GRIDS-Net: Inverse shape design and identification of scatterers via geometric regularization and physics-embedded deep learning

This study presents a deep learning based methodology for both remote sensing and design of acoustic scatterers. The ability to determine the shape of a scatterer, either in the context of material design or sensing, plays a critical role in many practical engineering problems. This class of inverse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering Jg. 414; H. C; S. 116167
Hauptverfasser: Nair, Siddharth, Walsh, Timothy F., Pickrell, Greg, Semperlotti, Fabio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.09.2023
Elsevier
Schlagworte:
ISSN:0045-7825, 1879-2138
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study presents a deep learning based methodology for both remote sensing and design of acoustic scatterers. The ability to determine the shape of a scatterer, either in the context of material design or sensing, plays a critical role in many practical engineering problems. This class of inverse problems is extremely challenging due to their high-dimensional, nonlinear, and ill-posed nature. To overcome these technical hurdles, we introduce a geometric regularization approach for deep neural networks (DNN) based on non-uniform rational B-splines (NURBS) and capable of predicting complex 2D scatterer geometries in a parsimonious dimensional representation. Then, this geometric regularization is combined with physics-embedded learning and integrated within a robust convolutional autoencoder (CAE) architecture to accurately predict the shape of 2D scatterers in the context of identification and inverse design problems. An extensive numerical study is presented in order to showcase the remarkable ability of this approach to handle complex scatterer geometries while generating physically-consistent acoustic fields. The study also assesses and contrasts the role played by the (weakly) embedded physics in the convergence of the DNN predictions to a physically consistent inverse design.
AbstractList This study presents a deep learning based methodology for both remote sensing and design of acoustic scatterers. The ability to determine the shape of a scatterer, either in the context of material design or sensing, plays a critical role in many practical engineering problems. This class of inverse problems is extremely challenging due to their high-dimensional, nonlinear, and ill-posed nature. To overcome these technical hurdles, we introduce a geometric regularization approach for deep neural networks (DNN) based on non-uniform rational B-splines (NURBS) and capable of predicting complex 2D scatterer geometries in a parsimonious dimensional representation. Then, this geometric regularization is combined with physics-embedded learning and integrated within a robust convolutional autoencoder (CAE) architecture to accurately predict the shape of 2D scatterers in the context of identification and inverse design problems. An extensive numerical study is presented in order to showcase the remarkable ability of this approach to handle complex scatterer geometries while generating physically-consistent acoustic fields. The study also assesses and contrasts the role played by the (weakly) embedded physics in the convergence of the DNN predictions to a physically consistent inverse design.
ArticleNumber 116167
Author Pickrell, Greg
Walsh, Timothy F.
Semperlotti, Fabio
Nair, Siddharth
Author_xml – sequence: 1
  givenname: Siddharth
  orcidid: 0000-0001-5798-4985
  surname: Nair
  fullname: Nair, Siddharth
  organization: Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
– sequence: 2
  givenname: Timothy F.
  surname: Walsh
  fullname: Walsh, Timothy F.
  organization: Sandia National Laboratory, Albuquerque, NM 87185, USA
– sequence: 3
  givenname: Greg
  surname: Pickrell
  fullname: Pickrell, Greg
  organization: Sandia National Laboratory, Albuquerque, NM 87185, USA
– sequence: 4
  givenname: Fabio
  surname: Semperlotti
  fullname: Semperlotti, Fabio
  email: fsemperl@purdue.edu
  organization: Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
BackLink https://www.osti.gov/biblio/2000180$$D View this record in Osti.gov
BookMark eNp9kE1PAyEQhonRxPrxA7wR71thsbuLnkzV2sRoot4JhaGdpmUbwCb15E-XdT15KJfh8D5vZp4TcuhbD4RccDbkjFdXy6FZ62HJSjHkvOJVfUAGvKllUXLRHJIBY9ejom7K0TE5iXHJ8mt4OSDfk7fp_XvxAumGTv0WQgQaF3oD1ELEuafaW4oWfEKHRidsPW0djfmbIOQ43aKmc2jXkAIaGmD-udIBv_poR28Wu4gmFrCegbVgczNs6Ap08OjnZ-TI6VWE8795Sj4eHz7GT8Xz62Q6vnsujKjqVOiGSaclE9cj5ySrZ1BJxqXVxlXMVby0rDbGjaRgYuY0b0RZQ-OEFFpWeZ6Sy762jQlVNJjALEzrPZikymyDNyyHeB8yoY0xgFObgGsddooz1WlWS5U1q06z6jVnpv7H5O7f41PQuNpL3vYk5LO3CKFbC7wBi6Hbyra4h_4Bqmia8A
CitedBy_id crossref_primary_10_1016_j_ymssp_2025_113293
crossref_primary_10_1016_j_enganabound_2024_105813
crossref_primary_10_1016_j_wavemoti_2024_103371
crossref_primary_10_1088_2632_2153_ad134a
crossref_primary_10_1016_j_jcp_2025_114211
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1007_s00366_024_02038_3
crossref_primary_10_1016_j_cma_2025_117814
Cites_doi 10.1109/TIT.2004.839492
10.1109/51.646224
10.1126/science.1261243
10.1109/LGRS.2019.2909218
10.1145/3065386
10.1016/j.compstruct.2021.114808
10.1016/j.ast.2019.07.002
10.1016/j.jksuci.2014.12.010
10.1016/j.jmbbm.2021.104745
10.1038/s41524-018-0128-1
10.1016/j.apradiso.2011.12.015
10.1016/j.jcp.2018.10.045
10.1109/36.295058
10.1021/acs.nanolett.8b03171
10.1088/0266-5611/20/1/012
10.1038/srep11551
10.1039/D0MH01451F
10.1016/j.matt.2019.08.017
10.1126/science.aaw4741
10.1016/j.cma.2018.09.007
10.1038/s41524-020-00431-2
10.1364/OE.26.033732
10.1109/4235.585888
10.1364/OE.384875
10.1115/1.4044507
10.1109/83.941862
10.1038/s41524-021-00609-2
10.1109/TMTT.2019.2956939
10.1038/s42254-021-00314-5
10.2514/1.J057894
10.1016/j.cma.2004.10.008
10.1016/j.ymssp.2021.108190
10.1016/j.jsv.2008.03.042
10.1137/21M1397908
10.1038/s41566-018-0246-9
10.1016/j.cma.2019.112623
10.1007/s12289-018-1421-8
10.1038/s41598-019-54707-9
10.1016/j.cma.2020.113485
10.1016/j.apacoust.2021.108153
10.1088/0266-5611/18/6/328
10.1515/nanoph-2019-0474
10.2514/2.1391
10.1021/acsphotonics.9b01703
10.1038/s41578-020-00260-1
10.1515/nanoph-2019-0117
10.1007/BF01179082
10.1561/2200000006
10.1063/5.0039986
10.2528/PIER03100702
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.cma.2023.116167
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 2000180
10_1016_j_cma_2023_116167
S0045782523002918
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
AAIAV
AALMO
AAPBV
ABPTK
ABYKQ
ACAZW
AFKWA
AJOXV
AMFUW
OTOTI
ID FETCH-LOGICAL-c367t-a809fa90345ff907be69019dacf60f612d07ccf59303bfa18327e8f393a968f3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001024836800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Mon Sep 25 05:37:36 EDT 2023
Sat Nov 29 07:30:14 EST 2025
Tue Nov 18 22:08:23 EST 2025
Sun Apr 06 06:53:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Deep learning
Inverse scattering
Material design
Autoencoders
Remote sensing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-a809fa90345ff907be69019dacf60f612d07ccf59303bfa18327e8f393a968f3
Notes NA0003525
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0001-5798-4985
0000000157984985
OpenAccessLink https://www.osti.gov/biblio/2000180
ParticipantIDs osti_scitechconnect_2000180
crossref_primary_10_1016_j_cma_2023_116167
crossref_citationtrail_10_1016_j_cma_2023_116167
elsevier_sciencedirect_doi_10_1016_j_cma_2023_116167
PublicationCentury 2000
PublicationDate 2023-09-01
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bendsoe, Sigmund (b66) 2003
Balu, Nallagonda, Xu, Krishnamurthy, Hsu, Sarkar (b53) 2019; 9
Wang, Yagola, Yang (b1) 2011
Guo, Yang, Yu, Buehler (b30) 2021; 8
Chen, Yeo, Lee, Lau (b47) 2018
Yeung, Tsai, Pham, King, Kawagoe, Ho, Liang, Knight, Raman (b49) 2021; 9
Vincent, Larochelle, Bengio, Manzagol (b57) 2008
Habashy, Abubakar (b23) 2004; 46
Jekel, Venter, Venter, Stander, Haftka (b64) 2019; 12
Samareh (b17) 2001; 39
Nabian, Meidani (b58) 2020; 20
Kim, Kang, Yoo, Kwon, Nam, Lee, Kim, Choi, Jung, Kim (b4) 2018; 4
Noh, Kim, Stein, Sanchez-Lengeling, Gregoire, Aspuru-Guzik, Jung (b5) 2019; 1
So, Rho (b36) 2019; 8
So, Badloe, Noh, Bravo-Abad, Rho (b28) 2020; 9
Altpeter, Becker, Dobmann, Kern, Theiner, Yashan (b7) 2002; 18
Tao, Sun (b31) 2019; 92
Entekhabi, Nakamura, Njoku (b2) 1994; 32
MacLeod, Brooks (b9) 1998; 17
Hughes, Cottrell, Bazilevs (b52) 2005; 194
Tropp, Dhillon, Heath, Strohmer (b65) 2005; 51
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (b59) 2021; 3
Yaman, Yakhno, Potthast (b11) 2013; 2013
Maute, Sigmund (b15) 2013; 43
Kim, Kim, Yang, Park, Gu, Ryu (b62) 2021; 7
Saini, Kumar, Gulati (b51) 2017; 29
Jiang, Chen, Fan (b29) 2021; 6
Raissi, Perdikaris, Karniadakis (b37) 2019; 378
Liu, Zhu, Rodrigues, Lee, Cai (b35) 2018; 18
Molesky, Lin, Piggott, Jin, Vucković, Rodriguez (b21) 2018; 12
Zhang, Motiwale, Hsu, Sacks (b54) 2021; 123
Krizhevsky, Sutskever, Hinton (b42) 2017; 60
Bertero, Piana (b10) 2006
Kissas, Yang, Hwuang, Witschey, Detre, Perdikaris (b40) 2020; 358
Gao, Wang, Cheng, Hou (b45) 2021; 180
Wu, Jokar, Jahanshahi, Semperlotti (b12) 2022; 164
Eiter, Mannila (b63) 1994
Mousavi, Zhu, Ellsworth, Beroza (b48) 2019; 16
Raissi, Yazdani, Karniadakis (b41) 2020; 367
Zhong, Salucci, Xu, Polo, Massa (b26) 2019; 68
Maulik, Lusch, Balaprakash (b46) 2021; 33
Koenderink, Alù, Polman (b20) 2015; 348
Sekar, Zhang, Shu, Khoo (b44) 2019; 57
White, Arrighi, Kudo, Watts (b34) 2019; 346
Bayati, Pestourie, Colburn, Lin, Johnson, Majumdar (b14) 2020; 7
Liao, Wang, Gao, Wang (b55) 2022; 280
Pestourie, Pérez-Arancibia, Lin, Shin, Capasso, Johnson (b13) 2018; 26
Piegl, Tiller (b61) 1996
Santamarina, Fratta (b6) 1998
Bengio (b56) 2009; 2
Lu, Pestourie, Yao, Wang, Verdugo, Johnson (b39) 2021; 43
Fu, Glover, April (b25) 2005
Harding, Fleckenstein, Kosciesza, Olesinski, Strecker, Theedt, Zienert (b8) 2012; 70
Sigmund (b3) 1996
McCann, Jin, Unser (b43) 2017
Karpatne, Kannan, Kumar (b67) 2022
Liu, Kumar, Chen, Agrawal, Sundararaghavan, Choudhary (b16) 2015; 5
Feijóo, Oberai, Pinsky (b18) 2003; 20
Zhang, Xie, Ji, Zhu, Zheng (b33) 2021; 373
Back, Hammel, Schwefel (b24) 1997; 1
Chen, Lu, Karniadakis, Dal Negro (b38) 2020; 28
Ma, Kruth (b50) 1998; 14
Pestourie, Mroueh, Nguyen, Das, Johnson (b32) 2020; 6
Fahy, Gardonio (b60) 2007
Abubaker, Van Den Berg (b27) 2001; 10
Colton, Kress, Kress (b22) 1998
Dühring, Jensen, Sigmund (b19) 2008; 317
Kissas (10.1016/j.cma.2023.116167_b40) 2020; 358
Saini (10.1016/j.cma.2023.116167_b51) 2017; 29
Liao (10.1016/j.cma.2023.116167_b55) 2022; 280
Lu (10.1016/j.cma.2023.116167_b39) 2021; 43
Zhang (10.1016/j.cma.2023.116167_b54) 2021; 123
Wang (10.1016/j.cma.2023.116167_b1) 2011
Hughes (10.1016/j.cma.2023.116167_b52) 2005; 194
Pestourie (10.1016/j.cma.2023.116167_b13) 2018; 26
Fu (10.1016/j.cma.2023.116167_b25) 2005
Zhong (10.1016/j.cma.2023.116167_b26) 2019; 68
Eiter (10.1016/j.cma.2023.116167_b63) 1994
Liu (10.1016/j.cma.2023.116167_b35) 2018; 18
Altpeter (10.1016/j.cma.2023.116167_b7) 2002; 18
Bendsoe (10.1016/j.cma.2023.116167_b66) 2003
Abubaker (10.1016/j.cma.2023.116167_b27) 2001; 10
Yaman (10.1016/j.cma.2023.116167_b11) 2013; 2013
Back (10.1016/j.cma.2023.116167_b24) 1997; 1
Sekar (10.1016/j.cma.2023.116167_b44) 2019; 57
Krizhevsky (10.1016/j.cma.2023.116167_b42) 2017; 60
Chen (10.1016/j.cma.2023.116167_b47) 2018
Karpatne (10.1016/j.cma.2023.116167_b67) 2022
Wu (10.1016/j.cma.2023.116167_b12) 2022; 164
Jiang (10.1016/j.cma.2023.116167_b29) 2021; 6
Raissi (10.1016/j.cma.2023.116167_b41) 2020; 367
McCann (10.1016/j.cma.2023.116167_b43) 2017
Harding (10.1016/j.cma.2023.116167_b8) 2012; 70
Kim (10.1016/j.cma.2023.116167_b62) 2021; 7
Tao (10.1016/j.cma.2023.116167_b31) 2019; 92
White (10.1016/j.cma.2023.116167_b34) 2019; 346
Kim (10.1016/j.cma.2023.116167_b4) 2018; 4
Ma (10.1016/j.cma.2023.116167_b50) 1998; 14
Vincent (10.1016/j.cma.2023.116167_b57) 2008
Raissi (10.1016/j.cma.2023.116167_b37) 2019; 378
Koenderink (10.1016/j.cma.2023.116167_b20) 2015; 348
So (10.1016/j.cma.2023.116167_b36) 2019; 8
Balu (10.1016/j.cma.2023.116167_b53) 2019; 9
Samareh (10.1016/j.cma.2023.116167_b17) 2001; 39
Bertero (10.1016/j.cma.2023.116167_b10) 2006
Dühring (10.1016/j.cma.2023.116167_b19) 2008; 317
Feijóo (10.1016/j.cma.2023.116167_b18) 2003; 20
So (10.1016/j.cma.2023.116167_b28) 2020; 9
Entekhabi (10.1016/j.cma.2023.116167_b2) 1994; 32
Santamarina (10.1016/j.cma.2023.116167_b6) 1998
Sigmund (10.1016/j.cma.2023.116167_b3) 1996
Bengio (10.1016/j.cma.2023.116167_b56) 2009; 2
Pestourie (10.1016/j.cma.2023.116167_b32) 2020; 6
Habashy (10.1016/j.cma.2023.116167_b23) 2004; 46
Guo (10.1016/j.cma.2023.116167_b30) 2021; 8
Mousavi (10.1016/j.cma.2023.116167_b48) 2019; 16
Fahy (10.1016/j.cma.2023.116167_b60) 2007
Yeung (10.1016/j.cma.2023.116167_b49) 2021; 9
Noh (10.1016/j.cma.2023.116167_b5) 2019; 1
Gao (10.1016/j.cma.2023.116167_b45) 2021; 180
Liu (10.1016/j.cma.2023.116167_b16) 2015; 5
MacLeod (10.1016/j.cma.2023.116167_b9) 1998; 17
Zhang (10.1016/j.cma.2023.116167_b33) 2021; 373
Molesky (10.1016/j.cma.2023.116167_b21) 2018; 12
Karniadakis (10.1016/j.cma.2023.116167_b59) 2021; 3
Bayati (10.1016/j.cma.2023.116167_b14) 2020; 7
Maute (10.1016/j.cma.2023.116167_b15) 2013; 43
Chen (10.1016/j.cma.2023.116167_b38) 2020; 28
Nabian (10.1016/j.cma.2023.116167_b58) 2020; 20
Colton (10.1016/j.cma.2023.116167_b22) 1998
Piegl (10.1016/j.cma.2023.116167_b61) 1996
Jekel (10.1016/j.cma.2023.116167_b64) 2019; 12
Maulik (10.1016/j.cma.2023.116167_b46) 2021; 33
Tropp (10.1016/j.cma.2023.116167_b65) 2005; 51
References_xml – volume: 1
  start-page: 3
  year: 1997
  end-page: 17
  ident: b24
  article-title: Evolutionary computation: Comments on the history and current state
  publication-title: IEEE Trans. Evol. Comput.
– volume: 367
  start-page: 1026
  year: 2020
  end-page: 1030
  ident: b41
  article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
  publication-title: Science
– volume: 280
  year: 2022
  ident: b55
  article-title: Deep-learning-based isogeometric inverse design for tetra-chiral auxetics
  publication-title: Compos. Struct.
– year: 2007
  ident: b60
  article-title: Sound and Structural Vibration: Radiation, Transmission and Response
– year: 1996
  ident: b61
  article-title: The NURBS Book
– volume: 8
  start-page: 1255
  year: 2019
  end-page: 1261
  ident: b36
  article-title: Designing nanophotonic structures using conditional deep convolutional generative adversarial networks
  publication-title: Nanophotonics
– volume: 26
  start-page: 33732
  year: 2018
  end-page: 33747
  ident: b13
  article-title: Inverse design of large-area metasurfaces
  publication-title: Opt. Express
– volume: 346
  start-page: 1118
  year: 2019
  end-page: 1135
  ident: b34
  article-title: Multiscale topology optimization using neural network surrogate models
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 9
  year: 2021
  ident: b49
  article-title: Global inverse design across multiple photonic structure classes using generative deep learning
  publication-title: Adv. Opt. Mater.
– volume: 20
  start-page: 199
  year: 2003
  ident: b18
  article-title: An application of shape optimization in the solution of inverse acoustic scattering problems
  publication-title: Inverse Problems
– volume: 92
  start-page: 722
  year: 2019
  end-page: 737
  ident: b31
  article-title: Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization
  publication-title: Aerosp. Sci. Technol.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b37
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– year: 2011
  ident: b1
  article-title: Optimization and Regularization for Computational Inverse Problems and Applications
– volume: 51
  start-page: 188
  year: 2005
  end-page: 209
  ident: b65
  article-title: Designing structured tight frames via an alternating projection method
  publication-title: IEEE Trans. Inform. Theory
– volume: 9
  start-page: 1041
  year: 2020
  end-page: 1057
  ident: b28
  article-title: Deep learning enabled inverse design in nanophotonics
  publication-title: Nanophotonics
– volume: 348
  start-page: 516
  year: 2015
  end-page: 521
  ident: b20
  article-title: Nanophotonics: Shrinking light-based technology
  publication-title: Science
– volume: 16
  start-page: 1693
  year: 2019
  end-page: 1697
  ident: b48
  article-title: Unsupervised clustering of seismic signals using deep convolutional autoencoders
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 28
  start-page: 11618
  year: 2020
  end-page: 11633
  ident: b38
  article-title: Physics-informed neural networks for inverse problems in nano-optics and metamaterials
  publication-title: Opt. Express
– volume: 70
  start-page: 1228
  year: 2012
  end-page: 1237
  ident: b8
  article-title: X-ray diffraction imaging with the multiple inverse fan beam topology: Principles, performance and potential for security screening
  publication-title: Appl. Radiat. Isot.
– volume: 14
  start-page: 918
  year: 1998
  end-page: 927
  ident: b50
  article-title: NURBS curve and surface fitting for reverse engineering
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 1998
  ident: b6
  article-title: Introduction To Discrete Signals and Inverse Problems in Civil Engineering
– volume: 18
  start-page: 1907
  year: 2002
  ident: b7
  article-title: Robust solutions of inverse problems in electromagnetic non-destructive evaluation
  publication-title: Inverse Problems
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: b59
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
– volume: 164
  year: 2022
  ident: b12
  article-title: A physics-constrained deep learning based approach for acoustic inverse scattering problems
  publication-title: Mech. Syst. Signal Process.
– volume: 6
  start-page: 679
  year: 2021
  end-page: 700
  ident: b29
  article-title: Deep neural networks for the evaluation and design of photonic devices
  publication-title: Nat. Rev. Mater.
– volume: 33
  year: 2021
  ident: b46
  article-title: Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders
  publication-title: Phys. Fluids
– volume: 46
  start-page: 265
  year: 2004
  end-page: 312
  ident: b23
  article-title: A general framework for constraint minimization for the inversion of electromagnetic measurements
  publication-title: Prog. Electromagn. Res.
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: b57
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– volume: 68
  start-page: 1234
  year: 2019
  end-page: 1247
  ident: b26
  article-title: A multiresolution contraction integral equation method for solving highly nonlinear inverse scattering problems
  publication-title: IEEE Trans. Microw. Theory Tech.
– volume: 123
  year: 2021
  ident: b54
  article-title: Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 6
  start-page: 1
  year: 2020
  end-page: 7
  ident: b32
  article-title: Active learning of deep surrogates for PDEs: application to metasurface design
  publication-title: Npj Comput. Mater.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 12
  ident: b53
  article-title: A deep learning framework for design and analysis of surgical bioprosthetic heart valves
  publication-title: Sci. Rep.
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: b56
  article-title: Learning deep architectures for AI
  publication-title: Found Trends® Mach Learn
– volume: 18
  start-page: 6570
  year: 2018
  end-page: 6576
  ident: b35
  article-title: Generative model for the inverse design of metasurfaces
  publication-title: Nano Lett.
– start-page: 1
  year: 2018
  end-page: 5
  ident: b47
  article-title: Autoencoder-based network anomaly detection
  publication-title: 2018 Wireless Telecommunications Symposium
– year: 2017
  ident: b43
  article-title: A review of convolutional neural networks for inverse problems in imaging
– start-page: 1
  year: 2006
  end-page: 33
  ident: b10
  article-title: Inverse problems in biomedical imaging: modeling and methods of solution
  publication-title: Complex Systems in Biomedicine
– start-page: 83
  year: 2005
  end-page: 95
  ident: b25
  article-title: Simulation optimization: a review, new developments, and applications
  publication-title: Proceedings of the Winter Simulation Conference, Vol. 2005
– volume: 10
  start-page: 1384
  year: 2001
  end-page: 1392
  ident: b27
  article-title: Total variation as a multiplicative constraint for solving inverse problems
  publication-title: IEEE Trans. Image Process.
– volume: 4
  start-page: 1
  year: 2018
  end-page: 7
  ident: b4
  article-title: Deep-learning-based inverse design model for intelligent discovery of organic molecules
  publication-title: Npj Comput. Mater.
– volume: 43
  start-page: 1031
  year: 2013
  end-page: 1055
  ident: b15
  article-title: Topology optimization approaches: A comparative review
  publication-title: Struct. Multidiscip. Optim.
– volume: 358
  year: 2020
  ident: b40
  article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 20
  year: 2020
  ident: b58
  article-title: Physics-driven regularization of deep neural networks for enhanced engineering design and analysis
  publication-title: J. Comput. Inf. Sci. Eng.
– volume: 32
  start-page: 438
  year: 1994
  end-page: 448
  ident: b2
  article-title: Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 17
  start-page: 73
  year: 1998
  end-page: 83
  ident: b9
  article-title: Recent progress in inverse problems in electrocardiology
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 7
  start-page: 873
  year: 2020
  end-page: 878
  ident: b14
  article-title: Inverse designed metalenses with extended depth of focus
  publication-title: ACS Photonics
– volume: 8
  start-page: 1153
  year: 2021
  end-page: 1172
  ident: b30
  article-title: Artificial intelligence and machine learning in design of mechanical materials
  publication-title: Mater. Horiz.
– volume: 7
  start-page: 140
  year: 2021
  ident: b62
  article-title: Deep learning framework for material design space exploration using active transfer learning and data augmentation
  publication-title: Npj Comput. Mater.
– volume: 57
  start-page: 993
  year: 2019
  end-page: 1003
  ident: b44
  article-title: Inverse design of airfoil using a deep convolutional neural network
  publication-title: AIAA J.
– year: 1998
  ident: b22
  article-title: Inverse Acoustic and Electromagnetic Scattering Theory ,Vol. 93
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: b42
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 373
  year: 2021
  ident: b33
  article-title: Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 317
  start-page: 557
  year: 2008
  end-page: 575
  ident: b19
  article-title: Acoustic design by topology optimization
  publication-title: J. Sound Vib.
– volume: 12
  start-page: 659
  year: 2018
  end-page: 670
  ident: b21
  article-title: Inverse design in nanophotonics
  publication-title: Nat. Photonics
– volume: 194
  start-page: 4135
  year: 2005
  end-page: 4195
  ident: b52
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 43
  start-page: B1105
  year: 2021
  end-page: B1132
  ident: b39
  article-title: Physics-informed neural networks with hard constraints for inverse design
  publication-title: SIAM J. Sci. Comput.
– year: 2022
  ident: b67
  article-title: Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data
– volume: 29
  start-page: 116
  year: 2017
  end-page: 133
  ident: b51
  article-title: NURBS-based geometric inverse reconstruction of free-form shapes
  publication-title: J. King Saud. Univ.-Comput. Inform. Sci.
– volume: 1
  start-page: 1370
  year: 2019
  end-page: 1384
  ident: b5
  article-title: Inverse design of solid-state materials via a continuous representation
  publication-title: Matter
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 19
  ident: b11
  article-title: A survey on inverse problems for applied sciences
  publication-title: Math. Probl. Eng.
– volume: 180
  year: 2021
  ident: b45
  article-title: Inverse design and experimental verification of an acoustic sink based on machine learning
  publication-title: Appl. Acoust.
– volume: 5
  start-page: 11551
  year: 2015
  ident: b16
  article-title: A predictive machine learning approach for microstructure optimization and materials design
  publication-title: Sci. Rep.
– volume: 12
  start-page: 355
  year: 2019
  end-page: 378
  ident: b64
  article-title: Similarity measures for identifying material parameters from hysteresis loops using inverse analysis
  publication-title: Int. J. Mater. Form.
– year: 2003
  ident: b66
  article-title: Topology Optimization: Theory, Methods, and Applications
– start-page: 1
  year: 1994
  end-page: 7
  ident: b63
  article-title: Computing Discrete Fréchet Distance
– start-page: 277
  year: 1996
  end-page: 284
  ident: b3
  article-title: Some inverse problems in topology design of materials and mechanisms
  publication-title: IUTAM Symposium on Optimization of Mechanical Systems, Vol. 43
– volume: 39
  start-page: 877
  year: 2001
  end-page: 884
  ident: b17
  article-title: Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization
  publication-title: AIAA J.
– volume: 51
  start-page: 188
  issue: 1
  year: 2005
  ident: 10.1016/j.cma.2023.116167_b65
  article-title: Designing structured tight frames via an alternating projection method
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2004.839492
– start-page: 1
  year: 1994
  ident: 10.1016/j.cma.2023.116167_b63
– volume: 17
  start-page: 73
  year: 1998
  ident: 10.1016/j.cma.2023.116167_b9
  article-title: Recent progress in inverse problems in electrocardiology
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.646224
– volume: 348
  start-page: 516
  year: 2015
  ident: 10.1016/j.cma.2023.116167_b20
  article-title: Nanophotonics: Shrinking light-based technology
  publication-title: Science
  doi: 10.1126/science.1261243
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.cma.2023.116167_b11
  article-title: A survey on inverse problems for applied sciences
  publication-title: Math. Probl. Eng.
– volume: 16
  start-page: 1693
  year: 2019
  ident: 10.1016/j.cma.2023.116167_b48
  article-title: Unsupervised clustering of seismic signals using deep convolutional autoencoders
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2909218
– year: 2022
  ident: 10.1016/j.cma.2023.116167_b67
– volume: 60
  start-page: 84
  year: 2017
  ident: 10.1016/j.cma.2023.116167_b42
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 280
  year: 2022
  ident: 10.1016/j.cma.2023.116167_b55
  article-title: Deep-learning-based isogeometric inverse design for tetra-chiral auxetics
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.114808
– volume: 92
  start-page: 722
  year: 2019
  ident: 10.1016/j.cma.2023.116167_b31
  article-title: Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.07.002
– volume: 29
  start-page: 116
  year: 2017
  ident: 10.1016/j.cma.2023.116167_b51
  article-title: NURBS-based geometric inverse reconstruction of free-form shapes
  publication-title: J. King Saud. Univ.-Comput. Inform. Sci.
  doi: 10.1016/j.jksuci.2014.12.010
– volume: 123
  year: 2021
  ident: 10.1016/j.cma.2023.116167_b54
  article-title: Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2021.104745
– volume: 4
  start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2023.116167_b4
  article-title: Deep-learning-based inverse design model for intelligent discovery of organic molecules
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-018-0128-1
– year: 1998
  ident: 10.1016/j.cma.2023.116167_b6
– volume: 70
  start-page: 1228
  year: 2012
  ident: 10.1016/j.cma.2023.116167_b8
  article-title: X-ray diffraction imaging with the multiple inverse fan beam topology: Principles, performance and potential for security screening
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/j.apradiso.2011.12.015
– volume: 43
  start-page: 1031
  year: 2013
  ident: 10.1016/j.cma.2023.116167_b15
  article-title: Topology optimization approaches: A comparative review
  publication-title: Struct. Multidiscip. Optim.
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2023.116167_b37
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– year: 2003
  ident: 10.1016/j.cma.2023.116167_b66
– year: 2007
  ident: 10.1016/j.cma.2023.116167_b60
– volume: 32
  start-page: 438
  year: 1994
  ident: 10.1016/j.cma.2023.116167_b2
  article-title: Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.295058
– volume: 18
  start-page: 6570
  year: 2018
  ident: 10.1016/j.cma.2023.116167_b35
  article-title: Generative model for the inverse design of metasurfaces
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03171
– year: 1996
  ident: 10.1016/j.cma.2023.116167_b61
– volume: 20
  start-page: 199
  year: 2003
  ident: 10.1016/j.cma.2023.116167_b18
  article-title: An application of shape optimization in the solution of inverse acoustic scattering problems
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/20/1/012
– volume: 5
  start-page: 11551
  year: 2015
  ident: 10.1016/j.cma.2023.116167_b16
  article-title: A predictive machine learning approach for microstructure optimization and materials design
  publication-title: Sci. Rep.
  doi: 10.1038/srep11551
– volume: 8
  start-page: 1153
  year: 2021
  ident: 10.1016/j.cma.2023.116167_b30
  article-title: Artificial intelligence and machine learning in design of mechanical materials
  publication-title: Mater. Horiz.
  doi: 10.1039/D0MH01451F
– volume: 1
  start-page: 1370
  year: 2019
  ident: 10.1016/j.cma.2023.116167_b5
  article-title: Inverse design of solid-state materials via a continuous representation
  publication-title: Matter
  doi: 10.1016/j.matt.2019.08.017
– volume: 367
  start-page: 1026
  year: 2020
  ident: 10.1016/j.cma.2023.116167_b41
  article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
  publication-title: Science
  doi: 10.1126/science.aaw4741
– start-page: 1
  year: 2006
  ident: 10.1016/j.cma.2023.116167_b10
  article-title: Inverse problems in biomedical imaging: modeling and methods of solution
– volume: 346
  start-page: 1118
  year: 2019
  ident: 10.1016/j.cma.2023.116167_b34
  article-title: Multiscale topology optimization using neural network surrogate models
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.09.007
– start-page: 1096
  year: 2008
  ident: 10.1016/j.cma.2023.116167_b57
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 6
  start-page: 1
  year: 2020
  ident: 10.1016/j.cma.2023.116167_b32
  article-title: Active learning of deep surrogates for PDEs: application to metasurface design
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-020-00431-2
– volume: 26
  start-page: 33732
  year: 2018
  ident: 10.1016/j.cma.2023.116167_b13
  article-title: Inverse design of large-area metasurfaces
  publication-title: Opt. Express
  doi: 10.1364/OE.26.033732
– volume: 1
  start-page: 3
  year: 1997
  ident: 10.1016/j.cma.2023.116167_b24
  article-title: Evolutionary computation: Comments on the history and current state
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585888
– volume: 28
  start-page: 11618
  year: 2020
  ident: 10.1016/j.cma.2023.116167_b38
  article-title: Physics-informed neural networks for inverse problems in nano-optics and metamaterials
  publication-title: Opt. Express
  doi: 10.1364/OE.384875
– volume: 20
  year: 2020
  ident: 10.1016/j.cma.2023.116167_b58
  article-title: Physics-driven regularization of deep neural networks for enhanced engineering design and analysis
  publication-title: J. Comput. Inf. Sci. Eng.
  doi: 10.1115/1.4044507
– start-page: 277
  year: 1996
  ident: 10.1016/j.cma.2023.116167_b3
  article-title: Some inverse problems in topology design of materials and mechanisms
– volume: 10
  start-page: 1384
  year: 2001
  ident: 10.1016/j.cma.2023.116167_b27
  article-title: Total variation as a multiplicative constraint for solving inverse problems
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.941862
– volume: 7
  start-page: 140
  year: 2021
  ident: 10.1016/j.cma.2023.116167_b62
  article-title: Deep learning framework for material design space exploration using active transfer learning and data augmentation
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-021-00609-2
– volume: 68
  start-page: 1234
  year: 2019
  ident: 10.1016/j.cma.2023.116167_b26
  article-title: A multiresolution contraction integral equation method for solving highly nonlinear inverse scattering problems
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2019.2956939
– volume: 3
  start-page: 422
  year: 2021
  ident: 10.1016/j.cma.2023.116167_b59
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– volume: 57
  start-page: 993
  year: 2019
  ident: 10.1016/j.cma.2023.116167_b44
  article-title: Inverse design of airfoil using a deep convolutional neural network
  publication-title: AIAA J.
  doi: 10.2514/1.J057894
– volume: 194
  start-page: 4135
  year: 2005
  ident: 10.1016/j.cma.2023.116167_b52
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.10.008
– volume: 164
  year: 2022
  ident: 10.1016/j.cma.2023.116167_b12
  article-title: A physics-constrained deep learning based approach for acoustic inverse scattering problems
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108190
– volume: 317
  start-page: 557
  issue: 3–5
  year: 2008
  ident: 10.1016/j.cma.2023.116167_b19
  article-title: Acoustic design by topology optimization
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.03.042
– volume: 43
  start-page: B1105
  year: 2021
  ident: 10.1016/j.cma.2023.116167_b39
  article-title: Physics-informed neural networks with hard constraints for inverse design
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/21M1397908
– start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2023.116167_b47
  article-title: Autoencoder-based network anomaly detection
– start-page: 83
  year: 2005
  ident: 10.1016/j.cma.2023.116167_b25
  article-title: Simulation optimization: a review, new developments, and applications
– volume: 12
  start-page: 659
  year: 2018
  ident: 10.1016/j.cma.2023.116167_b21
  article-title: Inverse design in nanophotonics
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0246-9
– volume: 9
  year: 2021
  ident: 10.1016/j.cma.2023.116167_b49
  article-title: Global inverse design across multiple photonic structure classes using generative deep learning
  publication-title: Adv. Opt. Mater.
– year: 2011
  ident: 10.1016/j.cma.2023.116167_b1
– year: 1998
  ident: 10.1016/j.cma.2023.116167_b22
– volume: 358
  year: 2020
  ident: 10.1016/j.cma.2023.116167_b40
  article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112623
– volume: 12
  start-page: 355
  year: 2019
  ident: 10.1016/j.cma.2023.116167_b64
  article-title: Similarity measures for identifying material parameters from hysteresis loops using inverse analysis
  publication-title: Int. J. Mater. Form.
  doi: 10.1007/s12289-018-1421-8
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.cma.2023.116167_b53
  article-title: A deep learning framework for design and analysis of surgical bioprosthetic heart valves
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54707-9
– volume: 373
  year: 2021
  ident: 10.1016/j.cma.2023.116167_b33
  article-title: Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113485
– volume: 180
  year: 2021
  ident: 10.1016/j.cma.2023.116167_b45
  article-title: Inverse design and experimental verification of an acoustic sink based on machine learning
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108153
– volume: 18
  start-page: 1907
  year: 2002
  ident: 10.1016/j.cma.2023.116167_b7
  article-title: Robust solutions of inverse problems in electromagnetic non-destructive evaluation
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/18/6/328
– volume: 9
  start-page: 1041
  year: 2020
  ident: 10.1016/j.cma.2023.116167_b28
  article-title: Deep learning enabled inverse design in nanophotonics
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0474
– volume: 39
  start-page: 877
  year: 2001
  ident: 10.1016/j.cma.2023.116167_b17
  article-title: Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization
  publication-title: AIAA J.
  doi: 10.2514/2.1391
– volume: 7
  start-page: 873
  year: 2020
  ident: 10.1016/j.cma.2023.116167_b14
  article-title: Inverse designed metalenses with extended depth of focus
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.9b01703
– volume: 6
  start-page: 679
  year: 2021
  ident: 10.1016/j.cma.2023.116167_b29
  article-title: Deep neural networks for the evaluation and design of photonic devices
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-00260-1
– volume: 8
  start-page: 1255
  year: 2019
  ident: 10.1016/j.cma.2023.116167_b36
  article-title: Designing nanophotonic structures using conditional deep convolutional generative adversarial networks
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0117
– volume: 14
  start-page: 918
  year: 1998
  ident: 10.1016/j.cma.2023.116167_b50
  article-title: NURBS curve and surface fitting for reverse engineering
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/BF01179082
– year: 2017
  ident: 10.1016/j.cma.2023.116167_b43
– volume: 2
  start-page: 1
  year: 2009
  ident: 10.1016/j.cma.2023.116167_b56
  article-title: Learning deep architectures for AI
  publication-title: Found Trends® Mach Learn
  doi: 10.1561/2200000006
– volume: 33
  year: 2021
  ident: 10.1016/j.cma.2023.116167_b46
  article-title: Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders
  publication-title: Phys. Fluids
  doi: 10.1063/5.0039986
– volume: 46
  start-page: 265
  year: 2004
  ident: 10.1016/j.cma.2023.116167_b23
  article-title: A general framework for constraint minimization for the inversion of electromagnetic measurements
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER03100702
SSID ssj0000812
Score 2.4991708
Snippet This study presents a deep learning based methodology for both remote sensing and design of acoustic scatterers. The ability to determine the shape of a...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 116167
SubjectTerms Autoencoders
Deep learning
Inverse scattering
Material design
Remote sensing
Title GRIDS-Net: Inverse shape design and identification of scatterers via geometric regularization and physics-embedded deep learning
URI https://dx.doi.org/10.1016/j.cma.2023.116167
https://www.osti.gov/biblio/2000180
Volume 414
WOSCitedRecordID wos001024836800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKxwEO_BggtgHygRNVqqT5aW4TrDAOFYJK9BY5jr12tE2VdNWO_HP8X7wXO25atIkduKRVFFtu3lf78_N73yPkLfM48PjcczIm0VsV-U4WB9Jxucx4wHFREXWxiXg0SiYT9rXT-d3kwmzm8XKZXF-z1X81NdwDY2Pq7B3MbTuFG_AdjA5XMDtc_8nwn76df_zujGTt80MZjbKSvWrKV5ghheEa-rwgN2FCljJWopbaxITezYz3LmSxwGpbqPCM5epLk7CplQVq61aOXGQSZq4ceparpgLFRZvwNlUjTKnqOvqWG-a7kJh23MhEy60yovVQ85kuCzbL8yn8VOu6_gFvcdqCWm_Yt3P8TPwszWEKJuBYF5KEDUI5L9Y6fmHIMx2B1rg8Br6N6bLTeBA6QG3C9jQeeEFrIvaAyeo6H3-tEdpdcdkXte7UwO9vn93V495bJ230YhMYd5lCFyl2keou7pGDQRwyWB8OTs_PJl-2lCDxtGy9GXdzvF4HGu6N4yaC1C1gzm9xn_ET8shsWuipBttT0pHLQ_LYbGCoWR6qQ_KwpW75jPyySHxPDQ5pjUOqcUjB6nQXh7RQdItDCjikFod0F4d1630cUsQhbXD4nIyHZ-MPnx1T8MMRfhSvHZ64THHm-kGoFHPjTGK5NJZzoSJXARfP3VgIFTLgXZniuBrFMlE-8zmL4PMF6S6LpXxJqC8iIT0VBnkSBkzGDPctTEkvzsMsCeQRcZuXnAojho81WebpjcY9Iu9sk5VWgrnt4aCxXGqorKaoKaDwtmYnaGVsghLOAmPdoA2m03mJe3yXEZyQB9u_zivSXZdX8jW5LzbrWVW-MQD9A5gdzPg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GRIDS-Net%3A+Inverse+shape+design+and+identification+of+scatterers+via+geometric+regularization+and+physics-embedded+deep+learning&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Nair%2C+Siddharth&rft.au=Walsh%2C+Timothy+F.&rft.au=Pickrell%2C+Greg&rft.au=Semperlotti%2C+Fabio&rft.date=2023-09-01&rft.issn=0045-7825&rft.volume=414&rft.spage=116167&rft_id=info:doi/10.1016%2Fj.cma.2023.116167&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2023_116167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon