Meta-dynamical adaptive systems and their applications to a fractal algorithm and a biological model

In this article, one defines two models of adaptive systems: the meta- dynamical adaptive system using the notion of Kalman dynamical systems and the adaptive differential equations using the notion of variable dimension spaces. This concept of variable dimension spaces relates the notion of spaces...

Full description

Saved in:
Bibliographic Details
Published in:Physica. D Vol. 207; no. 1; pp. 79 - 90
Main Authors: Moulay, Emmanuel, Baguelin, Marc
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 15.07.2005
Elsevier
Subjects:
ISSN:0167-2789, 1872-8022
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article, one defines two models of adaptive systems: the meta- dynamical adaptive system using the notion of Kalman dynamical systems and the adaptive differential equations using the notion of variable dimension spaces. This concept of variable dimension spaces relates the notion of spaces to the notion of dimensions. First, a computational model of the Douady’s Rabbit fractal is obtained by using the meta-dynamical adaptive system concept. Then, we focus on a defense-attack biological model described by our two formalisms.
AbstractList In this article, one defines two models of adaptive systems: the meta- dynamical adaptive system using the notion of Kalman dynamical systems and the adaptive differential equations using the notion of variable dimension spaces. This concept of variable dimension spaces relates the notion of spaces to the notion of dimensions. First, a computational model of the Douady’s Rabbit fractal is obtained by using the meta-dynamical adaptive system concept. Then, we focus on a defense-attack biological model described by our two formalisms.
In this article, one defines two models of adaptive systems: the meta-dynamical adaptive system using the notion of Kalman dynamical systems and the adaptive differential equations using the notion of variable dimension spaces. This concept of variable dimension spaces relates the notion of spaces to the notion of dimensions. First, a computational model of the Douady's Rabbit fractal is obtained by using the meta-dynamical adaptive system concept. Then, we focus on a defense-attack biological model described by our two formalisms.
Author Moulay, Emmanuel
Baguelin, Marc
Author_xml – sequence: 1
  givenname: Emmanuel
  surname: Moulay
  fullname: Moulay, Emmanuel
  email: emmanuel.moulay@ec-lille.fr
  organization: Laboratoire Paul Painlevé, UFR de Mathématiques Pures et Appliquées, Université de Sciences et Technologies de Lille, France
– sequence: 2
  givenname: Marc
  surname: Baguelin
  fullname: Baguelin, Marc
  email: mb556@cam.ac.uk
  organization: Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16906791$$DView record in Pascal Francis
https://hal.science/hal-00136495$$DView record in HAL
BookMark eNqFkE1LxDAQhoMouH78Ai-5ePDQNUm3SXvwIOIXrHjRc5gmUzdL25QkLOy_t90VBQ8KAwPD8wwz7wk57H2PhFxwNueMy-v1fFhto50Lxor5VDw_IDNeKpGVTIhDMhsplQlVVsfkJMY1Y4yrXM2IfcEEmd320DkDLQULQ3IbpHEbE3aRQm9pWqELFIahHZnkfB9p8hRoE8CkSWo_fHBp1e1ooLXzrf_Y7eu8xfaMHDXQRjz_6qfk_eH-7e4pW74-Pt_dLjOTS5Uy4CCtWnChDBipuDGoKiyA15VopMlBFAXiooAaG1szXnAGC5BlbUpW1wLyU3K137uCVg_BdRC22oPTT7dLPc3Gr3O5qIoNH9nLPTtAHA8dX-mNi98WlxWTqpq4fM-Z4GMM2PwgTE_h67Xeha-n8PVUPB-t6pdlXNpFlwK49h_3Zu_iGNXGYdDROOwNWhfQJG29-9P_BNxRpNQ
CODEN PDNPDT
CitedBy_id crossref_primary_10_1016_j_cam_2006_03_036
crossref_primary_10_3390_e14101939
Cites_doi 10.1007/BF02591353
10.1112/jlms/s1-12.45.18
10.1002/cplx.10077
ContentType Journal Article
Copyright 2005 Elsevier B.V.
2005 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2005 Elsevier B.V.
