How heterogeneous technological progress promotes industrial structure upgrading and industrial carbon efficiency? Evidence from China's industries
The bottleneck of China's industrial carbon efficiency improvement is that the contribution of carbon emission technology is less than that of energy technology, and that of neutral technology is less than that of capital-based technology. The key to breaking through this bottleneck is to clari...
Saved in:
| Published in: | Energy (Oxford) Vol. 247; p. 123386 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Elsevier Ltd
15.05.2022
Elsevier BV |
| Subjects: | |
| ISSN: | 0360-5442, 1873-6785 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The bottleneck of China's industrial carbon efficiency improvement is that the contribution of carbon emission technology is less than that of energy technology, and that of neutral technology is less than that of capital-based technology. The key to breaking through this bottleneck is to clarify how heterogeneous technological progress enhances carbon efficiency through industrial structural upgrading. The effects of four levels of technological progress on carbon efficiency under two technical classifications based on technology sources and carbon emission processes from energy consumption are studied by using the DEA method. The suitable choice of the path of technological progress to promoting China's industrial carbon efficiency is provided accordingly. The panel data model is used to deeply investigate the effects of these four levels of technological progress on industrial carbon efficiency in China's 30 provincial industries. The main results are as follows: First, in terms of direct effects, progress in energy technology is more conducive to improving carbon efficiency than progress in carbon emission technology, and progress in neutral technology is more effective in improving carbon efficiency than progress in capital-embodied technology. Second, in terms of indirect effects, progress in capital-embodied technology is effective in upgrading industrial structures and enhancing carbon efficiency; and, through green upgrading of industrial structures, progress in energy technology has a positive and significant impact on carbon efficiency. Third, the level of industrial development and government environmental governance have a positive impact on carbon efficiency, and the energy structure has a negative impact on carbon efficiency.
•Different technologies impact carbon efficiency through different paths.•NT and CET promote industrial structure grading and carbon efficiency.•Industrial structure grading promotes ET and CT progress.•Promoted by industrial structure grading promotes carbon efficiency.•ET and CT progress promotes carbon efficiency. |
|---|---|
| AbstractList | The bottleneck of China's industrial carbon efficiency improvement is that the contribution of carbon emission technology is less than that of energy technology, and that of neutral technology is less than that of capital-based technology. The key to breaking through this bottleneck is to clarify how heterogeneous technological progress enhances carbon efficiency through industrial structural upgrading. The effects of four levels of technological progress on carbon efficiency under two technical classifications based on technology sources and carbon emission processes from energy consumption are studied by using the DEA method. The suitable choice of the path of technological progress to promoting China's industrial carbon efficiency is provided accordingly. The panel data model is used to deeply investigate the effects of these four levels of technological progress on industrial carbon efficiency in China's 30 provincial industries. The main results are as follows: First, in terms of direct effects, progress in energy technology is more conducive to improving carbon efficiency than progress in carbon emission technology, and progress in neutral technology is more effective in improving carbon efficiency than progress in capital-embodied technology. Second, in terms of indirect effects, progress in capital-embodied technology is effective in upgrading industrial structures and enhancing carbon efficiency; and, through green upgrading of industrial structures, progress in energy technology has a positive and significant impact on carbon efficiency. Third, the level of industrial development and government environmental governance have a positive impact on carbon efficiency, and the energy structure has a negative impact on carbon efficiency.
•Different technologies impact carbon efficiency through different paths.•NT and CET promote industrial structure grading and carbon efficiency.•Industrial structure grading promotes ET and CT progress.•Promoted by industrial structure grading promotes carbon efficiency.•ET and CT progress promotes carbon efficiency. The bottleneck of China's industrial carbon efficiency improvement is that the contribution of carbon emission technology is less than that of energy technology, and that of neutral technology is less than that of capital-based technology. The key to breaking through this bottleneck is to clarify how heterogeneous technological progress enhances carbon efficiency through industrial structural upgrading. The effects of four levels of technological progress on carbon efficiency under two technical classifications based on technology sources and carbon emission processes from energy consumption are studied by using the DEA method. The suitable choice of the path of technological progress to promoting China's industrial carbon efficiency is provided accordingly. The panel data model is used to deeply investigate the effects of these four levels of technological progress on industrial carbon efficiency in China's 30 provincial industries. The main results are as follows: First, in terms of direct effects, progress in energy technology is more conducive to improving carbon efficiency than progress in carbon emission technology, and progress in neutral technology is more effective in improving carbon efficiency than progress in capital-embodied technology. Second, in terms of indirect effects, progress in capital-embodied technology is effective in upgrading industrial structures and enhancing carbon efficiency; and, through green upgrading of industrial structures, progress in energy technology has a positive and significant impact on carbon efficiency. Third, the level of industrial development and government environmental governance have a positive impact on carbon efficiency, and the energy structure has a negative impact on carbon efficiency. |
| ArticleNumber | 123386 |
| Author | Zhang, Wei You, Jianmin |
| Author_xml | – sequence: 1 givenname: Jianmin surname: You fullname: You, Jianmin email: jianminyou@126.com – sequence: 2 givenname: Wei orcidid: 0000-0002-8809-371X surname: Zhang fullname: Zhang, Wei email: Wzha1968@126.com |
| BookMark | eNqFkcFqGzEURUVJoI7bP-hC0EW7GVcjzUijLlqCSZNCIJt2LWTpzVhmLLmSJsHfkR-unCk0ZNGu3oN37kW69wKd-eABoXc1WdWk5p92K_AQh-OKEkpXNWWs46_Qou4Eq7jo2jO0IIyTqm0a-hpdpLQjhLSdlAv0eBMe8BYyxDAUkzAlnMFsfRjD4Iwe8aEcIqR0WvYhQ8LO2ynl6MqxjMnkKQKeDkPU1vkBa2-fI0bHTfAY-t4ZB94cv-Kre2fLBrgvlni9dV5_-GsL6Q067_WY4O2fuUQ_v139WN9Ut3fX39eXt5VhXORK81oDF3RjG9mDZI2xtiWMbqhkROpas4aBlIaDsKLX1grJgW_6RmsimGnYEn2cfcvXfk2Qstq7ZGAc9VMQinLRtpyREugSvX-B7sIUfXldodqOdpzStlCfZ8rEkFKEXhmXdXbB56jdqGqiTn2pnZr7Uqe-1NxXETcvxIfo9joe_yf7MsugJHXvIKr0lDNYF8FkZYP7t8Fvli64Mg |
| CitedBy_id | crossref_primary_10_1016_j_eiar_2024_107586 crossref_primary_10_1007_s10668_025_06000_1 crossref_primary_10_1007_s10668_023_03290_1 crossref_primary_10_1371_journal_pone_0305769 crossref_primary_10_1002_bse_3778 crossref_primary_10_1016_j_eneco_2023_106636 crossref_primary_10_3390_su151310580 crossref_primary_10_3390_su141811198 crossref_primary_10_1016_j_eneco_2024_107963 crossref_primary_10_1016_j_renene_2024_121721 crossref_primary_10_1016_j_eneco_2024_107321 crossref_primary_10_3389_fenvs_2022_1078357 crossref_primary_10_1080_13691066_2023_2249231 crossref_primary_10_3389_fevo_2022_971534 crossref_primary_10_1016_j_spc_2023_08_012 crossref_primary_10_3389_fenvs_2024_1389639 crossref_primary_10_1080_09537325_2025_2515463 crossref_primary_10_1007_s11356_024_32510_y crossref_primary_10_1016_j_eiar_2023_107076 crossref_primary_10_1016_j_apgeog_2025_103510 crossref_primary_10_1016_j_energy_2023_129573 crossref_primary_10_1016_j_envres_2024_119312 crossref_primary_10_1016_j_eiar_2022_106885 crossref_primary_10_3390_su141610235 crossref_primary_10_1002_sd_3257 crossref_primary_10_1016_j_resourpol_2024_105339 crossref_primary_10_1021_acs_est_4c13889 crossref_primary_10_1016_j_jclepro_2024_143949 crossref_primary_10_3390_su141811507 crossref_primary_10_1007_s00477_023_02395_3 crossref_primary_10_1177_0958305X241246191 crossref_primary_10_3390_ijerph192013401 crossref_primary_10_3390_en18133278 crossref_primary_10_3390_economies12090228 crossref_primary_10_1016_j_eiar_2023_107203 crossref_primary_10_1016_j_jclepro_2025_145436 crossref_primary_10_1016_j_energy_2024_132975 crossref_primary_10_1007_s11356_023_26698_8 crossref_primary_10_1016_j_energy_2025_137871 crossref_primary_10_3390_su16166831 crossref_primary_10_3389_fenvs_2024_1494691 crossref_primary_10_1016_j_strueco_2023_05_002 crossref_primary_10_3390_su16188265 crossref_primary_10_1016_j_energy_2024_133139 crossref_primary_10_1111_grow_70034 crossref_primary_10_3389_fenvs_2025_1510118 crossref_primary_10_1111_apel_12414 crossref_primary_10_1007_s11356_023_26062_w crossref_primary_10_1007_s10668_024_05909_3 crossref_primary_10_1111_1477_8947_12381 crossref_primary_10_3389_fenvs_2024_1369056 crossref_primary_10_1007_s11356_023_30346_6 crossref_primary_10_1016_j_renene_2024_121878 crossref_primary_10_1016_j_techfore_2022_122020 crossref_primary_10_1057_s41599_024_04078_y crossref_primary_10_1080_2331186X_2024_2401252 crossref_primary_10_3390_su17177950 crossref_primary_10_1007_s11356_023_30716_0 crossref_primary_10_1016_j_gr_2022_12_013 crossref_primary_10_1371_journal_pone_0296642 crossref_primary_10_1016_j_jenvman_2023_119534 crossref_primary_10_1371_journal_pone_0325978 crossref_primary_10_1007_s11356_024_32663_w crossref_primary_10_1016_j_energy_2024_133526 crossref_primary_10_1016_j_eneco_2024_107524 crossref_primary_10_3389_fenvs_2022_983711 crossref_primary_10_1007_s11356_024_32539_z crossref_primary_10_1016_j_eneco_2023_107085 crossref_primary_10_1007_s11356_022_23523_6 crossref_primary_10_1177_0958305X241230620 crossref_primary_10_1016_j_landusepol_2024_107218 crossref_primary_10_3390_su16020839 crossref_primary_10_1016_j_renene_2025_124079 crossref_primary_10_1080_09593330_2023_2295830 crossref_primary_10_1016_j_egyr_2023_08_034 crossref_primary_10_1080_09640568_2023_2218565 crossref_primary_10_1016_j_iref_2025_104290 crossref_primary_10_1038_s41598_024_76039_z crossref_primary_10_3390_atmos16080944 crossref_primary_10_1016_j_iref_2025_104289 crossref_primary_10_1016_j_jclepro_2023_136920 crossref_primary_10_1016_j_frl_2025_107633 crossref_primary_10_1016_j_ecolind_2023_111115 crossref_primary_10_3724_j_issn_2097_4981_JECC_2025_0002 crossref_primary_10_3389_fenvs_2022_1002993 crossref_primary_10_1016_j_jenvman_2023_118587 crossref_primary_10_1016_j_jclepro_2024_140861 crossref_primary_10_1080_1540496X_2023_2260544 crossref_primary_10_1057_s41599_024_03739_2 crossref_primary_10_3389_fenvs_2024_1392267 crossref_primary_10_1016_j_energy_2023_128552 crossref_primary_10_1016_j_engappai_2025_112191 crossref_primary_10_3390_land12010026 crossref_primary_10_1016_j_eneco_2022_106418 crossref_primary_10_1016_j_eneco_2025_108806 crossref_primary_10_1038_s41598_024_73942_3 crossref_primary_10_1016_j_heliyon_2023_e20729 crossref_primary_10_1007_s10098_024_02997_7 crossref_primary_10_1016_j_resourpol_2023_103424 crossref_primary_10_1007_s11356_023_31753_5 crossref_primary_10_3389_fevo_2023_1250593 crossref_primary_10_1177_21582440251340215 crossref_primary_10_1007_s11356_023_28705_4 crossref_primary_10_3390_su141911948 crossref_primary_10_1016_j_eiar_2023_107135 crossref_primary_10_1002_sd_3114 crossref_primary_10_1016_j_heliyon_2024_e36938 crossref_primary_10_3389_fenvs_2025_1534066 crossref_primary_10_4018_IJDSST_371756 crossref_primary_10_1016_j_energy_2023_127446 crossref_primary_10_1007_s10668_024_04531_7 crossref_primary_10_1016_j_eneco_2024_108121 crossref_primary_10_31497_zrzyxb_20250704 crossref_primary_10_1016_j_energy_2024_134032 crossref_primary_10_1016_j_jclepro_2023_136464 crossref_primary_10_1016_j_jenvman_2023_117915 crossref_primary_10_3390_ijerph19137829 |
| Cites_doi | 10.1016/j.energy.2014.02.106 10.1007/s10018-010-0006-7 10.1016/j.rser.2018.12.046 10.2307/3440905 10.1016/j.techfore.2020.119938 10.1016/j.eneco.2007.10.005 10.1016/j.enpol.2012.10.054 10.1016/j.apenergy.2014.06.033 10.1016/j.techfore.2020.119949 10.1016/j.energy.2017.12.151 10.1016/S0301-4215(01)00010-6 10.1006/redy.2002.0168 10.1016/j.ecolecon.2010.09.029 10.1016/j.enpol.2014.08.012 10.1016/j.techfore.2019.119878 10.1016/j.ecolecon.2020.106912 10.1111/j.1467-6419.2007.00539.x 10.1016/j.apenergy.2016.06.010 10.1016/j.esd.2012.01.005 10.1257/00028280260136381 10.1016/j.enconman.2014.12.062 10.1016/j.rser.2014.07.169 10.1016/j.rser.2015.10.077 10.1016/j.jeconom.2004.05.010 10.1016/j.jclepro.2014.09.097 10.1016/j.ejor.2012.04.022 10.1016/j.rser.2017.06.103 10.1016/j.eneco.2017.10.009 10.1016/S0140-9883(02)00094-4 10.1016/j.energy.2010.02.049 10.1016/j.apenergy.2015.09.100 10.1016/j.eneco.2007.01.005 10.1016/j.energy.2017.11.047 10.1016/j.enpol.2013.06.004 10.1016/j.enpol.2004.12.021 10.1002/sd.372 10.1016/j.ecolecon.2009.02.005 10.1016/j.techfore.2012.08.004 10.1016/j.enpol.2011.07.049 10.2307/2235377 10.1257/jep.11.3.19 10.1016/j.eneco.2009.10.003 10.1111/rode.12123 10.1016/j.enpol.2012.07.017 10.1016/j.eneco.2021.105269 10.1016/j.techfore.2021.120671 10.1016/j.apenergy.2010.12.076 10.1007/s11069-014-1091-x 10.1016/j.jce.2015.01.001 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV May 15, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV May 15, 2022 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2022.123386 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | 10_1016_j_energy_2022_123386 S0360544222002894 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABMYL ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-a61ae672bd49fe934cdd5032b29309a1a343e99c6e7d7fadd796e6bf4aa073c43 |
| ISICitedReferencesCount | 134 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792643000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Mon Sep 29 04:54:02 EDT 2025 Wed Aug 13 04:30:42 EDT 2025 Sat Nov 29 07:21:28 EST 2025 Tue Nov 18 20:47:30 EST 2025 Sat Mar 23 16:40:59 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Carbon emission technological progress Carbon efficiency Energy technological progress Neutral technological progress Capital-embodied technological progress |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-a61ae672bd49fe934cdd5032b29309a1a343e99c6e7d7fadd796e6bf4aa073c43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8809-371X |
| PQID | 2658286225 |
| PQPubID | 2045484 |
| ParticipantIDs | proquest_miscellaneous_2675563012 proquest_journals_2658286225 crossref_citationtrail_10_1016_j_energy_2022_123386 crossref_primary_10_1016_j_energy_2022_123386 elsevier_sciencedirect_doi_10_1016_j_energy_2022_123386 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-15 |
| PublicationDateYYYYMMDD | 2022-05-15 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Cheng, Li, Liu (bib35) 2018; 81 Kumar, Russell (bib10) 2002; 92 Fujii, Cao, Managi (bib37) 2015; 19 Zhou, Cai, Hua, Zhang, Du, Song (bib8) 2021; 167 Zhang, Zhu, Li (bib69) 2013; 10 Zhang, Mu, Ning, Song (bib16) 2009; 68 Cao, Karplus (bib54) 2014; 75 Felipe (bib56) 1999; 35 Lise (bib13) 2006; 34 Diakoulaki, Mandaraka (bib14) 2007; 29 Jones (bib46) 1997; 11 Krugman (bib60) 1994 Andersson, Karpestam (bib57) 2013; 61 Griliches (bib47) 1961 Liu, Bai, Yin, Lin (bib22) 2018; 145 Quah (bib41) 1996; 106 Song, Linhui, Zhiqing (bib1) 2011; 2 Cummins, Violante (bib49) 2002; 5 Van den Bergh (bib5) 2013; 80 Li, Lin (bib2) 2018; 143 Tu (bib24) 2012; 3 Wooldridge (bib67) 2013 Zhou, Ang (bib3) 2008; 30 Zhao, Tan, Zhang, Ji, Liu, Yu (bib17) 2010; 35 Chen (bib23) 2011; 4 Wang, Wu, Yan (bib66) 2010; 5 Long, Shao, Chen (bib27) 2016; 166 Zhang, Liu, Zhang, Tan (bib34) 2014; 73 Miketa (bib11) 2001; 29 Zhao, Lu, Guo, Jia (bib9) 2007; 11 González, Martínez (bib19) 2012; 16 Chen, Kahn, Liu, Wang (bib51) 2016 Moutinho, Robaina-Alves, Mota (bib65) 2014; 40 Fujii, Cao, Managi (bib38) 2016; 184 Zhou, Ang, Han (bib68) 2010; 32 Grosskopf (bib59) 2003; 20 Bovenberg, Smulders (bib53) 1995; 57 Cemal (bib50) 2009; 17 Song, Lu (bib15) 2009; 19 Chen, Chen (bib55) 2018; 2 Ma, Zhang (bib25) 2014; 4 Xu, Fan, Yang, Shao (bib30) 2021 Davis, Sanstad, Koomey (bib12) 2003; 25 Chen, Gao, Mangla, Song, Wen (bib29) 2020; 153 Yang, Shao, Li, Yang (bib31) 2020 Yang, Shao, Fan, Yang (bib32) 2021 Hulten (bib48) 1992; 82 Li, Lin (bib6) 2014; 69 Wang, Zeng, Liu (bib28) 2019; 103 Wang, Zhang, Liu (bib4) 2016; 55 Zhang, Deng, Fred Phillip, Fang, Wang (bib36) 2020; 154 Yang, Fan, Shao, Yang (bib39) 2017; 68 Fukuyama, Yoshida, Managi (bib43) 2011; 13 Song, Li, Zhang, He, Tao (bib64) 2015; 102 Yang, Cai, Wang (bib26) 2014; 131 Zhou, Zhang, Li (bib33) 2013; 57 Poumanyvong, Kaneko (bib62) 2010; 70 Akbostanci, Tunc, Turut-Asik (bib18) 2011; 88 Zhang (bib52) 2015; 107 Quah (bib42) 1997; 2 Shao, Yang, Yu, Yu (bib63) 2011; 39 Färe, Grosskopf, Noh, Weber (bib45) 2005; 126 Jiang, Shi (bib7) 2015; 43 Krüger (bib61) 2008; 22 Quah (bib40) 1993; 95 Tian, Chang, Tanikawa, Shi, Imura (bib20) 2013; 53 Zhou, Ang, Wang (bib44) 2012; 221 Lin, Mao (bib21) 2014; 8 Fan, Bai, Qiao, Kang, Zhang, Guo (bib58) 2017; 192 Zhou (10.1016/j.energy.2022.123386_bib68) 2010; 32 Lise (10.1016/j.energy.2022.123386_bib13) 2006; 34 Jones (10.1016/j.energy.2022.123386_bib46) 1997; 11 Cummins (10.1016/j.energy.2022.123386_bib49) 2002; 5 Yang (10.1016/j.energy.2022.123386_bib32) 2021 Chen (10.1016/j.energy.2022.123386_bib55) 2018; 2 Kumar (10.1016/j.energy.2022.123386_bib10) 2002; 92 Zhou (10.1016/j.energy.2022.123386_bib44) 2012; 221 Zhang (10.1016/j.energy.2022.123386_bib69) 2013; 10 Song (10.1016/j.energy.2022.123386_bib15) 2009; 19 Zhao (10.1016/j.energy.2022.123386_bib17) 2010; 35 Griliches (10.1016/j.energy.2022.123386_bib47) 1961 Zhou (10.1016/j.energy.2022.123386_bib3) 2008; 30 Chen (10.1016/j.energy.2022.123386_bib29) 2020; 153 Yang (10.1016/j.energy.2022.123386_bib31) 2020 Li (10.1016/j.energy.2022.123386_bib2) 2018; 143 Song (10.1016/j.energy.2022.123386_bib1) 2011; 2 Cao (10.1016/j.energy.2022.123386_bib54) 2014; 75 Wooldridge (10.1016/j.energy.2022.123386_bib67) 2013 Zhou (10.1016/j.energy.2022.123386_bib8) 2021; 167 Shao (10.1016/j.energy.2022.123386_bib63) 2011; 39 Wang (10.1016/j.energy.2022.123386_bib66) 2010; 5 Van den Bergh (10.1016/j.energy.2022.123386_bib5) 2013; 80 Zhao (10.1016/j.energy.2022.123386_bib9) 2007; 11 Fukuyama (10.1016/j.energy.2022.123386_bib43) 2011; 13 Krüger (10.1016/j.energy.2022.123386_bib61) 2008; 22 Song (10.1016/j.energy.2022.123386_bib64) 2015; 102 Felipe (10.1016/j.energy.2022.123386_bib56) 1999; 35 Jiang (10.1016/j.energy.2022.123386_bib7) 2015; 43 Yang (10.1016/j.energy.2022.123386_bib39) 2017; 68 Wang (10.1016/j.energy.2022.123386_bib4) 2016; 55 Xu (10.1016/j.energy.2022.123386_bib30) 2021 Zhang (10.1016/j.energy.2022.123386_bib36) 2020; 154 Fujii (10.1016/j.energy.2022.123386_bib38) 2016; 184 Moutinho (10.1016/j.energy.2022.123386_bib65) 2014; 40 Quah (10.1016/j.energy.2022.123386_bib42) 1997; 2 Ma (10.1016/j.energy.2022.123386_bib25) 2014; 4 Zhou (10.1016/j.energy.2022.123386_bib33) 2013; 57 Cheng (10.1016/j.energy.2022.123386_bib35) 2018; 81 Quah (10.1016/j.energy.2022.123386_bib41) 1996; 106 Wang (10.1016/j.energy.2022.123386_bib28) 2019; 103 Akbostanci (10.1016/j.energy.2022.123386_bib18) 2011; 88 Chen (10.1016/j.energy.2022.123386_bib51) 2016 Hulten (10.1016/j.energy.2022.123386_bib48) 1992; 82 Cemal (10.1016/j.energy.2022.123386_bib50) 2009; 17 Miketa (10.1016/j.energy.2022.123386_bib11) 2001; 29 Long (10.1016/j.energy.2022.123386_bib27) 2016; 166 Bovenberg (10.1016/j.energy.2022.123386_bib53) 1995; 57 Grosskopf (10.1016/j.energy.2022.123386_bib59) 2003; 20 Davis (10.1016/j.energy.2022.123386_bib12) 2003; 25 Tu (10.1016/j.energy.2022.123386_bib24) 2012; 3 Yang (10.1016/j.energy.2022.123386_bib26) 2014; 131 Poumanyvong (10.1016/j.energy.2022.123386_bib62) 2010; 70 Diakoulaki (10.1016/j.energy.2022.123386_bib14) 2007; 29 Liu (10.1016/j.energy.2022.123386_bib22) 2018; 145 Tian (10.1016/j.energy.2022.123386_bib20) 2013; 53 Chen (10.1016/j.energy.2022.123386_bib23) 2011; 4 Fujii (10.1016/j.energy.2022.123386_bib37) 2015; 19 González (10.1016/j.energy.2022.123386_bib19) 2012; 16 Zhang (10.1016/j.energy.2022.123386_bib52) 2015; 107 Andersson (10.1016/j.energy.2022.123386_bib57) 2013; 61 Zhang (10.1016/j.energy.2022.123386_bib34) 2014; 73 Fan (10.1016/j.energy.2022.123386_bib58) 2017; 192 Li (10.1016/j.energy.2022.123386_bib6) 2014; 69 Quah (10.1016/j.energy.2022.123386_bib40) 1993; 95 Zhang (10.1016/j.energy.2022.123386_bib16) 2009; 68 Färe (10.1016/j.energy.2022.123386_bib45) 2005; 126 Krugman (10.1016/j.energy.2022.123386_bib60) 1994 Lin (10.1016/j.energy.2022.123386_bib21) 2014; 8 |
| References_xml | – volume: 70 start-page: 434 year: 2010 end-page: 444 ident: bib62 article-title: Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis publication-title: Ecol Econ – volume: 68 start-page: 271 year: 2017 end-page: 282 ident: bib39 article-title: Does carbon intensity constraint policy improve industrial green production performance in China? A quasi-DID analysis publication-title: Energy Econ – volume: 4 start-page: 124 year: 2011 end-page: 143 ident: bib23 article-title: Fluctuating and decreasing patterns of carbon emission intensity and economic explanation in China publication-title: World Econ – volume: 55 start-page: 34 year: 2016 end-page: 42 ident: bib4 article-title: Empirical analysis on the factors influencing national and regional carbon intensity in China publication-title: Renew Sustain Energy Rev – volume: 53 start-page: 279 year: 2013 end-page: 286 ident: bib20 article-title: Structural decomposition analysis of the carbonization process in Beijing: a regional explanation of rapid increasing carbon dioxide emission in China publication-title: Energy Pol – volume: 25 start-page: 375 year: 2003 end-page: 396 ident: bib12 article-title: Contributions of weather and fuel mix to recent declines in US energy and carbon intensity publication-title: Energy Econ – start-page: 62 year: 1994 end-page: 78 ident: bib60 article-title: The myth of Asia's miracle – volume: 69 start-page: 258 year: 2014 end-page: 265 ident: bib6 article-title: The nonlinear impacts of industrial structure on China's energy intensity publication-title: Energy – volume: 4 start-page: 19 year: 2014 end-page: 31 ident: bib25 article-title: The spatial effect of China's haze pollution and impact from economic change and energy structure publication-title: China Indust. Econ. – volume: 184 start-page: 915 year: 2016 end-page: 925 ident: bib38 article-title: Firm-level environmentally sensitive productivity andinnovation in China publication-title: Appl Energy – volume: 166 start-page: 210 year: 2016 end-page: 219 ident: bib27 article-title: Spatial econometric analysis of China's province-level industrial carbon productivity and its influencing factors publication-title: Appl Energy – volume: 2 start-page: 27 year: 1997 end-page: 59 ident: bib42 article-title: Empirics for growth and distribution: stratification, polarization, and convergence clubs publication-title: J Econ Growth – volume: 81 start-page: 2935 year: 2018 end-page: 2946 ident: bib35 article-title: Industrial structure, technical progress and carbon intensity in China's provinces publication-title: Renew Sustain Energy Rev – start-page: 173 year: 1961 end-page: 196 ident: bib47 article-title: Hedonic price indexes for automobiles: an econometric analysis of quality change. The price statisitcs of the federal government: review, appraisal and recommendations – volume: 82 start-page: 964 year: 1992 end-page: 980 ident: bib48 article-title: Growth accounting when technical change is embodied in capital publication-title: Am Econ Rev – volume: 17 start-page: 155 year: 2009 end-page: 160 ident: bib50 article-title: Carbon emissions in central and eastern Europe: environmental kuznets curve and implications for sustainable development publication-title: Sustain Dev – start-page: 105269 year: 2021 ident: bib30 article-title: Heterogeneous green innovations and carbon emission performance: evidence at China's city level publication-title: Energy Econ – volume: 61 start-page: 1285 year: 2013 end-page: 1294 ident: bib57 article-title: CO2 emissions and economic activity: short- and long-run economic determinants of scale, energy intensity and carbon intensity publication-title: Energy Pol – volume: 106 start-page: 1045 year: 1996 end-page: 1055 ident: bib41 article-title: Twin peaks: growth and convergence in models of distribution dynamics publication-title: Econ J – volume: 192 start-page: 107 year: 2017 end-page: 115 ident: bib58 article-title: Study on eco-efficiency of industrial parks in China based on data envelopment analysis publication-title: J Environ Manag – volume: 167 start-page: 120671 year: 2021 ident: bib8 article-title: Technological innovation and structural change for economic development in China as an emerging market publication-title: Technol Forecast Soc Change – volume: 19 start-page: 18 year: 2009 end-page: 24 ident: bib15 article-title: The factor decomposition and periodic fluctuations of carbon emission in China publication-title: China popul., Res. Environ. – volume: 8 start-page: 101 year: 2014 end-page: 117 ident: bib21 article-title: Characteristics of China's carbon emission intensity in different development stages publication-title: Finance Res – volume: 75 start-page: 167 year: 2014 end-page: 178 ident: bib54 article-title: Firm-level determinants of energy and carbon intensity in China publication-title: Energy Pol – volume: 11 start-page: 18 year: 2007 end-page: 31 ident: bib9 article-title: On the dynamic integration of capital accumulation and technological progress: a stylized fact in China's economic growth publication-title: Econ. Res. – volume: 32 start-page: 194 year: 2010 end-page: 201 ident: bib68 article-title: Total factor carbon emission performance: a Malmquist index analysis publication-title: Energy Econ – volume: 131 start-page: 117 year: 2014 end-page: 127 ident: bib26 article-title: Industrial CO publication-title: Appl Energy – volume: 145 start-page: 582 year: 2018 end-page: 591 ident: bib22 article-title: Factor substitution and decomposition of carbon intensity in China’sheavy industry publication-title: Energy – start-page: 119878 year: 2020 ident: bib31 article-title: Alleviating the misallocation of R&D inputs in China's manufacturing sector: from the perspectives of factor-biased technological innovation and substitution elasticity publication-title: Technol Forecast Soc Change – volume: 103 start-page: 140 year: 2019 end-page: 150 ident: bib28 article-title: Examining the multiple impacts of technological progress on CO2 emissions in China: a panel quantile regression approach publication-title: Renew Sustain Energy Rev – start-page: 106912 year: 2021 ident: bib32 article-title: Wage distortion and green technological progress: a directed technological progress perspective publication-title: Ecol Econ – volume: 11 start-page: 19 year: 1997 end-page: 36 ident: bib46 article-title: On the evolution of the world income distribution publication-title: J Econ Perspect – volume: 10 start-page: 138 year: 2013 end-page: 150 ident: bib69 article-title: Energy use, carbon emission and China's total factor carbon emission reduction efficiency publication-title: Econ. Res. – volume: 153 start-page: 119938 year: 2020 ident: bib29 article-title: Effects of technological changes on China's carbon emissions publication-title: Technol Forecast Soc Change – volume: 40 start-page: 438 year: 2014 end-page: 449 ident: bib65 article-title: Carbon dioxide emissions intensity of Portuguese industry and energy sectors: a convergence analysis and econometric approach publication-title: Renew Sustain Energy Rev – volume: 5 start-page: 95 year: 2010 end-page: 109 ident: bib66 article-title: Environmental efficiency and environmental total factor productivity growth in China's regional economies publication-title: Econ. Res. – volume: 95 start-page: 427 year: 1993 end-page: 443 ident: bib40 article-title: Galton's fallacy and tests of the convergence hypothesis publication-title: Scand J Econ – volume: 35 start-page: 2505 year: 2010 end-page: 2510 ident: bib17 article-title: Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method publication-title: Energy – volume: 92 start-page: 527 year: 2002 end-page: 548 ident: bib10 article-title: Technological change, technological catch-up, and capital deepening: relative contributions growth and convergence publication-title: Am Econ Rev – volume: 35 start-page: 1 year: 1999 end-page: 41 ident: bib56 article-title: Total factor productivity growth in East Asia: a critical survey publication-title: J Dev Stud – volume: 143 start-page: 812 year: 2018 end-page: 821 ident: bib2 article-title: How to promote energy efficiency through technological progress in China? publication-title: Energy – volume: 39 start-page: 6476 year: 2011 end-page: 6494 ident: bib63 article-title: Estimation, characteristics, and determinants of energy-related industrial carbon emissions in Shanghai (China), 1994-2009 publication-title: Energy Pol – volume: 57 start-page: 43 year: 2013 end-page: 51 ident: bib33 article-title: Industrial structural transformation and carbon dioxide emissions in China publication-title: Energy Pol – volume: 30 start-page: 1054 year: 2008 end-page: 1067 ident: bib3 article-title: Decomposition of aggregate CO publication-title: Energy Econ – volume: 73 start-page: 579 year: 2014 end-page: 595 ident: bib34 article-title: The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China publication-title: Nat Hazards – year: 2016 ident: bib51 article-title: The Consequences of Spatially Differentiated Water pollution regulation in China – volume: 80 start-page: 11 year: 2013 end-page: 23 ident: bib5 article-title: Environmental and climate innovation: limitations, policies and prices publication-title: Technol Forecast Soc Change – volume: 13 start-page: 89 year: 2011 end-page: 102 ident: bib43 article-title: Modal choice between air and rail: asocial efficiency benchmarking analysis that considers CO2 emissions publication-title: Environ Econ Pol Stud – year: 2013 ident: bib67 article-title: Introductory Econometrics-A modern approach.Wooldridge (5e): South-Western, a part of Cengage Learning – volume: 68 start-page: 2122 year: 2009 end-page: 2128 ident: bib16 article-title: Decomposition of energy-related CO2 emission over 1991-2006 in China publication-title: Ecol Econ – volume: 5 start-page: 243 year: 2002 end-page: 284 ident: bib49 article-title: Investment-specific technical change in the United States (1947-2000): measurement and macroeconomic consequences publication-title: Rev Econ Dynam – volume: 43 start-page: 257 year: 2015 end-page: 273 ident: bib7 article-title: Sectoral technological progress, migration barriers, and structural change in China publication-title: J Comp Econ – volume: 29 start-page: 769 year: 2001 end-page: 775 ident: bib11 article-title: Analysis of energy intensity developments in manufacturing sectors in industrialized and developing countries publication-title: Energy Pol – volume: 22 start-page: 330 year: 2008 end-page: 363 ident: bib61 article-title: Productivity and structural change: a review of the literature publication-title: J Econ Surv – volume: 88 start-page: 2273 year: 2011 end-page: 2278 ident: bib18 article-title: CO publication-title: Appl Energy – volume: 2 start-page: 20 year: 2018 end-page: 34 ident: bib55 article-title: Air pollution, government regulations and high-quality economic development publication-title: Econ. Res. – volume: 34 start-page: 1841 year: 2006 end-page: 1852 ident: bib13 article-title: Decomposition of CO publication-title: Energy Pol – volume: 29 start-page: 636 year: 2007 end-page: 664 ident: bib14 article-title: Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector publication-title: Energy Econ – volume: 154 start-page: 119949 year: 2020 ident: bib36 article-title: Impacts of industrial structure and technical progress on carbon emission intensity: evidence from 281 cities in China publication-title: Technol Forecast Soc Change – volume: 57 start-page: 369 year: 1995 end-page: 391 ident: bib53 article-title: Environmental quality and pollution-Augmentingz technological change in two-sector endogenous growth model publication-title: J Publ Econ – volume: 20 start-page: 459 year: 2003 end-page: 474 ident: bib59 article-title: Some remarks on productivity and its decompositions publication-title: J Prod Anal – volume: 2 start-page: 91 year: 2011 end-page: 222 ident: bib1 article-title: Capital-embodied technological progress and its contribution to economic growth :1981-2007 publication-title: China Social Sciences – volume: 102 start-page: 121 year: 2015 end-page: 130 ident: bib64 article-title: A data envelopment analysis for energy efficiency of coal-fired power units in China publication-title: Energy Convers Manag – volume: 3 start-page: 78 year: 2012 end-page: 94 ident: bib24 article-title: Strategic measures to reduce China's carbon emissions: based on index decomposition analysis of carbon emissions in eight industries publication-title: China Social Sciences – volume: 107 start-page: 438 year: 2015 end-page: 444 ident: bib52 article-title: Evaluating the method of total factor productivity growth and analysis of its influencing factors during the economic transitional period in China publication-title: J Clean Prod – volume: 19 start-page: 75 year: 2015 end-page: 84 ident: bib37 article-title: Decomposition of productivity considering multienvironmental pollutants in Chinese industrial sector publication-title: Rev Dev Econ – volume: 16 start-page: 204 year: 2012 end-page: 215 ident: bib19 article-title: Decomposition analysis of CO2 emissions in the Mexican industrial sector publication-title: Energy Sust. Devel. – volume: 221 start-page: 625 year: 2012 end-page: 635 ident: bib44 article-title: Energy and carbon emission performance in electricity generation: a non-radial directional distance function approach publication-title: Eur J Oper Res – volume: 126 start-page: 469 year: 2005 end-page: 492 ident: bib45 article-title: Characteristics of a polluting technology: theory and practice publication-title: J Econom – volume: 69 start-page: 258 year: 2014 ident: 10.1016/j.energy.2022.123386_bib6 article-title: The nonlinear impacts of industrial structure on China's energy intensity publication-title: Energy doi: 10.1016/j.energy.2014.02.106 – volume: 13 start-page: 89 year: 2011 ident: 10.1016/j.energy.2022.123386_bib43 article-title: Modal choice between air and rail: asocial efficiency benchmarking analysis that considers CO2 emissions publication-title: Environ Econ Pol Stud doi: 10.1007/s10018-010-0006-7 – volume: 103 start-page: 140 year: 2019 ident: 10.1016/j.energy.2022.123386_bib28 article-title: Examining the multiple impacts of technological progress on CO2 emissions in China: a panel quantile regression approach publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.12.046 – volume: 95 start-page: 427 issue: 4 year: 1993 ident: 10.1016/j.energy.2022.123386_bib40 article-title: Galton's fallacy and tests of the convergence hypothesis publication-title: Scand J Econ doi: 10.2307/3440905 – volume: 153 start-page: 119938 year: 2020 ident: 10.1016/j.energy.2022.123386_bib29 article-title: Effects of technological changes on China's carbon emissions publication-title: Technol Forecast Soc Change doi: 10.1016/j.techfore.2020.119938 – volume: 30 start-page: 1054 year: 2008 ident: 10.1016/j.energy.2022.123386_bib3 article-title: Decomposition of aggregate CO2 emissions: a production-theoretical approach publication-title: Energy Econ doi: 10.1016/j.eneco.2007.10.005 – volume: 53 start-page: 279 year: 2013 ident: 10.1016/j.energy.2022.123386_bib20 article-title: Structural decomposition analysis of the carbonization process in Beijing: a regional explanation of rapid increasing carbon dioxide emission in China publication-title: Energy Pol doi: 10.1016/j.enpol.2012.10.054 – volume: 131 start-page: 117 year: 2014 ident: 10.1016/j.energy.2022.123386_bib26 article-title: Industrial CO2 intensity, indigenous innovation and R&D spillovers in China's provinces publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.06.033 – start-page: 62 year: 1994 ident: 10.1016/j.energy.2022.123386_bib60 – volume: 154 start-page: 119949 year: 2020 ident: 10.1016/j.energy.2022.123386_bib36 article-title: Impacts of industrial structure and technical progress on carbon emission intensity: evidence from 281 cities in China publication-title: Technol Forecast Soc Change doi: 10.1016/j.techfore.2020.119949 – volume: 145 start-page: 582 year: 2018 ident: 10.1016/j.energy.2022.123386_bib22 article-title: Factor substitution and decomposition of carbon intensity in China’sheavy industry publication-title: Energy doi: 10.1016/j.energy.2017.12.151 – volume: 29 start-page: 769 issue: 10 year: 2001 ident: 10.1016/j.energy.2022.123386_bib11 article-title: Analysis of energy intensity developments in manufacturing sectors in industrialized and developing countries publication-title: Energy Pol doi: 10.1016/S0301-4215(01)00010-6 – volume: 82 start-page: 964 issue: 4 year: 1992 ident: 10.1016/j.energy.2022.123386_bib48 article-title: Growth accounting when technical change is embodied in capital publication-title: Am Econ Rev – volume: 5 start-page: 243 issue: 2 year: 2002 ident: 10.1016/j.energy.2022.123386_bib49 article-title: Investment-specific technical change in the United States (1947-2000): measurement and macroeconomic consequences publication-title: Rev Econ Dynam doi: 10.1006/redy.2002.0168 – volume: 70 start-page: 434 year: 2010 ident: 10.1016/j.energy.2022.123386_bib62 article-title: Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis publication-title: Ecol Econ doi: 10.1016/j.ecolecon.2010.09.029 – volume: 75 start-page: 167 year: 2014 ident: 10.1016/j.energy.2022.123386_bib54 article-title: Firm-level determinants of energy and carbon intensity in China publication-title: Energy Pol doi: 10.1016/j.enpol.2014.08.012 – start-page: 119878 year: 2020 ident: 10.1016/j.energy.2022.123386_bib31 article-title: Alleviating the misallocation of R&D inputs in China's manufacturing sector: from the perspectives of factor-biased technological innovation and substitution elasticity publication-title: Technol Forecast Soc Change doi: 10.1016/j.techfore.2019.119878 – start-page: 106912 year: 2021 ident: 10.1016/j.energy.2022.123386_bib32 article-title: Wage distortion and green technological progress: a directed technological progress perspective publication-title: Ecol Econ doi: 10.1016/j.ecolecon.2020.106912 – volume: 10 start-page: 138 year: 2013 ident: 10.1016/j.energy.2022.123386_bib69 article-title: Energy use, carbon emission and China's total factor carbon emission reduction efficiency publication-title: Econ. Res. – volume: 22 start-page: 330 issue: 2 year: 2008 ident: 10.1016/j.energy.2022.123386_bib61 article-title: Productivity and structural change: a review of the literature publication-title: J Econ Surv doi: 10.1111/j.1467-6419.2007.00539.x – volume: 184 start-page: 915 year: 2016 ident: 10.1016/j.energy.2022.123386_bib38 article-title: Firm-level environmentally sensitive productivity andinnovation in China publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.06.010 – volume: 16 start-page: 204 year: 2012 ident: 10.1016/j.energy.2022.123386_bib19 article-title: Decomposition analysis of CO2 emissions in the Mexican industrial sector publication-title: Energy Sust. Devel. doi: 10.1016/j.esd.2012.01.005 – volume: 92 start-page: 527 issue: 3 year: 2002 ident: 10.1016/j.energy.2022.123386_bib10 article-title: Technological change, technological catch-up, and capital deepening: relative contributions growth and convergence publication-title: Am Econ Rev doi: 10.1257/00028280260136381 – start-page: 173 year: 1961 ident: 10.1016/j.energy.2022.123386_bib47 – volume: 5 start-page: 95 year: 2010 ident: 10.1016/j.energy.2022.123386_bib66 article-title: Environmental efficiency and environmental total factor productivity growth in China's regional economies publication-title: Econ. Res. – volume: 20 start-page: 459 year: 2003 ident: 10.1016/j.energy.2022.123386_bib59 article-title: Some remarks on productivity and its decompositions publication-title: J Prod Anal – year: 2013 ident: 10.1016/j.energy.2022.123386_bib67 – volume: 102 start-page: 121 year: 2015 ident: 10.1016/j.energy.2022.123386_bib64 article-title: A data envelopment analysis for energy efficiency of coal-fired power units in China publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.12.062 – volume: 40 start-page: 438 issue: C year: 2014 ident: 10.1016/j.energy.2022.123386_bib65 article-title: Carbon dioxide emissions intensity of Portuguese industry and energy sectors: a convergence analysis and econometric approach publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.07.169 – volume: 2 start-page: 20 year: 2018 ident: 10.1016/j.energy.2022.123386_bib55 article-title: Air pollution, government regulations and high-quality economic development publication-title: Econ. Res. – volume: 55 start-page: 34 year: 2016 ident: 10.1016/j.energy.2022.123386_bib4 article-title: Empirical analysis on the factors influencing national and regional carbon intensity in China publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.10.077 – volume: 126 start-page: 469 year: 2005 ident: 10.1016/j.energy.2022.123386_bib45 article-title: Characteristics of a polluting technology: theory and practice publication-title: J Econom doi: 10.1016/j.jeconom.2004.05.010 – volume: 107 start-page: 438 year: 2015 ident: 10.1016/j.energy.2022.123386_bib52 article-title: Evaluating the method of total factor productivity growth and analysis of its influencing factors during the economic transitional period in China publication-title: J Clean Prod doi: 10.1016/j.jclepro.2014.09.097 – volume: 4 start-page: 19 year: 2014 ident: 10.1016/j.energy.2022.123386_bib25 article-title: The spatial effect of China's haze pollution and impact from economic change and energy structure publication-title: China Indust. Econ. – volume: 221 start-page: 625 year: 2012 ident: 10.1016/j.energy.2022.123386_bib44 article-title: Energy and carbon emission performance in electricity generation: a non-radial directional distance function approach publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2012.04.022 – volume: 81 start-page: 2935 year: 2018 ident: 10.1016/j.energy.2022.123386_bib35 article-title: Industrial structure, technical progress and carbon intensity in China's provinces publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.06.103 – volume: 68 start-page: 271 year: 2017 ident: 10.1016/j.energy.2022.123386_bib39 article-title: Does carbon intensity constraint policy improve industrial green production performance in China? A quasi-DID analysis publication-title: Energy Econ doi: 10.1016/j.eneco.2017.10.009 – volume: 25 start-page: 375 year: 2003 ident: 10.1016/j.energy.2022.123386_bib12 article-title: Contributions of weather and fuel mix to recent declines in US energy and carbon intensity publication-title: Energy Econ doi: 10.1016/S0140-9883(02)00094-4 – volume: 35 start-page: 2505 issue: 6 year: 2010 ident: 10.1016/j.energy.2022.123386_bib17 article-title: Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method publication-title: Energy doi: 10.1016/j.energy.2010.02.049 – volume: 166 start-page: 210 year: 2016 ident: 10.1016/j.energy.2022.123386_bib27 article-title: Spatial econometric analysis of China's province-level industrial carbon productivity and its influencing factors publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.09.100 – volume: 29 start-page: 636 issue: 4 year: 2007 ident: 10.1016/j.energy.2022.123386_bib14 article-title: Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector publication-title: Energy Econ doi: 10.1016/j.eneco.2007.01.005 – volume: 143 start-page: 812 year: 2018 ident: 10.1016/j.energy.2022.123386_bib2 article-title: How to promote energy efficiency through technological progress in China? publication-title: Energy doi: 10.1016/j.energy.2017.11.047 – volume: 61 start-page: 1285 issue: 8 year: 2013 ident: 10.1016/j.energy.2022.123386_bib57 article-title: CO2 emissions and economic activity: short- and long-run economic determinants of scale, energy intensity and carbon intensity publication-title: Energy Pol doi: 10.1016/j.enpol.2013.06.004 – volume: 3 start-page: 78 year: 2012 ident: 10.1016/j.energy.2022.123386_bib24 article-title: Strategic measures to reduce China's carbon emissions: based on index decomposition analysis of carbon emissions in eight industries publication-title: China Social Sciences – volume: 11 start-page: 18 year: 2007 ident: 10.1016/j.energy.2022.123386_bib9 article-title: On the dynamic integration of capital accumulation and technological progress: a stylized fact in China's economic growth publication-title: Econ. Res. – volume: 34 start-page: 1841 year: 2006 ident: 10.1016/j.energy.2022.123386_bib13 article-title: Decomposition of CO2 emissions over 1980-2003 in Turkey publication-title: Energy Pol doi: 10.1016/j.enpol.2004.12.021 – volume: 17 start-page: 155 year: 2009 ident: 10.1016/j.energy.2022.123386_bib50 article-title: Carbon emissions in central and eastern Europe: environmental kuznets curve and implications for sustainable development publication-title: Sustain Dev doi: 10.1002/sd.372 – volume: 2 start-page: 91 year: 2011 ident: 10.1016/j.energy.2022.123386_bib1 article-title: Capital-embodied technological progress and its contribution to economic growth :1981-2007 publication-title: China Social Sciences – volume: 68 start-page: 2122 issue: 7 year: 2009 ident: 10.1016/j.energy.2022.123386_bib16 article-title: Decomposition of energy-related CO2 emission over 1991-2006 in China publication-title: Ecol Econ doi: 10.1016/j.ecolecon.2009.02.005 – volume: 8 start-page: 101 year: 2014 ident: 10.1016/j.energy.2022.123386_bib21 article-title: Characteristics of China's carbon emission intensity in different development stages publication-title: Finance Res – volume: 80 start-page: 11 issue: 1 year: 2013 ident: 10.1016/j.energy.2022.123386_bib5 article-title: Environmental and climate innovation: limitations, policies and prices publication-title: Technol Forecast Soc Change doi: 10.1016/j.techfore.2012.08.004 – volume: 4 start-page: 124 year: 2011 ident: 10.1016/j.energy.2022.123386_bib23 article-title: Fluctuating and decreasing patterns of carbon emission intensity and economic explanation in China publication-title: World Econ – volume: 39 start-page: 6476 year: 2011 ident: 10.1016/j.energy.2022.123386_bib63 article-title: Estimation, characteristics, and determinants of energy-related industrial carbon emissions in Shanghai (China), 1994-2009 publication-title: Energy Pol doi: 10.1016/j.enpol.2011.07.049 – volume: 106 start-page: 1045 issue: 437 year: 1996 ident: 10.1016/j.energy.2022.123386_bib41 article-title: Twin peaks: growth and convergence in models of distribution dynamics publication-title: Econ J doi: 10.2307/2235377 – volume: 19 start-page: 18 issue: 3 year: 2009 ident: 10.1016/j.energy.2022.123386_bib15 article-title: The factor decomposition and periodic fluctuations of carbon emission in China publication-title: China popul., Res. Environ. – volume: 11 start-page: 19 issue: 3 year: 1997 ident: 10.1016/j.energy.2022.123386_bib46 article-title: On the evolution of the world income distribution publication-title: J Econ Perspect doi: 10.1257/jep.11.3.19 – volume: 57 start-page: 369 year: 1995 ident: 10.1016/j.energy.2022.123386_bib53 article-title: Environmental quality and pollution-Augmentingz technological change in two-sector endogenous growth model publication-title: J Publ Econ – year: 2016 ident: 10.1016/j.energy.2022.123386_bib51 – volume: 192 start-page: 107 year: 2017 ident: 10.1016/j.energy.2022.123386_bib58 article-title: Study on eco-efficiency of industrial parks in China based on data envelopment analysis publication-title: J Environ Manag – volume: 32 start-page: 194 year: 2010 ident: 10.1016/j.energy.2022.123386_bib68 article-title: Total factor carbon emission performance: a Malmquist index analysis publication-title: Energy Econ doi: 10.1016/j.eneco.2009.10.003 – volume: 35 start-page: 1 issue: 4 year: 1999 ident: 10.1016/j.energy.2022.123386_bib56 article-title: Total factor productivity growth in East Asia: a critical survey publication-title: J Dev Stud – volume: 19 start-page: 75 issue: 1 year: 2015 ident: 10.1016/j.energy.2022.123386_bib37 article-title: Decomposition of productivity considering multienvironmental pollutants in Chinese industrial sector publication-title: Rev Dev Econ doi: 10.1111/rode.12123 – volume: 57 start-page: 43 issue: 6 year: 2013 ident: 10.1016/j.energy.2022.123386_bib33 article-title: Industrial structural transformation and carbon dioxide emissions in China publication-title: Energy Pol doi: 10.1016/j.enpol.2012.07.017 – start-page: 105269 year: 2021 ident: 10.1016/j.energy.2022.123386_bib30 article-title: Heterogeneous green innovations and carbon emission performance: evidence at China's city level publication-title: Energy Econ doi: 10.1016/j.eneco.2021.105269 – volume: 167 start-page: 120671 year: 2021 ident: 10.1016/j.energy.2022.123386_bib8 article-title: Technological innovation and structural change for economic development in China as an emerging market publication-title: Technol Forecast Soc Change doi: 10.1016/j.techfore.2021.120671 – volume: 2 start-page: 27 issue: 1 year: 1997 ident: 10.1016/j.energy.2022.123386_bib42 article-title: Empirics for growth and distribution: stratification, polarization, and convergence clubs publication-title: J Econ Growth – volume: 88 start-page: 2273 issue: 6 year: 2011 ident: 10.1016/j.energy.2022.123386_bib18 article-title: CO2 emissions of Turkish manufacturing industry: a decomposition analysis publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.12.076 – volume: 73 start-page: 579 issue: 2 year: 2014 ident: 10.1016/j.energy.2022.123386_bib34 article-title: The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China publication-title: Nat Hazards doi: 10.1007/s11069-014-1091-x – volume: 43 start-page: 257 year: 2015 ident: 10.1016/j.energy.2022.123386_bib7 article-title: Sectoral technological progress, migration barriers, and structural change in China publication-title: J Comp Econ doi: 10.1016/j.jce.2015.01.001 |
| SSID | ssj0005899 |
| Score | 2.666424 |
| Snippet | The bottleneck of China's industrial carbon efficiency improvement is that the contribution of carbon emission technology is less than that of energy... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 123386 |
| SubjectTerms | Capital-embodied technological progress Carbon Carbon efficiency Carbon emission technological progress Carbon sources China Efficiency Emission analysis Emissions energy Energy consumption Energy technological progress Energy technology Environmental governance Industrial development industrialization Neutral technological progress Technology Upgrading |
| Title | How heterogeneous technological progress promotes industrial structure upgrading and industrial carbon efficiency? Evidence from China's industries |
| URI | https://dx.doi.org/10.1016/j.energy.2022.123386 https://www.proquest.com/docview/2658286225 https://www.proquest.com/docview/2675563012 |
| Volume | 247 |
| WOSCitedRecordID | wos000792643000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1di9QwFA26K-iL6OrirKtEUHyQDp0kTZonWWQW9WERXHHeSpukOot2h-m4zP_wD3vz2ZldZFXwpQxtPgrnzL1pcu69CD0Hp1ZoXrLM5JpljCuSgRdUGfiesq0VWMOmdcUmxMlJOZvJD0GQ2btyAqLryvVaLv4r1HAPwLahs38BdxoUbsBvAB2uADtc_wh4WyTuqxW5nEMTYxWuq7h97gBxiixr3xZOiecEWal8h08naw8Vfiy-LJ2-PuRnSk1UvWyAMsblnrCBmy_o8atYnNSHq7ii3O4kIPYLSsV4BOADDm2m07UX18sN6-OIBaz9Pk_ETdvan818c58CPnFtitNi2DyLATSDWskHbeVZwdiWQSY-B-cV4-73Gc7Gxr3k2E4yBsdLL-fSdt75ox3ajkyIO01lN9EuEYUE47179G46ez8IgUpXZTS9SgywdCrAq3P9bgFzyZW79cnpPXQ3fFjgI0-I--iG6fbQ7Rh33u-h_ekQ0wgNg1HvH6CfwBi8xRi8xRgcGYMjY_BAB5wYgxNjMDBms4lnDB4Y8xpHvmDLF-z48nIY1vQP0afj6embt1mo1ZEpysUqq_mkNlyQRjPZGkmZ0rrIKWlgOZnLelJTRo2UihuhRQtOVUhueNOyugYnoxjdRzvdeWceIayJMSWjVGqZM1O0JZvkoilbqrWeqEKPEI0AVCoksrf1VL5VUbF4VnnYKgtb5WEboSz1WvhELte0FxHbKixG_SKzAjpe0_MwUqEKdqGvCLfn0xy85wg9S4_BlNvzudphC22ES9c3IQf_PPljdGf48x2iHeCAeYJuqYvVvF8-DdT_BQTCz38 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+heterogeneous+technological+progress+promotes+industrial+structure+upgrading+and+industrial+carbon+efficiency%3F+Evidence+from+China%27s+industries&rft.jtitle=Energy+%28Oxford%29&rft.au=You%2C+Jianmin&rft.au=Zhang%2C+Wei&rft.date=2022-05-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=247&rft_id=info:doi/10.1016%2Fj.energy.2022.123386&rft.externalDocID=S0360544222002894 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |