Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system

Due to the high energy consumption in buildings, cooling load forecasting plays a crucial role in the planning, control and operation of heating, ventilating and air-conditioning systems. However, cooling load data series always exhibit nonlinear and dynamic features, making it very difficult to be...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 148; pp. 269 - 282
Main Author: Fu, Guoyin
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.04.2018
Elsevier BV
Subjects:
ISSN:0360-5442, 1873-6785
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to the high energy consumption in buildings, cooling load forecasting plays a crucial role in the planning, control and operation of heating, ventilating and air-conditioning systems. However, cooling load data series always exhibit nonlinear and dynamic features, making it very difficult to be forecasted accurately. Therefore, a novel deep learning based hybrid approach is originally proposed in this paper for deterministic cooling load forecasting with high accuracy. The approach is a hybrid of empirical mode decomposition, deep belief network and ensemble technique. Empirical mode decomposition is applied to decompose the original cooling load data series into several components with better outliers and behaviors. The hidden nonlinear features and high-level invariant structures in data are effectively extracted by layer-wise pre-training based deep belief network. In addition, ensemble technique is introduced and properly designed to mitigate the impact of uncertainties, i.e., model uncertainty and data noise, on forecasting accuracy. Case studies using real cooling load data collected from Shenzhen and Hong Kong have been implemented. The numerical results demonstrate that the proposed forecasting approach exhibits competitive performance when compared to the prediction algorithms of the state of the art. It is therefore convinced that the proposed approach has a high potential for improving the operating performance in energy systems. •Deep belief network is used to extract the hidden features in cooling load data.•A hybrid forecaster based on EMD and DBN is innovatively proposed.•The diverse errors in term of model misspecification and data noise are analyzed.•Ensemble technique is used to mitigate the diverse errors.
AbstractList Due to the high energy consumption in buildings, cooling load forecasting plays a crucial role in the planning, control and operation of heating, ventilating and air-conditioning systems. However, cooling load data series always exhibit nonlinear and dynamic features, making it very difficult to be forecasted accurately. Therefore, a novel deep learning based hybrid approach is originally proposed in this paper for deterministic cooling load forecasting with high accuracy. The approach is a hybrid of empirical mode decomposition, deep belief network and ensemble technique. Empirical mode decomposition is applied to decompose the original cooling load data series into several components with better outliers and behaviors. The hidden nonlinear features and high-level invariant structures in data are effectively extracted by layer-wise pre-training based deep belief network. In addition, ensemble technique is introduced and properly designed to mitigate the impact of uncertainties, i.e., model uncertainty and data noise, on forecasting accuracy. Case studies using real cooling load data collected from Shenzhen and Hong Kong have been implemented. The numerical results demonstrate that the proposed forecasting approach exhibits competitive performance when compared to the prediction algorithms of the state of the art. It is therefore convinced that the proposed approach has a high potential for improving the operating performance in energy systems.
Due to the high energy consumption in buildings, cooling load forecasting plays a crucial role in the planning, control and operation of heating, ventilating and air-conditioning systems. However, cooling load data series always exhibit nonlinear and dynamic features, making it very difficult to be forecasted accurately. Therefore, a novel deep learning based hybrid approach is originally proposed in this paper for deterministic cooling load forecasting with high accuracy. The approach is a hybrid of empirical mode decomposition, deep belief network and ensemble technique. Empirical mode decomposition is applied to decompose the original cooling load data series into several components with better outliers and behaviors. The hidden nonlinear features and high-level invariant structures in data are effectively extracted by layer-wise pre-training based deep belief network. In addition, ensemble technique is introduced and properly designed to mitigate the impact of uncertainties, i.e., model uncertainty and data noise, on forecasting accuracy. Case studies using real cooling load data collected from Shenzhen and Hong Kong have been implemented. The numerical results demonstrate that the proposed forecasting approach exhibits competitive performance when compared to the prediction algorithms of the state of the art. It is therefore convinced that the proposed approach has a high potential for improving the operating performance in energy systems. •Deep belief network is used to extract the hidden features in cooling load data.•A hybrid forecaster based on EMD and DBN is innovatively proposed.•The diverse errors in term of model misspecification and data noise are analyzed.•Ensemble technique is used to mitigate the diverse errors.
Author Fu, Guoyin
Author_xml – sequence: 1
  givenname: Guoyin
  surname: Fu
  fullname: Fu, Guoyin
  email: Paul.Fu@ul.com
  organization: School of Electric Power, South China University of Technology, Guangzhou, Guangdong, China
BookMark eNqFkEuLFDEUhYPMgD3j_AMXATduqrypVKrSLgQZnzDgZmYd8rgZ01YnbZJW-t-bol3NQlcXDt85XL4rchFTREJeMugZsOnNrseI-fHUD8BkD6xnEp6RDZMz76ZZiguyAT5BJ8ZxeE6uStkBgJDb7YbYD4gHanAJ6GnE-jvlH9Togo5iLLg3C1J9OOSk7XfqU6Y2pSXER7ok7dYArS51DZKnOuTOpuhCDSmuWTmVivsX5NLrpeDN33tNHj59vL_90t19-_z19v1dZ_k0104LbgC5k2gs124ED9pJLhwTxnr0zqK0Zppnh5wbsRXaoBs9G4WdRu4svyavz7vt3Z9HLFXtQ7G4LDpiOhY1gOByyzhAQ189QXfpmGP7rlHTNMDAgDdqPFM2p1IyenXIYa_zSTFQq3m1U2fzajWvgKlmvtXePqnZUPXqpGYdlv-V353L2Ez9CphVsQGjRRea66pcCv8e-AOS_6ZC
CitedBy_id crossref_primary_10_1016_j_apenergy_2023_120916
crossref_primary_10_1016_j_engappai_2023_105831
crossref_primary_10_1016_j_enbuild_2019_01_034
crossref_primary_10_1016_j_epsr_2024_110968
crossref_primary_10_1016_j_rser_2024_115097
crossref_primary_10_1155_2022_4439189
crossref_primary_10_1016_j_enconman_2020_113487
crossref_primary_10_1016_j_energy_2018_08_069
crossref_primary_10_1016_j_asoc_2023_110037
crossref_primary_10_1007_s12652_020_02271_w
crossref_primary_10_1016_j_apenergy_2024_124601
crossref_primary_10_1080_15325008_2022_2135051
crossref_primary_10_1016_j_apenergy_2019_114216
crossref_primary_10_3390_app9173593
crossref_primary_10_1016_j_jobe_2018_10_006
crossref_primary_10_1016_j_asoc_2021_107438
crossref_primary_10_1007_s00521_020_05165_2
crossref_primary_10_1016_j_ijepes_2020_106542
crossref_primary_10_3390_app10238323
crossref_primary_10_1109_ACCESS_2020_2994119
crossref_primary_10_1016_j_enbuild_2019_04_018
crossref_primary_10_1002_widm_1477
crossref_primary_10_1016_j_enbuild_2024_114339
crossref_primary_10_1016_j_enconman_2019_111799
crossref_primary_10_3390_su14148584
crossref_primary_10_1016_j_buildenv_2021_108141
crossref_primary_10_1016_j_procs_2018_10_213
crossref_primary_10_1016_j_jobe_2021_102618
crossref_primary_10_1016_j_jobe_2024_110097
crossref_primary_10_1016_j_knosys_2024_112733
crossref_primary_10_3390_en12112122
crossref_primary_10_1016_j_enbuild_2020_110372
crossref_primary_10_1016_j_apenergy_2021_117694
crossref_primary_10_1016_j_applthermaleng_2020_115261
crossref_primary_10_1016_j_apenergy_2020_115144
crossref_primary_10_1016_j_procs_2021_10_014
crossref_primary_10_1016_j_enbuild_2023_113699
crossref_primary_10_1016_j_cosust_2021_01_009
crossref_primary_10_1016_j_enbuild_2024_113977
crossref_primary_10_3390_infrastructures7090123
crossref_primary_10_1016_j_energy_2020_117858
crossref_primary_10_3390_en13112681
crossref_primary_10_1145_3485128
crossref_primary_10_1016_j_energy_2018_05_155
crossref_primary_10_1016_j_molliq_2021_118418
crossref_primary_10_1016_j_applthermaleng_2024_122357
crossref_primary_10_1016_j_apenergy_2019_113500
crossref_primary_10_1016_j_isprsjprs_2023_07_012
crossref_primary_10_3390_su14084832
crossref_primary_10_1016_j_jobe_2024_109657
crossref_primary_10_1016_j_ijepes_2021_106942
crossref_primary_10_1016_j_rser_2023_114031
crossref_primary_10_1016_j_energy_2024_132209
crossref_primary_10_3390_en12173254
crossref_primary_10_3390_en16062574
crossref_primary_10_1016_j_enbuild_2025_115309
crossref_primary_10_3390_en17071662
crossref_primary_10_1155_2022_6355959
crossref_primary_10_1016_j_enbuild_2020_110592
crossref_primary_10_1016_j_scs_2019_101717
crossref_primary_10_1016_j_energy_2020_117794
crossref_primary_10_3390_su17114938
crossref_primary_10_1016_j_jobe_2023_108095
crossref_primary_10_1016_j_enbuild_2019_109675
crossref_primary_10_1016_j_energy_2023_129140
crossref_primary_10_1016_j_segan_2025_101759
crossref_primary_10_1016_j_enbenv_2022_06_007
crossref_primary_10_1007_s10489_022_04054_6
crossref_primary_10_1016_j_scs_2019_101642
crossref_primary_10_1007_s10462_023_10660_8
crossref_primary_10_1002_er_6745
crossref_primary_10_7717_peerj_cs_1076
crossref_primary_10_1016_j_energ_2025_100035
crossref_primary_10_1016_j_jobe_2023_106589
crossref_primary_10_3390_en14030608
crossref_primary_10_3390_electronics13101803
crossref_primary_10_1016_j_enbuild_2022_112461
crossref_primary_10_1016_j_jobe_2023_107958
crossref_primary_10_1016_j_asoc_2022_109136
crossref_primary_10_3390_ma18122913
crossref_primary_10_1016_j_applthermaleng_2019_04_040
crossref_primary_10_1016_j_ijepes_2020_106583
crossref_primary_10_1007_s12517_021_08155_3
crossref_primary_10_1016_j_jtice_2021_10_024
crossref_primary_10_1002_2050_7038_12664
crossref_primary_10_1080_15435075_2025_2471981
crossref_primary_10_1155_2022_1833507
crossref_primary_10_1016_j_energy_2020_118256
crossref_primary_10_1016_j_energy_2024_133476
crossref_primary_10_3390_en12071301
crossref_primary_10_1016_j_apenergy_2024_124196
crossref_primary_10_1016_j_buildenv_2025_112685
crossref_primary_10_1016_j_energy_2024_133639
crossref_primary_10_1007_s00202_025_02995_y
crossref_primary_10_1016_j_eswa_2021_116293
crossref_primary_10_1016_j_energy_2022_126561
crossref_primary_10_1016_j_measurement_2018_12_071
crossref_primary_10_1016_j_enbuild_2019_07_005
crossref_primary_10_3390_su15097087
crossref_primary_10_1007_s11831_024_10155_x
crossref_primary_10_2139_ssrn_5049288
crossref_primary_10_1016_j_energy_2023_126932
crossref_primary_10_1088_1755_1315_238_1_012047
crossref_primary_10_3390_app8101901
crossref_primary_10_1016_j_energy_2020_118265
crossref_primary_10_1155_2021_3250732
crossref_primary_10_3390_e25091343
crossref_primary_10_1080_19401493_2025_2459714
crossref_primary_10_1016_j_energy_2020_117531
crossref_primary_10_1016_j_est_2025_116222
crossref_primary_10_1108_EC_07_2021_0406
crossref_primary_10_1016_j_enbuild_2021_111718
crossref_primary_10_1088_1742_6596_2143_1_012040
crossref_primary_10_32604_cmes_2022_021525
crossref_primary_10_3390_w11020351
crossref_primary_10_1007_s11831_023_10054_7
crossref_primary_10_1016_j_apenergy_2021_118410
crossref_primary_10_1007_s12273_023_1053_x
crossref_primary_10_1016_j_energy_2020_119208
crossref_primary_10_1016_j_enconman_2019_112188
crossref_primary_10_1016_j_energy_2024_131395
crossref_primary_10_1007_s11356_022_24321_w
crossref_primary_10_1109_TEM_2024_3422821
crossref_primary_10_1016_j_enbuild_2019_05_043
crossref_primary_10_1016_j_energy_2024_130621
crossref_primary_10_1109_TIA_2023_3344540
crossref_primary_10_1109_ACCESS_2020_3025967
crossref_primary_10_1016_j_est_2024_112547
crossref_primary_10_1109_ACCESS_2022_3210974
crossref_primary_10_1016_j_renene_2025_123878
crossref_primary_10_1109_TPWRS_2019_2943972
crossref_primary_10_1016_j_enbuild_2022_112098
Cites_doi 10.1016/j.buildenv.2006.06.025
10.1016/j.ijthermalsci.2004.02.009
10.1016/j.renene.2008.09.006
10.1016/j.energy.2016.11.038
10.1016/j.rser.2017.02.023
10.1109/59.41700
10.1016/j.apenergy.2017.01.043
10.1109/TPWRS.2014.2299801
10.1016/j.apenergy.2017.03.064
10.1016/j.apenergy.2016.11.111
10.1016/j.enconman.2017.09.005
10.3390/en10010003
10.1016/j.enbuild.2015.12.050
10.1016/j.enbuild.2017.06.019
10.1016/j.energy.2015.08.043
10.1016/j.apenergy.2005.08.006
10.1109/TSTE.2015.2441747
10.1016/j.enbuild.2016.05.084
10.1109/TSTE.2015.2434387
10.3390/en10020197
10.1016/j.enbuild.2016.12.002
10.1038/srep38897
10.1016/j.applthermaleng.2017.09.007
10.1016/j.enconman.2017.10.008
10.1016/j.enbuild.2015.08.041
10.1109/TPWRS.2013.2288100
10.1016/j.ijepes.2013.10.020
10.1016/j.energy.2015.12.142
10.1016/j.apenergy.2016.08.108
10.1109/TASLP.2015.2395255
10.1016/j.enconman.2013.12.060
10.1016/j.enbuild.2014.09.022
10.1016/j.enconman.2016.12.032
10.1016/j.rser.2014.08.039
10.1016/j.energy.2012.07.055
10.1111/j.2044-8317.1990.tb00930.x
10.1016/j.enbuild.2012.08.007
10.1016/j.apenergy.2016.02.036
10.1016/j.enbuild.2017.08.077
10.1016/j.energy.2016.07.090
10.1016/j.apenergy.2017.01.076
10.1016/j.rser.2017.09.108
10.1016/j.apenergy.2008.11.035
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Apr 1, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 1, 2018
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2018.01.180
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 282
ExternalDocumentID 10_1016_j_energy_2018_01_180
S0360544218302081
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-a53b0e3d8ebc3ad40f0ad835d15bcfefdce8cb677de33b595abed4f145c643dc3
ISICitedReferencesCount 135
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429764000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 06:32:50 EDT 2025
Mon Sep 29 16:12:19 EDT 2025
Tue Nov 18 22:43:11 EST 2025
Sat Nov 29 02:05:29 EST 2025
Fri Feb 23 02:33:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Ensemble technique
Air-conditioning system
Deep belief network
Cooling load prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-a53b0e3d8ebc3ad40f0ad835d15bcfefdce8cb677de33b595abed4f145c643dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2066202103
PQPubID 2045484
PageCount 14
ParticipantIDs proquest_miscellaneous_2053891300
proquest_journals_2066202103
crossref_primary_10_1016_j_energy_2018_01_180
crossref_citationtrail_10_1016_j_energy_2018_01_180
elsevier_sciencedirect_doi_10_1016_j_energy_2018_01_180
PublicationCentury 2000
PublicationDate 2018-04-01
2018-04-00
20180401
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References He, Yu, Lai (bib36) 2012; 46
Deb, Eang, Yang, Santamouris (bib26) 2016; 121
Pinaya (bib46) 2016; 6
Haque, Nehrir, Mandal (bib9) July 2014; vol. 29
Wang, Yi, Peng, Wang, Liu, Jiang, Liu (bib39) 2017; 153
Kavasseri, Seetharaman (bib16) 2009; 34
Hou, Lian, Yao, Yuan (bib25) 2006; 83
Rashwan, Al Sallab, Raafat, Rafea (bib41) March 2015; 23
Ürge-Vorsatz, Cabeza, Serrano, Barreneche, Petrichenko (bib3) 2015; 41
Kalani, Dahanayake, Lun Chow (bib12) 2017; 138
Fan, Xiao, Zhao (bib5) June 2017; 195
Yun, Luck, Mago, Cho (bib22) 2012; 54
Amral, Ozveren, King (bib17) 2007
Li, Meng, Cai, Yoshino, Mochida (bib29) 2009; 86
Nowotarski, Liu, Weron, Hong (bib35) 2016; 98
G. Wang, X. Zhang, H. Wang et al., "Robust planning of electric vehicle charging facilities with advanced evaluation method," in IEEE Trans Ind Informatics, vol. PP, no. 99, pp. 1–1.
Xue, Dai, Wang (bib38) 2017; 10
Alibabaei, Fung, Raahemifar (bib13) 2016; 128
Li, Li, Xiong, Chai, Zhang (bib28) 2014; 55
Linares-Rodriguez, Quesada-Ruiz, Pozo-Vazquez, Tovar-Pescador (bib34) 2015; 91
Zameer, Arshad, Khan, Raja (bib37) February 2017; 134
Sarbu, Adam (bib4) 2014; 85
Muthén (bib50) 1990; 43
Deb, Eang, Yang, Santamouris (bib24) June 2016; 121
Strachan, Kokogiannakis, Macdonald (bib14) 2008; 43
Zhang, Chen, Gan, Chen (bib44) Oct. 2015; 6
Wu, Liu, Li, Ouyang, Cheng, Wang, You (bib2) January 2017; 119
Moghram, Rahman (bib20) Nov 1989; 4
Li, Wang, Goel (bib33) 2015; 6
Thota, Dani, Luh, Gupta (bib30) 2015
Wan, Xu, Pinson (bib48) 2014; 29
Coelho, Coelho, Luz, Ochi, Guimarães, Rios (bib43) January 2017
Wang, Wang, Li, Peng, Liu (bib8) November 2016; 182
Ding, Zhang, Yuan (bib10) 2017; 154
Yao, Lian, Liu, Hou (bib21) 2004; 43
Qiang, Zhe, Yan, Neng (bib23) November 2015; 107
Yildiz, Bilbao, Sproul (bib31) 2017; 73
Ji, Xu, Duan, Lu (bib7) May 2016; 169
Feng, Cui, Hodge, Zhang (bib42) March 2017; 190
Wang, Zhang, Peng, Wang, Liu, Jiang, Liu (bib1) 2017; 151
Wei, Zhang, Shi, Xia, Pan, Wu, Han, Zhao (bib32) 2018; 82
Mai, Chung, Wu, Huang (bib27) 2014
Ryu, Noh, Kim (bib40) 2017; 10
Ding, Zhang, Yuan, Yang (bib11) 2018; 128
Guo, Nazarian, Ko, Rajurkar (bib18) 2014; 80
Zhu, Han, Wang, Wu, Zhang, Wei (bib47) 2017; 191
Dedinec, Filiposka, Dedinec, Kocarev (bib45) 2016; 115
Xuemei, Lixing, Yuyuan, Lanlan (bib19) 2010
Soo Lim, Kim (bib15) 2017; 151
Wang, Li, Wang, Peng, Jiang, Liu (bib49) February 2017; 188
Yao, Lian, Liu, Hou (bib6) 2004; 43
Yun (10.1016/j.energy.2018.01.180_bib22) 2012; 54
Soo Lim (10.1016/j.energy.2018.01.180_bib15) 2017; 151
Deb (10.1016/j.energy.2018.01.180_bib24) 2016; 121
Li (10.1016/j.energy.2018.01.180_bib29) 2009; 86
Mai (10.1016/j.energy.2018.01.180_bib27) 2014
Ding (10.1016/j.energy.2018.01.180_bib10) 2017; 154
Kalani (10.1016/j.energy.2018.01.180_bib12) 2017; 138
Wan (10.1016/j.energy.2018.01.180_bib48) 2014; 29
Xuemei (10.1016/j.energy.2018.01.180_bib19) 2010
Zameer (10.1016/j.energy.2018.01.180_bib37) 2017; 134
Amral (10.1016/j.energy.2018.01.180_bib17) 2007
He (10.1016/j.energy.2018.01.180_bib36) 2012; 46
Li (10.1016/j.energy.2018.01.180_bib28) 2014; 55
Yao (10.1016/j.energy.2018.01.180_bib6) 2004; 43
Wang (10.1016/j.energy.2018.01.180_bib8) 2016; 182
Guo (10.1016/j.energy.2018.01.180_bib18) 2014; 80
Yildiz (10.1016/j.energy.2018.01.180_bib31) 2017; 73
Deb (10.1016/j.energy.2018.01.180_bib26) 2016; 121
Sarbu (10.1016/j.energy.2018.01.180_bib4) 2014; 85
Wei (10.1016/j.energy.2018.01.180_bib32) 2018; 82
Dedinec (10.1016/j.energy.2018.01.180_bib45) 2016; 115
Fan (10.1016/j.energy.2018.01.180_bib5) 2017; 195
Zhang (10.1016/j.energy.2018.01.180_bib44) 2015; 6
10.1016/j.energy.2018.01.180_bib51
Moghram (10.1016/j.energy.2018.01.180_bib20) 1989; 4
Pinaya (10.1016/j.energy.2018.01.180_bib46) 2016; 6
Wu (10.1016/j.energy.2018.01.180_bib2) 2017; 119
Coelho (10.1016/j.energy.2018.01.180_bib43) 2017
Strachan (10.1016/j.energy.2018.01.180_bib14) 2008; 43
Wang (10.1016/j.energy.2018.01.180_bib49) 2017; 188
Haque (10.1016/j.energy.2018.01.180_bib9) 2014; vol. 29
Li (10.1016/j.energy.2018.01.180_bib33) 2015; 6
Zhu (10.1016/j.energy.2018.01.180_bib47) 2017; 191
Qiang (10.1016/j.energy.2018.01.180_bib23) 2015; 107
Linares-Rodriguez (10.1016/j.energy.2018.01.180_bib34) 2015; 91
Muthén (10.1016/j.energy.2018.01.180_bib50) 1990; 43
Yao (10.1016/j.energy.2018.01.180_bib21) 2004; 43
Wang (10.1016/j.energy.2018.01.180_bib1) 2017; 151
Alibabaei (10.1016/j.energy.2018.01.180_bib13) 2016; 128
Nowotarski (10.1016/j.energy.2018.01.180_bib35) 2016; 98
Ryu (10.1016/j.energy.2018.01.180_bib40) 2017; 10
Xue (10.1016/j.energy.2018.01.180_bib38) 2017; 10
Kavasseri (10.1016/j.energy.2018.01.180_bib16) 2009; 34
Wang (10.1016/j.energy.2018.01.180_bib39) 2017; 153
Thota (10.1016/j.energy.2018.01.180_bib30) 2015
Ji (10.1016/j.energy.2018.01.180_bib7) 2016; 169
Ürge-Vorsatz (10.1016/j.energy.2018.01.180_bib3) 2015; 41
Rashwan (10.1016/j.energy.2018.01.180_bib41) 2015; 23
Ding (10.1016/j.energy.2018.01.180_bib11) 2018; 128
Feng (10.1016/j.energy.2018.01.180_bib42) 2017; 190
Hou (10.1016/j.energy.2018.01.180_bib25) 2006; 83
References_xml – volume: vol. 29
  start-page: 1663
  year: July 2014
  end-page: 1672
  ident: bib9
  article-title: A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting
  publication-title: IEEE Trans Power Systems
– volume: 6
  start-page: 1447
  year: 2015
  end-page: 1456
  ident: bib33
  article-title: Wind power forecasting using neural network ensembles with feature selection
  publication-title: IEEE Trans Sustain Energy
– volume: 115
  start-page: 1688
  year: 2016
  end-page: 1700
  ident: bib45
  article-title: Deep belief network based electricity load forecasting: an analysis of Macedonian case
  publication-title: Energy
– volume: 121
  start-page: 284
  year: June 2016
  end-page: 297
  ident: bib24
  article-title: Forecasting diurnal cooling energy load for institutional buildings using Artificial Neural Networks
  publication-title: Energy Build
– volume: 80
  start-page: 46
  year: 2014
  end-page: 53
  ident: bib18
  article-title: Hourly cooling load forecasting using time-indexed ARX models with two-stage weighted least squares regression
  publication-title: Energy Convers Manag
– volume: 134
  start-page: 361
  year: February 2017
  end-page: 372
  ident: bib37
  article-title: Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks
  publication-title: Energy Convers Manag
– volume: 73
  start-page: 1104
  year: 2017
  end-page: 1122
  ident: bib31
  article-title: A review and analysis of regression and machine learning models on commercial building electricity load forecasting
  publication-title: Renew Sustain Energy Rev
– volume: 182
  start-page: 80
  year: November 2016
  end-page: 93
  ident: bib8
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl Energy
– volume: 151
  start-page: 53
  year: 2017
  end-page: 65
  ident: bib15
  article-title: Prediction model of Cooling Load considering time-lag for preemptive action in buildings
  publication-title: Energy Build
– start-page: 1
  year: 2014
  end-page: 5
  ident: bib27
  article-title: Electric load forecasting for large office building based on radial basis function neural network
  publication-title: 2014 IEEE PES general meeting | conference & exposition, national Harbor, MD
– volume: 98
  start-page: 40
  year: 2016
  end-page: 49
  ident: bib35
  article-title: Improving short term load forecast accuracy via combining sister forecasts
  publication-title: Energy
– volume: 46
  start-page: 564
  year: 2012
  end-page: 574
  ident: bib36
  article-title: Crude oil price analysis and forecasting using wavelet decomposed ensemble model
  publication-title: Energy
– volume: 23
  start-page: 505
  year: March 2015
  end-page: 516
  ident: bib41
  article-title: Deep learning framework with confused sub-set resolution architecture for automatic Arabic diacritization
  publication-title: IEEE/ACM Trans Audio Speech Language Process
– volume: 128
  start-page: 225
  year: 2018
  end-page: 234
  ident: bib11
  article-title: Effect of input variables on cooling load prediction accuracy of an office building
  publication-title: Appl Therm Eng
– volume: 83
  start-page: 1033
  year: 2006
  end-page: 1046
  ident: bib25
  article-title: Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data-fusion technique
  publication-title: Appl Energy
– volume: 169
  start-page: 309
  year: May 2016
  end-page: 323
  ident: bib7
  article-title: Estimating hourly cooling load in commercial buildings using a thermal network model and electricity submetering data
  publication-title: Appl Energy
– volume: 190
  start-page: 1245
  year: March 2017
  end-page: 1257
  ident: bib42
  article-title: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting
  publication-title: Appl Energy
– volume: 29
  start-page: 1166
  year: 2014
  end-page: 1174
  ident: bib48
  article-title: Optimal prediction intervals of wind power generation
  publication-title: IEEE Trans Power Syst
– volume: 188
  start-page: 56
  year: February 2017
  end-page: 70
  ident: bib49
  article-title: Deep learning based ensemble approach for probabilistic wind power forecasting
  publication-title: Appl Energy
– volume: 128
  start-page: 81
  year: 2016
  end-page: 98
  ident: bib13
  article-title: Development of Matlab-TRNSYS co-simulator for applying predictive strategy planning models on residential house HVAC system
  publication-title: Energy Build
– volume: 43
  start-page: 601
  year: 2008
  end-page: 609
  ident: bib14
  article-title: History and development of validation with the ESP-r simulation program
  publication-title: Build Environ
– volume: 54
  start-page: 225
  year: 2012
  end-page: 233
  ident: bib22
  article-title: Building hourly thermal load prediction using an indexed ARX model
  publication-title: Energy Build
– volume: 138
  start-page: 47
  year: 2017
  end-page: 59
  ident: bib12
  article-title: Studying the potential of energy saving through vertical greenery systems: using EnergyPlus simulation program
  publication-title: Energy Build
– volume: 153
  start-page: 409
  year: 2017
  end-page: 422
  ident: bib39
  article-title: Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network
  publication-title: Energy Convers Manag
– volume: 43
  start-page: 1107
  year: 2004
  end-page: 1118
  ident: bib6
  article-title: Hourly cooling load prediction by a combined forecasting model based on Analytic Hierarchy Process
  publication-title: Int J Therm Sci
– volume: 82
  start-page: 1027
  year: 2018
  end-page: 1047
  ident: bib32
  article-title: A review of data-driven approaches for prediction and classification of building energy consumption
  publication-title: Renew Sustain Energy Rev
– volume: 10
  start-page: 197
  year: 2017
  ident: bib38
  article-title: Development of a general package for resolution of uncertainty-related issues in reservoir engineering
  publication-title: Energies
– volume: 10
  start-page: 3
  year: 2017
  ident: bib40
  article-title: Deep neural network based demand side short term load forecasting
  publication-title: Energies
– volume: 85
  start-page: 45
  year: 2014
  end-page: 58
  ident: bib4
  article-title: Experimental and numerical investigations of the energy efficiency of conventional air conditioning systems in cooling mode and comfort assurance in office buildings
  publication-title: Energy Build
– volume: 55
  start-page: 749
  year: 2014
  end-page: 759
  ident: bib28
  article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting
  publication-title: Int J Electr Power Energy Syst
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib30
  article-title: Cooling load forecasting for chiller plants using similar day based wavelet neural networks
  publication-title: 2015 international conference on complex systems engineering (ICCSE), storrs, CT
– volume: 43
  start-page: 131
  year: 1990
  end-page: 143
  ident: bib50
  article-title: Moments of the censored and truncated bivariate normal distribution
  publication-title: Br J Math Stat Psychol
– volume: 43
  start-page: 1107
  year: 2004
  end-page: 1118
  ident: bib21
  article-title: Hourly cooling load prediction by a combined forecasting model based on Analytic Hierarchy Process
  publication-title: Int J Therm Sci
– volume: 86
  start-page: 2249
  year: 2009
  end-page: 2256
  ident: bib29
  article-title: Applying support vector machine to predict hourly cooling load in the building
  publication-title: Appl Energy
– volume: 6
  start-page: 1416
  year: Oct. 2015
  end-page: 1425
  ident: bib44
  article-title: Predictive deep Boltzmann machine for multiperiod wind speed forecasting
  publication-title: IEEE Trans Sustain Energy
– volume: 195
  start-page: 222
  year: June 2017
  end-page: 233
  ident: bib5
  article-title: A short-term building cooling load prediction method using deep learning algorithms
  publication-title: Appl Energy
– volume: 121
  start-page: 284
  year: 2016
  end-page: 297
  ident: bib26
  article-title: Forecasting diurnal cooling energy load for institutional buildings using Artificial Neural Networks
  publication-title: Energy Build
– volume: 34
  start-page: 1388
  year: 2009
  end-page: 1393
  ident: bib16
  article-title: Day-ahead wind speed forecasting using fARIMA models
  publication-title: Renew Energy
– volume: 41
  start-page: 85
  year: 2015
  end-page: 98
  ident: bib3
  article-title: Heating and cooling energy trends and drivers in buildings
  publication-title: Renew Sustain Energy Rev
– volume: 6
  start-page: 38897
  year: 2016
  ident: bib46
  article-title: Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia
  publication-title: Sci Rep
– year: January 2017
  ident: bib43
  article-title: A GPU deep learning metaheuristic based model for time series forecasting, Applied Energy, Available online 9
– volume: 151
  start-page: 524
  year: 2017
  end-page: 537
  ident: bib1
  article-title: GPNBI-inspired MOSFA for Pareto operation optimization of integrated energy system
  publication-title: Energy Convers Manag
– reference: G. Wang, X. Zhang, H. Wang et al., "Robust planning of electric vehicle charging facilities with advanced evaluation method," in IEEE Trans Ind Informatics, vol. PP, no. 99, pp. 1–1.
– volume: 91
  start-page: 264
  year: 2015
  end-page: 273
  ident: bib34
  article-title: an evolutionary artificial neural network ensemble model for estimating hourly direct normal irradiances from meteosat imagery
  publication-title: Energy
– volume: 119
  start-page: 1036
  year: January 2017
  end-page: 1046
  ident: bib2
  article-title: Residential air-conditioner usage in China and efficiency standardization
  publication-title: Energy
– volume: 107
  start-page: 445
  year: November 2015
  end-page: 455
  ident: bib23
  article-title: An improved office building cooling load prediction model based on multivariable linear regression
  publication-title: Energy Build
– start-page: 1192
  year: 2007
  end-page: 1198
  ident: bib17
  publication-title: Short term load forecasting using multiple linear regression," 2007 42nd international universities power engineering conference, Brighton
– volume: 4
  start-page: 1484
  year: Nov 1989
  end-page: 1491
  ident: bib20
  article-title: Analysis and evaluation of five short-term load forecasting techniques
  publication-title: IEEE Trans Power Syst
– volume: 154
  start-page: 254
  year: 2017
  end-page: 267
  ident: bib10
  article-title: Research on short-term and ultra-short-term cooling load prediction models for office buildings
  publication-title: Energy Build
– start-page: 533
  year: 2010
  end-page: 536
  ident: bib19
  publication-title: Hybrid support vector machine and ARIMA model in building cooling prediction, 2010 international symposium on computer, communication, control and automation (3CA), tainan
– volume: 191
  start-page: 521
  year: 2017
  end-page: 530
  ident: bib47
  article-title: Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression
  publication-title: Appl Energy
– volume: 43
  start-page: 601
  issue: 4
  year: 2008
  ident: 10.1016/j.energy.2018.01.180_bib14
  article-title: History and development of validation with the ESP-r simulation program
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2006.06.025
– volume: 43
  start-page: 1107
  issue: 11
  year: 2004
  ident: 10.1016/j.energy.2018.01.180_bib6
  article-title: Hourly cooling load prediction by a combined forecasting model based on Analytic Hierarchy Process
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2004.02.009
– volume: 34
  start-page: 1388
  issue: 5
  year: 2009
  ident: 10.1016/j.energy.2018.01.180_bib16
  article-title: Day-ahead wind speed forecasting using fARIMA models
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2008.09.006
– volume: 119
  start-page: 1036
  issue: 15
  year: 2017
  ident: 10.1016/j.energy.2018.01.180_bib2
  article-title: Residential air-conditioner usage in China and efficiency standardization
  publication-title: Energy
  doi: 10.1016/j.energy.2016.11.038
– volume: 73
  start-page: 1104
  year: 2017
  ident: 10.1016/j.energy.2018.01.180_bib31
  article-title: A review and analysis of regression and machine learning models on commercial building electricity load forecasting
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.02.023
– volume: 4
  start-page: 1484
  issue: 4
  year: 1989
  ident: 10.1016/j.energy.2018.01.180_bib20
  article-title: Analysis and evaluation of five short-term load forecasting techniques
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.41700
– volume: 190
  start-page: 1245
  issue: 15
  year: 2017
  ident: 10.1016/j.energy.2018.01.180_bib42
  article-title: A data-driven multi-model methodology with deep feature selection for short-term wind forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.043
– volume: vol. 29
  start-page: 1663
  issue: 4
  year: 2014
  ident: 10.1016/j.energy.2018.01.180_bib9
  article-title: A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting
  publication-title: IEEE Trans Power Systems
  doi: 10.1109/TPWRS.2014.2299801
– volume: 195
  start-page: 222
  issue: 1
  year: 2017
  ident: 10.1016/j.energy.2018.01.180_bib5
  article-title: A short-term building cooling load prediction method using deep learning algorithms
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.064
– volume: 188
  start-page: 56
  issue: 15
  year: 2017
  ident: 10.1016/j.energy.2018.01.180_bib49
  article-title: Deep learning based ensemble approach for probabilistic wind power forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.11.111
– volume: 151
  start-page: 524
  year: 2017
  ident: 10.1016/j.energy.2018.01.180_bib1
  article-title: GPNBI-inspired MOSFA for Pareto operation optimization of integrated energy system
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.09.005
– volume: 10
  start-page: 3
  year: 2017
  ident: 10.1016/j.energy.2018.01.180_bib40
  article-title: Deep neural network based demand side short term load forecasting
  publication-title: Energies
  doi: 10.3390/en10010003
– year: 2017
  ident: 10.1016/j.energy.2018.01.180_bib43
– volume: 121
  start-page: 284
  issue: 1
  year: 2016
  ident: 10.1016/j.energy.2018.01.180_bib24
  article-title: Forecasting diurnal cooling energy load for institutional buildings using Artificial Neural Networks
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.12.050
– volume: 151
  start-page: 53
  year: 2017
  ident: 10.1016/j.energy.2018.01.180_bib15
  article-title: Prediction model of Cooling Load considering time-lag for preemptive action in buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.06.019
– volume: 91
  start-page: 264
  year: 2015
  ident: 10.1016/j.energy.2018.01.180_bib34
  article-title: an evolutionary artificial neural network ensemble model for estimating hourly direct normal irradiances from meteosat imagery
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.043
– volume: 83
  start-page: 1033
  issue: 9
  year: 2006
  ident: 10.1016/j.energy.2018.01.180_bib25
  article-title: Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data-fusion technique
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2005.08.006
– volume: 6
  start-page: 1447
  issue: 4
  year: 2015
  ident: 10.1016/j.energy.2018.01.180_bib33
  article-title: Wind power forecasting using neural network ensembles with feature selection
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2015.2441747
– start-page: 1
  year: 2015
  ident: 10.1016/j.energy.2018.01.180_bib30
  article-title: Cooling load forecasting for chiller plants using similar day based wavelet neural networks
– volume: 128
  start-page: 81
  year: 2016
  ident: 10.1016/j.energy.2018.01.180_bib13
  article-title: Development of Matlab-TRNSYS co-simulator for applying predictive strategy planning models on residential house HVAC system
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.05.084
– volume: 6
  start-page: 1416
  issue: 4
  year: 2015
  ident: 10.1016/j.energy.2018.01.180_bib44
  article-title: Predictive deep Boltzmann machine for multiperiod wind speed forecasting
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2015.2434387
– volume: 10
  start-page: 197
  year: 2017
  ident: 10.1016/j.energy.2018.01.180_bib38
  article-title: Development of a general package for resolution of uncertainty-related issues in reservoir engineering
  publication-title: Energies
  doi: 10.3390/en10020197
– volume: 138
  start-page: 47
  year: 2017
  ident: 10.1016/j.energy.2018.01.180_bib12
  article-title: Studying the potential of energy saving through vertical greenery systems: using EnergyPlus simulation program
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.12.002
– volume: 6
  start-page: 38897
  year: 2016
  ident: 10.1016/j.energy.2018.01.180_bib46
  article-title: Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia
  publication-title: Sci Rep
  doi: 10.1038/srep38897
– volume: 128
  start-page: 225
  year: 2018
  ident: 10.1016/j.energy.2018.01.180_bib11
  article-title: Effect of input variables on cooling load prediction accuracy of an office building
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.09.007
– start-page: 1192
  year: 2007
  ident: 10.1016/j.energy.2018.01.180_bib17
– volume: 153
  start-page: 409
  year: 2017
  ident: 10.1016/j.energy.2018.01.180_bib39
  article-title: Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.10.008
– volume: 107
  start-page: 445
  issue: 15
  year: 2015
  ident: 10.1016/j.energy.2018.01.180_bib23
  article-title: An improved office building cooling load prediction model based on multivariable linear regression
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.08.041
– volume: 29
  start-page: 1166
  issue: 3
  year: 2014
  ident: 10.1016/j.energy.2018.01.180_bib48
  article-title: Optimal prediction intervals of wind power generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2288100
– volume: 55
  start-page: 749
  year: 2014
  ident: 10.1016/j.energy.2018.01.180_bib28
  article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.10.020
– volume: 98
  start-page: 40
  year: 2016
  ident: 10.1016/j.energy.2018.01.180_bib35
  article-title: Improving short term load forecast accuracy via combining sister forecasts
  publication-title: Energy
  doi: 10.1016/j.energy.2015.12.142
– volume: 182
  start-page: 80
  issue: 15
  year: 2016
  ident: 10.1016/j.energy.2018.01.180_bib8
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.108
– volume: 23
  start-page: 505
  issue: 3
  year: 2015
  ident: 10.1016/j.energy.2018.01.180_bib41
  article-title: Deep learning framework with confused sub-set resolution architecture for automatic Arabic diacritization
  publication-title: IEEE/ACM Trans Audio Speech Language Process
  doi: 10.1109/TASLP.2015.2395255
– volume: 80
  start-page: 46
  year: 2014
  ident: 10.1016/j.energy.2018.01.180_bib18
  article-title: Hourly cooling load forecasting using time-indexed ARX models with two-stage weighted least squares regression
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.12.060
– volume: 85
  start-page: 45
  year: 2014
  ident: 10.1016/j.energy.2018.01.180_bib4
  article-title: Experimental and numerical investigations of the energy efficiency of conventional air conditioning systems in cooling mode and comfort assurance in office buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.09.022
– start-page: 1
  year: 2014
  ident: 10.1016/j.energy.2018.01.180_bib27
  article-title: Electric load forecasting for large office building based on radial basis function neural network
– volume: 134
  start-page: 361
  issue: 15
  year: 2017
  ident: 10.1016/j.energy.2018.01.180_bib37
  article-title: Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.12.032
– volume: 41
  start-page: 85
  year: 2015
  ident: 10.1016/j.energy.2018.01.180_bib3
  article-title: Heating and cooling energy trends and drivers in buildings
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.08.039
– volume: 46
  start-page: 564
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2018.01.180_bib36
  article-title: Crude oil price analysis and forecasting using wavelet decomposed ensemble model
  publication-title: Energy
  doi: 10.1016/j.energy.2012.07.055
– volume: 43
  start-page: 131
  issue: 1
  year: 1990
  ident: 10.1016/j.energy.2018.01.180_bib50
  article-title: Moments of the censored and truncated bivariate normal distribution
  publication-title: Br J Math Stat Psychol
  doi: 10.1111/j.2044-8317.1990.tb00930.x
– volume: 54
  start-page: 225
  year: 2012
  ident: 10.1016/j.energy.2018.01.180_bib22
  article-title: Building hourly thermal load prediction using an indexed ARX model
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.08.007
– ident: 10.1016/j.energy.2018.01.180_bib51
– volume: 43
  start-page: 1107
  issue: 11
  year: 2004
  ident: 10.1016/j.energy.2018.01.180_bib21
  article-title: Hourly cooling load prediction by a combined forecasting model based on Analytic Hierarchy Process
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2004.02.009
– volume: 169
  start-page: 309
  issue: 1
  year: 2016
  ident: 10.1016/j.energy.2018.01.180_bib7
  article-title: Estimating hourly cooling load in commercial buildings using a thermal network model and electricity submetering data
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.036
– volume: 154
  start-page: 254
  year: 2017
  ident: 10.1016/j.energy.2018.01.180_bib10
  article-title: Research on short-term and ultra-short-term cooling load prediction models for office buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.08.077
– volume: 121
  start-page: 284
  year: 2016
  ident: 10.1016/j.energy.2018.01.180_bib26
  article-title: Forecasting diurnal cooling energy load for institutional buildings using Artificial Neural Networks
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.12.050
– volume: 115
  start-page: 1688
  issue: Part 3
  year: 2016
  ident: 10.1016/j.energy.2018.01.180_bib45
  article-title: Deep belief network based electricity load forecasting: an analysis of Macedonian case
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.090
– volume: 191
  start-page: 521
  year: 2017
  ident: 10.1016/j.energy.2018.01.180_bib47
  article-title: Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.076
– volume: 82
  start-page: 1027
  issue: Part 1
  year: 2018
  ident: 10.1016/j.energy.2018.01.180_bib32
  article-title: A review of data-driven approaches for prediction and classification of building energy consumption
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.09.108
– volume: 86
  start-page: 2249
  issue: 10
  year: 2009
  ident: 10.1016/j.energy.2018.01.180_bib29
  article-title: Applying support vector machine to predict hourly cooling load in the building
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.11.035
– start-page: 533
  year: 2010
  ident: 10.1016/j.energy.2018.01.180_bib19
SSID ssj0005899
Score 2.5752847
Snippet Due to the high energy consumption in buildings, cooling load forecasting plays a crucial role in the planning, control and operation of heating, ventilating...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 269
SubjectTerms Air conditioners
Air conditioning
Air-conditioning system
algorithms
Artificial intelligence
Belief networks
Buildings
case studies
China
Cooling
Cooling load prediction
Cooling loads
Cooling systems
data collection
Decomposition
Deep belief network
Deep learning
Electricity consumption
energy
Energy consumption
Ensemble technique
Feature extraction
Forecasting
heat
Machine learning
Mathematical models
model uncertainty
Outliers (statistics)
planning
prediction
Uncertainty
Title Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system
URI https://dx.doi.org/10.1016/j.energy.2018.01.180
https://www.proquest.com/docview/2066202103
https://www.proquest.com/docview/2053891300
Volume 148
WOSCitedRecordID wos000429764000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLagQ4ILgsFEYSAjIS6Vp_xwauc4QStAU-HQSb1Zju1InbakNC0q_z3Pv9p1E9o4cImqxGmjfl_8np_fex9CH1ROEzBrlIApVoQyWKCUvJRE6ppltKBVwZQTm2CTCZ_Nyh9BxbFzcgKsafhmUy7-K9RwDsC2pbP_APf2S-EEfAbQ4Qiww_FewH82xqZfgW9ZDxqf5D2wtkoPYMVqrmylVGwk7nIMVdu6kvTLVmp7wijZxVxoOV8SWDDreQzb-sbPe-F8Xzxou5ZufKL8NrQwXruo-7r9Hdp7h-hCyq8lpcSqqoQUlO7PmJQPFifZsCSZVw6Ks59XXQmGNFy7NUf7cMHFiXHPZ7PruO2cmnpFp_2W2JPvYnx-diamo9n04-InsWphdlc9SKc8RAcZK0reQwenX0ezb7vkHu6UQ7dPH4smXWbf7R_-m1Nywzw7n2P6DD0NiwV86kF-jh6Y5hA9jrXk3SE6Gu3qFGFgmKi7F0hZFmDPAhxYgB0LcGQBjizAABsOLMCWBfgaC3Bb45sswJ4FL9H5eDT99IUEPQ2i8iFbEVnkVWJyzU2lcqlpUidSgweu06JStam1MlxVQ8a0yfOqKAtZGU3rlBYK_Fat8iPUa9rGvEJYUqZkDUt9cD9hRCUllyxVmmVgL-mQ91Ee_1ChQrN5q3lyKWJW4YXwMAgLg0hSATD0EdnetfDNVu4YzyJWIjiM3hEUwLU77jyO0Irw7nbCKhtkNgaS99H77WWYbu0emmxMu7ZjCreznySv7zHmDXqye6mOUW-1XJu36JH6tZp3y3eBtH8Aaf-k2Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+belief+network+based+ensemble+approach+for+cooling+load+forecasting+of+air-conditioning+system&rft.jtitle=Energy+%28Oxford%29&rft.au=Fu%2C+Guoyin&rft.date=2018-04-01&rft.issn=0360-5442&rft.volume=148+p.269-282&rft.spage=269&rft.epage=282&rft_id=info:doi/10.1016%2Fj.energy.2018.01.180&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon