2023_12_019
crossref_primary_10_1016_j_canlet_2019_12_007
crossref_primary_10_3389_fonc_2021_725599
crossref_primary_10_1513_AnnalsATS_202206_481OC
crossref_primary_10_3390_children10081372
crossref_primary_10_3389_fonc_2021_747250
crossref_primary_10_1186_s13244_023_01497_4
crossref_primary_10_1016_j_crad_2021_03_021
crossref_primary_10_20935_AcadMed7509
crossref_primary_10_32604_cmes_2022_022322
crossref_primary_10_1016_j_crad_2020_08_027
crossref_primary_10_3390_diagnostics11122206
crossref_primary_10_3390_diagnostics13122060
crossref_primary_10_1097_MPA_0000000000001603
crossref_primary_10_3348_kjr_2023_0255
crossref_primary_10_1007_s11882_023_01097_8
crossref_primary_10_1148_radiol_2021204531
crossref_primary_10_2174_0929867329666220105121754
crossref_primary_10_1148_radiol_230860
crossref_primary_10_1038_s41746_019_0142_9
crossref_primary_10_1007_s11604_023_01503_1
crossref_primary_10_1016_j_radi_2025_01_011
crossref_primary_10_1007_s00464_024_10939_z
crossref_primary_10_1016_j_ejrad_2021_109526
crossref_primary_10_3390_diagnostics13061043
crossref_primary_10_1148_radiol_2019192252
crossref_primary_10_3390_app10020559
crossref_primary_10_3390_vetsci12050404
crossref_primary_10_1016_j_arthro_2020_09_012
crossref_primary_10_1016_j_ucl_2020_09_004
crossref_primary_10_1109_ACCESS_2021_3118694
crossref_primary_10_1111_cpf_12611
crossref_primary_10_1186_s12874_025_02463_y
crossref_primary_10_3390_diagnostics13122090
crossref_primary_10_1016_j_jmir_2021_02_005
crossref_primary_10_1016_j_imu_2021_100596
crossref_primary_10_1038_s41598_021_83515_3
crossref_primary_10_3389_fimmu_2024_1357217
crossref_primary_10_3390_diagnostics13162617
crossref_primary_10_3390_e25030431
crossref_primary_10_3748_wjg_v29_i3_536
crossref_primary_10_1001_jamanetworkopen_2022_29289
crossref_primary_10_2196_28114
crossref_primary_10_1371_journal_pone_0242759
crossref_primary_10_1016_j_acra_2024_11_003
crossref_primary_10_3390_jcm14134635
crossref_primary_10_1080_08820538_2021_1889617
crossref_primary_10_3171_2019_6_SPINE19463
crossref_primary_10_3348_kjr_2022_0189
crossref_primary_10_3348_kjr_2023_0393
crossref_primary_10_1038_s41746_023_00829_4
crossref_primary_10_1148_radiol_2021202818
crossref_primary_10_1183_16000617_0181_2020
crossref_primary_10_3390_biomedicines11030760
crossref_primary_10_3390_diagnostics14131456
crossref_primary_10_1002_adfm_202305136
crossref_primary_10_1016_j_radi_2021_12_006
crossref_primary_10_1007_s00330_021_08162_8
crossref_primary_10_1002_lary_31338
crossref_primary_10_3390_diagnostics11101868
crossref_primary_10_1016_j_media_2021_102125
crossref_primary_10_3389_fmed_2024_1290729
crossref_primary_10_2196_64649
crossref_primary_10_3390_app11104573
crossref_primary_10_1117_1_JMI_10_4_044503
crossref_primary_10_1590_1983_803420243739es
crossref_primary_10_1007_s15004_021_8912_3
crossref_primary_10_1002_pd_6220
crossref_primary_10_1053_j_ro_2023_02_001
crossref_primary_10_3389_fonc_2022_945053
crossref_primary_10_1038_s41746_022_00648_z
crossref_primary_10_1038_s41598_021_89686_3
crossref_primary_10_1148_radiol_2019191225
crossref_primary_10_1007_s10462_023_10638_6
crossref_primary_10_1038_s41746_021_00438_z
crossref_primary_10_1007_s00330_022_09315_z
crossref_primary_10_1148_radiol_2020201240
crossref_primary_10_1109_ACCESS_2020_2977669
crossref_primary_10_1038_s41467_022_29437_8
crossref_primary_10_1016_j_jaip_2021_02_014
crossref_primary_10_1161_CIRCIMAGING_122_014744
crossref_primary_10_1016_j_acra_2020_04_011
crossref_primary_10_1007_s13721_024_00448_3
crossref_primary_10_1016_j_bas_2025_104208
crossref_primary_10_1109_TAI_2023_3266418
crossref_primary_10_3390_diagnostics13030557
crossref_primary_10_1007_s00330_020_07219_4
crossref_primary_10_1007_s00423_021_02348_w
crossref_primary_10_1111_coin_12526
crossref_primary_10_1186_s13014_020_01562_y
crossref_primary_10_1038_s41598_023_37270_2
crossref_primary_10_1007_s00138_020_01101_5
crossref_primary_10_1016_j_bdr_2021_100185
crossref_primary_10_3390_jpm13101426
crossref_primary_10_1001_jamanetworkopen_2021_41096
crossref_primary_10_3389_fonc_2021_661244
crossref_primary_10_1001_jamanetworkopen_2022_55113
crossref_primary_10_1016_j_compbiomed_2020_103675
crossref_primary_10_1093_jamia_ocad094
crossref_primary_10_1067_j_cpradiol_2022_11_004
crossref_primary_10_1097_EJA_0000000000001720
crossref_primary_10_3348_kjr_2019_0821
crossref_primary_10_1148_ryai_210064
crossref_primary_10_1155_2021_5801662
crossref_primary_10_1371_journal_pone_0249399
crossref_primary_10_1371_journal_pone_0252440
crossref_primary_10_1148_ryai_2019180069
crossref_primary_10_3390_jcm9061981
crossref_primary_10_1590_1983_803420243739en
crossref_primary_10_2478_bjlp_2023_0013
crossref_primary_10_1007_s11547_022_01512_6
crossref_primary_10_1007_s00330_021_08074_7
crossref_primary_10_1016_j_radi_2023_10_014
crossref_primary_10_1109_TCBB_2023_3265394
crossref_primary_10_1148_radiol_222831
crossref_primary_10_1371_journal_pone_0281690
crossref_primary_10_1016_j_psychres_2019_112732
crossref_primary_10_1093_cid_ciy967
crossref_primary_10_1007_s44206_023_00072_0
crossref_primary_10_3390_jpm14020164
crossref_primary_10_1038_s41598_021_93967_2
crossref_primary_10_1016_j_compbiomed_2021_104357
crossref_primary_10_1016_j_ebiom_2020_102933
crossref_primary_10_1038_s41598_024_65703_z
crossref_primary_10_1186_s12911_021_01679_4
crossref_primary_10_1007_s00256_022_04081_x
crossref_primary_10_1007_s00408_023_00655_1
crossref_primary_10_1038_s41598_021_96855_x
crossref_primary_10_1148_radiol_211706
crossref_primary_10_1007_s11547_023_01691_w
crossref_primary_10_1002_jmri_27202
crossref_primary_10_1016_j_gaitpost_2021_10_028
crossref_primary_10_3348_jksr_2019_80_2_176
crossref_primary_10_1371_journal_pone_0246472
crossref_primary_10_1148_radiol_222268
crossref_primary_10_1259_dmfr_20210515
crossref_primary_10_1093_jamia_ocad191
crossref_primary_10_4103_lungindia_lungindia_144_22
crossref_primary_10_4274_dir_2024_242835
crossref_primary_10_1148_radiol_2020200165
crossref_primary_10_1088_1361_6560_ad2013
crossref_primary_10_3233_THC_241079
crossref_primary_10_1016_j_crad_2019_04_024
crossref_primary_10_3390_jcm10020301
crossref_primary_10_1038_s41598_020_69789_z
crossref_primary_10_1183_13993003_00625_2021
crossref_primary_10_17749_2070_4909_farmakoekonomika_2025_287
crossref_primary_10_1148_ryai_220062
crossref_primary_10_1002_btm2_10359
crossref_primary_10_1148_radiol_2019192079
crossref_primary_10_1007_s00330_021_08036_z
crossref_primary_10_3390_healthcare9070834
crossref_primary_10_1016_j_compbiomed_2021_105143
crossref_primary_10_1016_j_medj_2025_100668
crossref_primary_10_1136_bmjopen_2021_054411
crossref_primary_10_1148_radiol_222976
crossref_primary_10_1007_s00330_020_06892_9
crossref_primary_10_3389_fmed_2022_945698
crossref_primary_10_3390_healthcare11182518
crossref_primary_10_1007_s10815_020_01950_z
crossref_primary_10_1016_j_rcl_2021_07_001
crossref_primary_10_1080_0954898X_2022_2147231
crossref_primary_10_1371_journal_pone_0302641
crossref_primary_10_1177_15330338221141793
crossref_primary_10_1093_bjrai_ubaf002
crossref_primary_10_3389_frai_2023_1227091
crossref_primary_10_1001_jamanetworkopen_2020_17135
crossref_primary_10_1111_1754_9485_13105
crossref_primary_10_1080_13813455_2025_2524182
crossref_primary_10_3390_jcm12185852
crossref_primary_10_1016_j_acra_2019_05_018
crossref_primary_10_1002_hsr2_1543
crossref_primary_10_1109_ACCESS_2020_3044646
crossref_primary_10_1183_16000617_0010_2020
crossref_primary_10_3390_diagnostics13132145
crossref_primary_10_1016_j_ejrad_2023_111002
crossref_primary_10_1148_radiol_232085
crossref_primary_10_1088_1757_899X_1020_1_012008
crossref_primary_10_2217_fon_2020_0987
crossref_primary_10_1016_j_gie_2021_08_022
crossref_primary_10_1007_s00247_021_05146_0
crossref_primary_10_1109_TMI_2024_3382042
crossref_primary_10_1183_13993003_03061_2020
crossref_primary_10_1016_j_arbres_2020_10_008
crossref_primary_10_3390_healthcare10071269
crossref_primary_10_1007_s00330_020_07062_7
crossref_primary_10_1161_CIRCRESAHA_121_318224
crossref_primary_10_3389_fmed_2024_1449537
crossref_primary_10_2196_34724
crossref_primary_10_1007_s10462_024_10807_1
crossref_primary_10_3390_diagnostics13040743
crossref_primary_10_1007_s00259_021_05242_1
crossref_primary_10_1038_s41416_025_03147_6
crossref_primary_10_1148_radiol_2019192527
crossref_primary_10_1038_s41598_020_64205_y
crossref_primary_10_1038_s41746_021_00393_9
crossref_primary_10_1038_s41598_023_47194_6
crossref_primary_10_1186_s41747_023_00386_1
crossref_primary_10_3348_kjr_2020_0447
crossref_primary_10_1088_1742_6596_2949_1_012007
crossref_primary_10_1016_j_clinimag_2022_11_003
crossref_primary_10_1016_j_jacr_2024_11_009
crossref_primary_10_1038_s41598_023_40708_2
crossref_primary_10_3389_frai_2025_1512910
crossref_primary_10_1038_s41591_018_0300_7
crossref_primary_10_1016_j_compmedimag_2023_102220
crossref_primary_10_1038_s41598_024_82775_z
crossref_primary_10_1016_j_media_2020_101813
crossref_primary_10_1016_j_knosys_2020_106445
crossref_primary_10_1148_radiol_221894
crossref_primary_10_1148_ryai_220270
crossref_primary_10_1007_s42835_023_01777_5
crossref_primary_10_1016_j_media_2022_102708
crossref_primary_10_1007_s00330_020_06771_3
crossref_primary_10_1145_3472291
crossref_primary_10_1002_pd_5892
crossref_primary_10_1007_s11548_024_03227_7
crossref_primary_10_1080_17476348_2020_1697853
crossref_primary_10_1111_jgh_15522
crossref_primary_10_1007_s00330_021_08397_5
crossref_primary_10_1038_s41598_024_76608_2
crossref_primary_10_1186_s12916_019_1426_2
crossref_primary_10_1080_14622416_2024_2428587
crossref_primary_10_1093_nutrit_nuac033
crossref_primary_10_3390_diagnostics14111183
crossref_primary_10_1016_j_jmir_2019_09_001
crossref_primary_10_3390_jpm13020204
crossref_primary_10_1055_s_0042_1755571
crossref_primary_10_3390_app12126269
crossref_primary_10_1136_thoraxjnl_2020_214556
crossref_primary_10_1111_exsy_13697
crossref_primary_10_1148_radiol_2021210578
crossref_primary_10_1108_FS_04_2023_0059
crossref_primary_10_1007_s40123_021_00430_6
crossref_primary_10_1038_s41746_020_0273_z
crossref_primary_10_1016_S1470_2045_19_30149_4
crossref_primary_10_1111_1754_9485_13273
crossref_primary_10_1155_2021_6665573
crossref_primary_10_1016_j_smrv_2021_101512
crossref_primary_10_1177_02841851231202323
crossref_primary_10_3390_sym13010102
crossref_primary_10_1016_j_ejrad_2021_109582
crossref_primary_10_3390_jcm9123860
crossref_primary_10_1148_radiol_222536
crossref_primary_10_1007_s12599_022_00764_w
crossref_primary_10_1001_jamanetworkopen_2019_1095
crossref_primary_10_1007_s10278_023_00851_8
crossref_primary_10_1038_s41598_024_84804_3
crossref_primary_10_3390_cancers15215236
crossref_primary_10_3389_fpubh_2021_813717
crossref_primary_10_1148_radiol_2019191293
crossref_primary_10_1007_s00432_019_03098_5
crossref_primary_10_1371_journal_pone_0264383
crossref_primary_10_1016_j_media_2020_101911
crossref_primary_10_1080_23080477_2023_2246285
crossref_primary_10_1001_jamanetworkopen_2020_5842
crossref_primary_10_3390_diagnostics14222592
crossref_primary_10_1016_j_ejrad_2025_112409
crossref_primary_10_1146_annurev_anchem_091520_091450
crossref_primary_10_1007_s40290_021_00403_x
crossref_primary_10_1016_j_ejrad_2019_108774
crossref_primary_10_1148_radiol_240650
crossref_primary_10_1007_s10278_020_00413_2
crossref_primary_10_1016_j_cson_2025_100086
crossref_primary_10_1038_s41598_021_00557_3
crossref_primary_10_1371_journal_pone_0238908
crossref_primary_10_3389_fvets_2021_731936
crossref_primary_10_1136_bmjopen_2023_077348
crossref_primary_10_1016_j_ijrobp_2024_11_064
crossref_primary_10_1038_s41598_021_04667_w
crossref_primary_10_3348_kjr_2021_0544
crossref_primary_10_1002_jmri_27266
crossref_primary_10_1016_j_acra_2023_02_016
crossref_primary_10_1089_omi_2019_0038
crossref_primary_10_1016_j_xnsj_2022_100142
crossref_primary_10_1038_s41568_020_00327_9
crossref_primary_10_1007_s10994_024_06562_7
crossref_primary_10_3390_diagnostics13122020
crossref_primary_10_1038_s41598_024_55792_1
crossref_primary_10_1148_radiol_2019182465
crossref_primary_10_1155_2023_5933003
crossref_primary_10_3389_fimmu_2022_1024707
crossref_primary_10_2196_39536
crossref_primary_10_3348_kjr_2022_0651
crossref_primary_10_1148_radiol_2019190791
crossref_primary_10_1016_j_ejso_2024_108014
crossref_primary_10_3390_jcm13133850
crossref_primary_10_1088_1402_4896_ad3305
crossref_primary_10_1109_ACCESS_2022_3211651
crossref_primary_10_21292_2075_1230_2021_99_4_58_64
crossref_primary_10_1590_1983_803420243739pt
crossref_primary_10_1038_s41598_024_66530_y
crossref_primary_10_1371_journal_pdig_0000612
crossref_primary_10_1016_j_diii_2022_11_007
crossref_primary_10_1145_3617999
crossref_primary_10_1007_s00330_019_06589_8
crossref_primary_10_1007_s11517_024_03022_1
crossref_primary_10_1007_s12559_025_10408_2
crossref_primary_10_1016_j_chest_2022_12_003
crossref_primary_10_2196_48142
crossref_primary_10_3348_kjr_2022_0548
crossref_primary_10_3389_fdgth_2020_569178
crossref_primary_10_1053_j_ajkd_2019_05_020
crossref_primary_10_1002_mp_15549
crossref_primary_10_3390_app12073341
crossref_primary_10_1007_s10278_024_01323_3
crossref_primary_10_1186_s12885_021_08847_9
crossref_primary_10_1136_bjophthalmol_2020_317817
crossref_primary_10_1007_s00330_020_07071_6
crossref_primary_10_1007_s00330_019_06532_x
crossref_primary_10_1016_j_ipm_2021_102657
crossref_primary_10_1016_j_ebiom_2020_102780
crossref_primary_10_1016_j_knosys_2025_114034
crossref_primary_10_1109_ACCESS_2020_3028390
ContentType Journal Article
DBID NPM
7X8
DOI 10.1148/radiol.2018180237
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
ExternalDocumentID 30251934
Genre Journal Article
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ACRZS
ADBBV
AENEX
AENYM
AFFNX
AFOSN
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
NPM
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
VXZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZKG
ZVN
ZXP
7X8
ID FETCH-LOGICAL-c367t-a92c00ede9cdeba0227e6f3c0490525e80bf8c9c651cf4aaa634ac1a20602b122
IEDL.DBID 7X8
ISICitedReferencesCount 385
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453784400040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1527-1315
IngestDate Sat Sep 27 23:31:09 EDT 2025
Wed Feb 19 02:36:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-a92c00ede9cdeba0227e6f3c0490525e80bf8c9c651cf4aaa634ac1a20602b122
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1791-7942
0000-0003-3991-4523
0000-0002-6733-7551
PMID 30251934
PQID 2112190751
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2112190751
pubmed_primary_30251934
PublicationCentury 2000
PublicationDate 2019-Jan
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-Jan
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2019
SSID ssj0014587
Score 2.6884937
Snippet Purpose To develop and validate a deep learning-based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 218
Title Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs
URI https://www.ncbi.nlm.nih.gov/pubmed/30251934
https://www.proquest.com/docview/2112190751
Volume 290
WOSCitedRecordID wos000453784400040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwHA7qRLz4fswXEbwGmybN2pOM6fCyMURlt5HmMQeznWsnePcP95e0Mi-C4KWXJm345fUl34_vQ-hKaKq4UIDcZGgJ56kmKQ8M0ZqlXDshw1h6s4lWvx8Ph8mgvnAr6rTK7zXRL9Q6V-6O_BoOKjC5YIOjN7M34lyjHLtaW2isogYDKOMmZmu4ZBF45A3ynHMroYxGNasJJ4DrudST3FEPNPYaaK3fEabfabrb_23jDtqqMSZuV4NiF62YbA9t9GoWfR99_sgUwjLT-BnAeOWthHOLb42Z4Vp3dUzcNqdxe1HmXtwV3pY-eyvD7ekYfl6-vGIAvrgH3xi7rBo8WEyhIXL-gfu5XkxNgaFwx_ly4QcXD6-RXRygp-7dY-ee1G4MRDHRKolMQhUERptEaZNKJz1ohGXKUYdRGJk4SG2sEiUiqiyXUgrGpaIyDEQQpjQMD9FalmfmGOGAKStCqiKdAGBkNmUCyidWCw2IQ4omuvyO7whGu6MwZGbyRTFaRriJjqpOGs0qWY4Rc8elhPGTP9Q-RZvQ9Ul1l3KGGhbmujlH6-q9nBTzCz-M4Nkf9L4AXDrUwA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Validation+of+Deep+Learning-based+Automatic+Detection+Algorithm+for+Malignant+Pulmonary+Nodules+on+Chest+Radiographs&rft.jtitle=Radiology&rft.au=Nam%2C+Ju+Gang&rft.au=Park%2C+Sunggyun&rft.au=Hwang%2C+Eui+Jin&rft.au=Lee%2C+Jong+Hyuk&rft.date=2019-01-01&rft.issn=1527-1315&rft.eissn=1527-1315&rft.volume=290&rft.issue=1&rft.spage=218&rft_id=info:doi/10.1148%2Fradiol.2018180237&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-1315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-1315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-1315&client=summon