– notice: 2005 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
1XC
VOOES
DOI 10.1016/j.physd.2005.05.013
DatabaseName CrossRef
Pascal-Francis
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-8022
EndPage 90
ExternalDocumentID oai:HAL:hal-00136495v1
16906791
10_1016_j_physd_2005_05_013
S0167278905002149
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
M38
M41
MHUIS
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSW
SSZ
T5K
TN5
TWZ
WUQ
XJT
XPP
YNT
YYP
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
1XC
VOOES
ID FETCH-LOGICAL-c367t-a1a6d74127cac671cce79e5a1b92f6c3a255ee45abefdb01510a4a68bc80bb2a3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000230553100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-2789
IngestDate Tue Oct 28 08:50:57 EDT 2025
Mon Jul 21 09:16:03 EDT 2025
Sat Nov 29 03:57:23 EST 2025
Tue Nov 18 22:35:31 EST 2025
Fri Feb 23 02:16:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Adaptive systems
92D25
37F50
92D15
93A05
Biological systems
Fractal algorithm
Dynamical systems
Non linear phenomenon
92D25 Dynamical systems
Algorithms
Fractal
Differential equations
Models
dynamical systems
biological systems
fractal algorithm
adaptive systems
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-a1a6d74127cac671cce79e5a1b92f6c3a255ee45abefdb01510a4a68bc80bb2a3
ORCID 0000-0001-8687-884X
OpenAccessLink https://hal.science/hal-00136495
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_00136495v1
pascalfrancis_primary_16906791
crossref_primary_10_1016_j_physd_2005_05_013
crossref_citationtrail_10_1016_j_physd_2005_05_013
elsevier_sciencedirect_doi_10_1016_j_physd_2005_05_013
PublicationCentury 2000
PublicationDate 2005-07-15
PublicationDateYYYYMMDD 2005-07-15
PublicationDate_xml – month: 07
  year: 2005
  text: 2005-07-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Physica. D
PublicationYear 2005
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Mandelbrot (bib5) 1982
Tricot (bib20) 1993
Alexander (bib12) 1994
Besicovitch, Ursell (bib17) 1937; 12
Baguelin, Lefèvre, Richard (bib22) 2002
Zeigler, Praehofer, Kim (bib11) 2000
Jen (bib10) 2003; 8
Mandelbrot (bib6) 1980
Baguelin, Lefèvre, Richard (bib8) 2003
Hurewicz, Wallman (bib19) 1941
Holland (bib4) 1992
Tricot (bib18) 1981; 293
Peitgen, Saupe (bib15) 1988
R.E. Kalman, P.L. Falb, M.A. Arbib, Topics in Mathematical System Theory, International Series in Pure and Applied Mathematics, McGraw-Hill, 1969.
A. Douady, J.H. Hubbard, Etude dynamique des polynômes complexes, (première et deuxième partie), Publications Mathématiques d’Orsay 84–02, 85–04.
Gell-Mann (bib2) 1994
Rosen (bib3) 1985
M. Baguelin, Modélisation de systèmes complexes par métadynamiques: Application à la modélisation de populations en coévolution, Ph.D. thesis, Université des sciences et technologie de Lille, 2003.
Brolin (bib13) 1965; 6
J. Peyrière, Calculs de dimension de hausdorff, Analyse Harmonique d’Orsay, p. 188.
Mosekilde, Strandorf, Thomsen, Baier (bib21) 1996
Waldrop (bib1) 1992
Mandelbrot (10.1016/j.physd.2005.05.013_bib5) 1982
Jen (10.1016/j.physd.2005.05.013_bib10) 2003; 8
Hurewicz (10.1016/j.physd.2005.05.013_bib19) 1941
Holland (10.1016/j.physd.2005.05.013_bib4) 1992
Baguelin (10.1016/j.physd.2005.05.013_bib22) 2002
Mandelbrot (10.1016/j.physd.2005.05.013_bib6) 1980
Mosekilde (10.1016/j.physd.2005.05.013_bib21) 1996
Zeigler (10.1016/j.physd.2005.05.013_bib11) 2000
Alexander (10.1016/j.physd.2005.05.013_bib12) 1994
Tricot (10.1016/j.physd.2005.05.013_bib18) 1981; 293
Waldrop (10.1016/j.physd.2005.05.013_bib1) 1992
10.1016/j.physd.2005.05.013_bib14
Brolin (10.1016/j.physd.2005.05.013_bib13) 1965; 6
10.1016/j.physd.2005.05.013_bib7
10.1016/j.physd.2005.05.013_bib16
Tricot (10.1016/j.physd.2005.05.013_bib20) 1993
Gell-Mann (10.1016/j.physd.2005.05.013_bib2) 1994
Rosen (10.1016/j.physd.2005.05.013_bib3) 1985
Peitgen (10.1016/j.physd.2005.05.013_bib15) 1988
Baguelin (10.1016/j.physd.2005.05.013_bib8) 2003
Besicovitch (10.1016/j.physd.2005.05.013_bib17) 1937; 12
10.1016/j.physd.2005.05.013_bib9
References_xml – reference: J. Peyrière, Calculs de dimension de hausdorff, Analyse Harmonique d’Orsay, p. 188.
– volume: 293
  start-page: 549
  year: 1981
  end-page: 552
  ident: bib18
  article-title: Douze définitions de la densité logarithmique
  publication-title: C. R. Académie des Sciences, Paris, Série I Math
– year: 1982
  ident: bib5
  article-title: Des Monstres de Cantor et de Peano à la Géométrie Fractale de la Nature
– volume: 6
  start-page: 103
  year: 1965
  end-page: 144
  ident: bib13
  article-title: Invariant sets under iteration of rational functions
  publication-title: Arkiv for Matematik
– year: 2000
  ident: bib11
  article-title: Theory of Modelling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems
– year: 2003
  ident: bib8
  article-title: A formalism for models with a metadynamically varying structure
  publication-title: Proceedings of the IEEE European Control Conference
– start-page: 466
  year: 2002
  end-page: 471
  ident: bib22
  article-title: Preliminary approach to the simulation of coevolution in an ecosystem
  publication-title: Proceedings of the 16th European Simulation Multiconference
– volume: 8
  start-page: 12
  year: 2003
  end-page: 18
  ident: bib10
  article-title: Stable or robust? What’s the difference?
  publication-title: Complexity
– year: 1988
  ident: bib15
  article-title: The Science of Fractal Images
– year: 1941
  ident: bib19
  article-title: Dimension Theory
– reference: A. Douady, J.H. Hubbard, Etude dynamique des polynômes complexes, (première et deuxième partie), Publications Mathématiques d’Orsay 84–02, 85–04.
– year: 1992
  ident: bib4
  article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
– year: 1992
  ident: bib1
  article-title: Complexity: The Emerging Science at the Edge of Chaos
– reference: M. Baguelin, Modélisation de systèmes complexes par métadynamiques: Application à la modélisation de populations en coévolution, Ph.D. thesis, Université des sciences et technologie de Lille, 2003.
– year: 1993
  ident: bib20
  article-title: Courbes et Dimension Fractale
– reference: R.E. Kalman, P.L. Falb, M.A. Arbib, Topics in Mathematical System Theory, International Series in Pure and Applied Mathematics, McGraw-Hill, 1969.
– year: 1996
  ident: bib21
  article-title: Topics in Nonlinear Dynamics
– year: 1994
  ident: bib2
  article-title: The Quark and the Jaguar: Adventures in the Simple and the Complex
– year: 1985
  ident: bib3
  article-title: Theoretical Biology and Complexity: Three Essays on the Natural Philosophy of Complex Systems
– year: 1980
  ident: bib6
  article-title: Les Objets Fractals
– volume: 12
  start-page: 18
  year: 1937
  end-page: 25
  ident: bib17
  article-title: Sets of fractional dimensions (v): on dimensional numbers of some continuous curves
  publication-title: J. Lond. Math. Soc.
– year: 1994
  ident: bib12
  article-title: A History of Complex Dynamics: From Schrüder to Fatou and Julia
– ident: 10.1016/j.physd.2005.05.013_bib7
– year: 1996
  ident: 10.1016/j.physd.2005.05.013_bib21
– year: 1994
  ident: 10.1016/j.physd.2005.05.013_bib12
– volume: 6
  start-page: 103
  year: 1965
  ident: 10.1016/j.physd.2005.05.013_bib13
  article-title: Invariant sets under iteration of rational functions
  publication-title: Arkiv for Matematik
  doi: 10.1007/BF02591353
– year: 1992
  ident: 10.1016/j.physd.2005.05.013_bib4
– ident: 10.1016/j.physd.2005.05.013_bib9
– year: 1994
  ident: 10.1016/j.physd.2005.05.013_bib2
– year: 1982
  ident: 10.1016/j.physd.2005.05.013_bib5
– year: 1980
  ident: 10.1016/j.physd.2005.05.013_bib6
– start-page: 466
  year: 2002
  ident: 10.1016/j.physd.2005.05.013_bib22
  article-title: Preliminary approach to the simulation of coevolution in an ecosystem
– year: 1941
  ident: 10.1016/j.physd.2005.05.013_bib19
– year: 1992
  ident: 10.1016/j.physd.2005.05.013_bib1
– year: 1988
  ident: 10.1016/j.physd.2005.05.013_bib15
– year: 1993
  ident: 10.1016/j.physd.2005.05.013_bib20
– year: 1985
  ident: 10.1016/j.physd.2005.05.013_bib3
– ident: 10.1016/j.physd.2005.05.013_bib16
– ident: 10.1016/j.physd.2005.05.013_bib14
– volume: 293
  start-page: 549
  year: 1981
  ident: 10.1016/j.physd.2005.05.013_bib18
  article-title: Douze définitions de la densité logarithmique
  publication-title: C. R. Académie des Sciences, Paris, Série I Math
– volume: 12
  start-page: 18
  issue: 45
  year: 1937
  ident: 10.1016/j.physd.2005.05.013_bib17
  article-title: Sets of fractional dimensions (v): on dimensional numbers of some continuous curves
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s1-12.45.18
– volume: 8
  start-page: 12
  issue: 3
  year: 2003
  ident: 10.1016/j.physd.2005.05.013_bib10
  article-title: Stable or robust? What’s the difference?
  publication-title: Complexity
  doi: 10.1002/cplx.10077
– year: 2003
  ident: 10.1016/j.physd.2005.05.013_bib8
  article-title: A formalism for models with a metadynamically varying structure
– year: 2000
  ident: 10.1016/j.physd.2005.05.013_bib11
SSID ssj0001737
Score 1.7799164
Snippet In this article, one defines two models of adaptive systems: the meta- dynamical adaptive system using the notion of Kalman dynamical systems and the adaptive...
In this article, one defines two models of adaptive systems: the meta-dynamical adaptive system using the notion of Kalman dynamical systems and the adaptive...
SourceID hal
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 79
SubjectTerms Adaptation and Self-Organizing Systems
Adaptive systems
Biological systems
Chaotic Dynamics
Dynamical systems
Exact sciences and technology
Fractal algorithm
Nonlinear Sciences
Physics
Title Meta-dynamical adaptive systems and their applications to a fractal algorithm and a biological model
URI https://dx.doi.org/10.1016/j.physd.2005.05.013
https://hal.science/hal-00136495
Volume 207
WOSCitedRecordID wos000230553100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8022
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001737
  issn: 0167-2789
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3_a9NAFD_cpuAQ0alYv4xD_K1m5JJeLvdjlcqUdQyc0t_Cuy_ZOrq0NOnYn7_7kqQpxaGCUEI5klyazyfvXl7f-zyEPirCwkhDYh-kMBhwQgMhQxbksdAKNKe5ky_-dcJOT9PJhJ_VoezStRNgRZHe3vLFf4XajBmwbensX8DdntQMmO8GdLM1sJvtHwE_1hUEyjeat0IAChYuPchrNpdNyuR02e_-eW19UOjntmbKHjS7mC-n1aXvnwF9L9Xkzuda53Rd2jOP9NE6d3g8X83AgTe6voZipdssjs9wsdJ1i_ixue8bMQdqg5m-6tIHwraKYXxs0thcW1jrlxZvT1NmDG4YbRjcyPe53WCWN5-MdxZi30Z0y8T7aMPVkY38qDooZqVX4_WK1uYZ_rDX5Gp9qROH4ztoL2KUG_O3N_w2mnxvF23CvLxq8xsagSqXCrg11e-cmJ1Lm037ZAGlAST3nVE67sr5M_S0fs_AQ8-P5-iBLg7Qfkd98gA98siVL5Da5AxuOINrzmDDAuw4g7ucwdUcA645g1vOuL0BrzmDHWdeop9fR-dfjoO6_UYg44RVARBIlHE4IyZBJoxIqRnXFIjgUZ7IGMzbqNYDCkLnShi3koQwgCQVMg2FiCB-hXaLeaFfIxzLWFsIiBJ0oAwOeRIJQVMVEh2livdQ1NzPTNba9LZFyixrkhCvMgeC7ZpKM_shcQ99ag9aeGmW-3dPGqCy2rv0XmNmmHX_gR8MrO0UVo_9eHiS2TGneDjg9Ib00OEG6usrskrgjJM3_zr9W_R4_Qi-Q7vVcqXfo4fyppqWy8Oax3eSTrgu
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-dynamical+adaptive+systems+and+their+applications+to+a+fractal+algorithm+and+a+biological+model&rft.jtitle=Physica.+D&rft.au=Moulay%2C+Emmanuel&rft.au=Baguelin%2C+Marc&rft.date=2005-07-15&rft.pub=Elsevier+B.V&rft.issn=0167-2789&rft.eissn=1872-8022&rft.volume=207&rft.issue=1&rft.spage=79&rft.epage=90&rft_id=info:doi/10.1016%2Fj.physd.2005.05.013&rft.externalDocID=S0167278905002149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon