Self-Adaptive Constrained Multi-Objective Differential Evolution Algorithm Based on the State–Action–Reward–State–Action Method
The performance of constrained multi-objective differential evolution algorithms (CMOEAs) is mainly determined by constraint handling techniques (CHTs) and their generation strategies. To realize the adaptive adjustment of CHTs and generation strategies, an adaptive constrained multi-objective diffe...
Gespeichert in:
| Veröffentlicht in: | Mathematics (Basel) Jg. 10; H. 5; S. 813 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.03.2022
|
| Schlagworte: | |
| ISSN: | 2227-7390, 2227-7390 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The performance of constrained multi-objective differential evolution algorithms (CMOEAs) is mainly determined by constraint handling techniques (CHTs) and their generation strategies. To realize the adaptive adjustment of CHTs and generation strategies, an adaptive constrained multi-objective differential evolution algorithm based on the state–action–reward–state–action (SARSA) approach (ACMODE) is introduced in the current study. In the proposed algorithm, the suitable CHT and the appropriate generation strategy can be automatically selected via a SARSA method. The performance of the proposed algorithm is compared with four other famous CMOEAs on five test suites. Experimental results show that the overall performance of the ACMODE is the best among all competitors, and the proposed algorithm is capable of selecting an appropriate CHT and a suitable generation strategy to solve a particular type of constrained multi-objective optimization problems. |
|---|---|
| AbstractList | The performance of constrained multi-objective differential evolution algorithms (CMOEAs) is mainly determined by constraint handling techniques (CHTs) and their generation strategies. To realize the adaptive adjustment of CHTs and generation strategies, an adaptive constrained multi-objective differential evolution algorithm based on the state–action–reward–state–action (SARSA) approach (ACMODE) is introduced in the current study. In the proposed algorithm, the suitable CHT and the appropriate generation strategy can be automatically selected via a SARSA method. The performance of the proposed algorithm is compared with four other famous CMOEAs on five test suites. Experimental results show that the overall performance of the ACMODE is the best among all competitors, and the proposed algorithm is capable of selecting an appropriate CHT and a suitable generation strategy to solve a particular type of constrained multi-objective optimization problems. |
| Author | Fan, Qinqin Cui, Caixia Liu, Qingqing |
| Author_xml | – sequence: 1 givenname: Qingqing surname: Liu fullname: Liu, Qingqing – sequence: 2 givenname: Caixia surname: Cui fullname: Cui, Caixia – sequence: 3 givenname: Qinqin orcidid: 0000-0002-8603-5161 surname: Fan fullname: Fan, Qinqin |
| BookMark | eNptUU1PGzEQtSqQCjS3_oCVuLLFX7vePYZAAQkUCeh5NbHHxNFmnXq9oN564wfwD_kldZKqChX2wU8z772x5h2Svc53SMhXRr8JUdPTJcQ5o7SgFROfyAHnXOUqNfZ28Gcy6vsFTadmopL1AXm5x9bmYwOr6J4wm_iujwFchya7Hdro8ulsgXrTO3fWYsAuOmiziyffDtH5Lhu3jz64OF9mZ9AnWSrFOWb3ESK-_X4d6zUrgTt8hmASeN_JbjHOvflC9i20PY7-vkfkx_eLh8lVfjO9vJ6Mb3ItShVzoHTGbVGiLQqJDC1XQJkuS2RWo9KiShcNIAPLK1kZVpm61sJwVQOvqTgi11tf42HRrIJbQvjVeHDNpuDDYwMhOt1iw0tTl1pQMwOQ1hTVTBZCc1loqySgSF7HW69V8D8H7GOz8EPo0veTViglS6lUYp1sWTr4vg9o_01ltFkn1-wml-j8P7p2aWFpU-tc2o9FfwBtQaRU |
| CitedBy_id | crossref_primary_10_1016_j_cie_2024_110080 crossref_primary_10_1016_j_epsr_2024_111119 crossref_primary_10_3390_math10142523 crossref_primary_10_1016_j_fuel_2023_128548 crossref_primary_10_3390_math12142285 crossref_primary_10_3390_polym17121667 crossref_primary_10_1007_s10586_025_05203_5 crossref_primary_10_1016_j_ins_2023_119572 crossref_primary_10_3390_sym15030699 crossref_primary_10_3390_math11030493 crossref_primary_10_3390_math11010010 |
| Cites_doi | 10.1109/TCYB.2019.2914060 10.1109/4235.797969 10.1016/j.knosys.2021.107222 10.1016/j.asoc.2018.10.027 10.1016/j.asoc.2019.02.041 10.1016/j.asoc.2020.106143 10.1016/j.cie.2017.05.026 10.1109/CEC.2017.7969329 10.2307/3001968 10.1016/j.asoc.2017.05.044 10.1016/j.swevo.2021.100940 10.1109/TEVC.2013.2281534 10.1109/TEVC.2019.2896967 10.1016/j.swevo.2018.08.017 10.1016/j.asoc.2012.07.027 10.1162/evco_a_00259 10.1023/A:1008202821328 10.1109/4235.996017 10.1016/j.swevo.2021.101020 10.1109/TEVC.2020.3004012 10.1007/s40747-020-00138-3 10.1080/01621459.1937.10503522 10.1109/TEVC.2008.2009032 10.1016/j.swevo.2021.100938 10.1016/j.asoc.2018.03.028 10.1109/TSMC.2019.2954491 10.1007/s00500-018-3087-z 10.1016/j.asoc.2017.04.005 10.1109/TEVC.2003.810761 10.1109/TEVC.2007.902851 10.1109/CACRE50138.2020.9230079 10.1142/S0218001421590321 10.1109/TEVC.2019.2894743 10.1109/CEC.2016.7744320 10.1007/s10489-017-1126-6 10.1109/EIConRus49466.2020.9039074 10.1109/ACCESS.2021.3053041 10.1007/s10489-020-01733-0 10.1109/TCYB.2018.2819208 10.23919/ChiCC.2019.8865589 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/math10050813 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_26d96c30dbaa4fd58b453c245cf74ae3 10_3390_math10050813 |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c367t-a00b2f56ef554e1ef27a01c66e1fce7c38383edae1af2848d18d99c3d279a2903 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771523100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Fri Oct 03 12:44:52 EDT 2025 Fri Jul 25 12:01:43 EDT 2025 Tue Nov 18 22:34:12 EST 2025 Sat Nov 29 07:12:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-a00b2f56ef554e1ef27a01c66e1fce7c38383edae1af2848d18d99c3d279a2903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8603-5161 |
| OpenAccessLink | https://www.proquest.com/docview/2637746477?pq-origsite=%requestingapplication% |
| PQID | 2637746477 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_26d96c30dbaa4fd58b453c245cf74ae3 proquest_journals_2637746477 crossref_primary_10_3390_math10050813 crossref_citationtrail_10_3390_math10050813 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Tian (ref_14) 2021; 25 Wang (ref_34) 2008; 12 Bosman (ref_35) 2003; 7 ref_10 Liu (ref_15) 2019; 23 Friedman (ref_44) 1937; 32 ref_19 Yang (ref_20) 2021; 66 Liu (ref_27) 2021; 9 ref_16 Liu (ref_13) 2021; 51 Zhang (ref_29) 2019; 13 Yuan (ref_36) 2022; 68 Jan (ref_41) 2013; 13 Zhang (ref_45) 2008; 264 Lin (ref_21) 2019; 23 Fan (ref_11) 2019; 44 Fan (ref_49) 2020; 28 Wang (ref_23) 2019; 49 Samanipour (ref_30) 2020; 90 Uribe (ref_12) 2021; 67 ref_31 Moniz (ref_24) 2021; 227 Yang (ref_26) 2021; 35 Shahrabi (ref_40) 2017; 110 Deb (ref_33) 2002; 6 Cui (ref_7) 2021; 7 Jain (ref_42) 2014; 18 Ma (ref_48) 2019; 23 Fan (ref_39) 2017; 59 Yang (ref_25) 2019; 80 Mashwani (ref_28) 2017; 57 Wilcoxon (ref_43) 1945; 1 Fan (ref_38) 2021; 51 ref_47 Zitzler (ref_37) 1999; 3 Storn (ref_17) 1997; 11 ref_1 Xu (ref_18) 2020; 50 ref_3 ref_2 Yu (ref_9) 2018; 48 ref_8 Fan (ref_46) 2018; 74 ref_5 Yu (ref_22) 2018; 67 ref_4 Woldesenbet (ref_32) 2009; 13 ref_6 Liu (ref_50) 2021; 7 |
| References_xml | – volume: 51 start-page: 2712 year: 2021 ident: ref_38 article-title: A Variable Search Space Strategy Based on Sequential Trust Region Determination Technique publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2914060 – volume: 3 start-page: 257 year: 1999 ident: ref_37 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.797969 – volume: 227 start-page: 107222 year: 2021 ident: ref_24 article-title: No Free Lunch in imbalanced learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107222 – volume: 74 start-page: 621 year: 2018 ident: ref_46 article-title: MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2018.10.027 – volume: 80 start-page: 42 year: 2019 ident: ref_25 article-title: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.02.041 – ident: ref_16 – volume: 90 start-page: 106143 year: 2020 ident: ref_30 article-title: Adaptive repair method for constraint handling in multi-objective genetic algorithm based on relationship between constraints and variables publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106143 – volume: 110 start-page: 75 year: 2017 ident: ref_40 article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.05.026 – ident: ref_5 doi: 10.1109/CEC.2017.7969329 – volume: 1 start-page: 80 year: 1945 ident: ref_43 article-title: Individual Comparisons by Ranking Methods publication-title: Biom. Bull. doi: 10.2307/3001968 – volume: 59 start-page: 33 year: 2017 ident: ref_39 article-title: Multi-objective differential evolution with performance-metric-based self-adaptive mutation operator for chemical and qbiochemical dynamic optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.044 – volume: 66 start-page: 100940 year: 2021 ident: ref_20 article-title: A partition-based constrained multi-objective evolutionary algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100940 – volume: 13 start-page: 5489 year: 2019 ident: ref_29 article-title: Adaptive Truncation technique for Constrained Multi-Objective Optimization publication-title: Ksii Trans. Internet Inf. Syst. – volume: 18 start-page: 602 year: 2014 ident: ref_42 article-title: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281534 – volume: 23 start-page: 972 year: 2019 ident: ref_48 article-title: Evolutionary Constrained Multiobjective Optimization: Test Suite Construction and Performance Comparisons publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2896967 – volume: 44 start-page: 665 year: 2019 ident: ref_11 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.08.017 – ident: ref_8 – ident: ref_4 – ident: ref_31 – volume: 13 start-page: 128 year: 2013 ident: ref_41 article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.07.027 – volume: 28 start-page: 339 year: 2020 ident: ref_49 article-title: Difficulty Adjustable and Scalable Constrained Multiobjective Test Problem Toolkit publication-title: Evol. Comput. doi: 10.1162/evco_a_00259 – ident: ref_10 – volume: 11 start-page: 341 year: 1997 ident: ref_17 article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 6 start-page: 182 year: 2002 ident: ref_33 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 68 start-page: 101020 year: 2022 ident: ref_36 article-title: A constrained multi-objective evolutionary algorithm using valuable infeasible solutions publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.101020 – volume: 25 start-page: 102 year: 2021 ident: ref_14 article-title: A Coevolutionary Framework for Constrained Multiobjective Optimization Problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.3004012 – volume: 7 start-page: 1711 year: 2021 ident: ref_50 article-title: Improving ant colony optimization algorithm with epsilon greedy and Levy flight publication-title: Complex Intell. Syst. doi: 10.1007/s40747-020-00138-3 – volume: 32 start-page: 675 year: 1937 ident: ref_44 article-title: The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1937.10503522 – volume: 13 start-page: 514 year: 2009 ident: ref_32 article-title: Constraint Handling in Multiobjective Evolutionary Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.2009032 – volume: 67 start-page: 100938 year: 2021 ident: ref_12 article-title: A new gradient free local search mechanism for constrained multi-objective optimization problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100938 – volume: 7 start-page: 322 year: 2021 ident: ref_7 article-title: Constrained Multi-objective Differential Evolutionary Algorithm with Adaptive Constraint Handling Technique publication-title: World Sci. Res. J. – volume: 67 start-page: 452 year: 2018 ident: ref_22 article-title: Differential evolution mutation operators for constrained multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.03.028 – volume: 51 start-page: 5414 year: 2021 ident: ref_13 article-title: Indicator-Based Constrained Multiobjective Evolutionary Algorithms publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2019.2954491 – volume: 23 start-page: 4341 year: 2019 ident: ref_21 article-title: Multi-objective differential evolution with dynamic hybrid constraint handling mechanism publication-title: Soft Comput. doi: 10.1007/s00500-018-3087-z – volume: 57 start-page: 363 year: 2017 ident: ref_28 article-title: Hybrid adaptive evolutionary algorithm based on decomposition publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.04.005 – volume: 7 start-page: 174 year: 2003 ident: ref_35 article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.810761 – volume: 12 start-page: 80 year: 2008 ident: ref_34 article-title: An Adaptive Tradeoff Model for Constrained Evolutionary Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.902851 – ident: ref_3 doi: 10.1109/CACRE50138.2020.9230079 – volume: 35 start-page: 2159032 year: 2021 ident: ref_26 article-title: Adaptively Allocating Constraint-Handling Techniques for Constrained Multi-objective Optimization Problems publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001421590321 – ident: ref_6 – volume: 23 start-page: 870 year: 2019 ident: ref_15 article-title: Handling Constrained Multiobjective Optimization Problems With Constraints in Both the Decision and Objective Spaces publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2894743 – volume: 264 start-page: 1 year: 2008 ident: ref_45 article-title: Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition publication-title: Mech. Eng. – ident: ref_47 doi: 10.1109/CEC.2016.7744320 – volume: 48 start-page: 3019 year: 2018 ident: ref_9 article-title: A corner point-based algorithm to solve constrained multi-objective optimization problems publication-title: Appl. Intell. doi: 10.1007/s10489-017-1126-6 – ident: ref_1 doi: 10.1109/EIConRus49466.2020.9039074 – volume: 9 start-page: 17596 year: 2021 ident: ref_27 article-title: Adaptive ε-Constraint Multi-Objective Evolutionary Algorithm Based on Decomposition and Differential Evolution publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3053041 – ident: ref_19 – volume: 50 start-page: 4459 year: 2020 ident: ref_18 article-title: Differential evolution with infeasible-guiding mutation operators for constrained multi-objective optimization publication-title: Appl. Intell. doi: 10.1007/s10489-020-01733-0 – volume: 49 start-page: 2060 year: 2019 ident: ref_23 article-title: Cooperative Differential Evolution Framework for Constrained Multiobjective Optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2819208 – ident: ref_2 doi: 10.23919/ChiCC.2019.8865589 |
| SSID | ssj0000913849 |
| Score | 2.2592802 |
| Snippet | The performance of constrained multi-objective differential evolution algorithms (CMOEAs) is mainly determined by constraint handling techniques (CHTs) and... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 813 |
| SubjectTerms | constrained multi-objective optimization Constraints Decomposition Design optimization Evolutionary algorithms Evolutionary computation Food science Genetic algorithms Multiple objective analysis Optimization Optimization algorithms reinforcement learning SARSA method Search strategies |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELaqFYdyQKVQsfzJh3JCFnHsOPZxKSAu0KoFiVvk2GMWtOyudrd75sYD8IY8ScdOWC2qKi69RY6dRJ7x_Cgz30fIVy9c_LsmWOBBMxkEMA2FYtJok6MS8FqFRDZRXl7qmxvzY4nqK9aENfDAzcYd5cob5UTma2tl8IWuZSFcLgsXSmkh4Xxi1LOUTCUbbLjQ0jSV7gLz-iOM__o8op1oLt74oATV_5clTu7l7BNZa-NC2mu-Z518gOFnsnqxAFWdbpCnXzAIrOftOJooGqk2E8EDeJraaNn3-r4xX_SkpT3B4zugp_NWvWhvcDua3M36D_QYnZenOITPpyngfHl87qUeB7z4CbGWFi_e3qEXiW56k1yfnV59O2ctjwJzQpUzZrOszkOhIGDsABxCXtqMO6WABwelwyRVC_AWuA3orbTn2hvjhM9LY3OTiS-kMxwNYYtQJZWEYEQdkc-kBo0LndShtEYAuNAlh687W7kWZDxuxaDCZCPKoVqWQ5ccLGaPG3CNf8w7jkJazImQ2GkAFaVqFaV6T1G6ZPdVxFV7Tqe4SGD8G5txt__HO3bIxzy2R6QatV3SmU1-wx5ZcfPZ3XSyn1T0D-2t8qg priority: 102 providerName: Directory of Open Access Journals |
| Title | Self-Adaptive Constrained Multi-Objective Differential Evolution Algorithm Based on the State–Action–Reward–State–Action Method |
| URI | https://www.proquest.com/docview/2637746477 https://doaj.org/article/26d96c30dbaa4fd58b453c245cf74ae3 |
| Volume | 10 |
| WOSCitedRecordID | wos000771523100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELag5QAH_isKJfIBTsjq2t712ieUQCoQSohakMpp5bXHLSgkIQk9Im48QN-wT4LHcQIVgguXlWV7vSvPeDwez3xDyBMvHd6uSRZ40KwMEpiGSrHSaCMiE_BWhZRsoh4O9fGxGWWD2yK7Va5lYhLUfurQRr4vlIyaCoZNPp99YZg1Cm9XcwqNq2SbC8GRz9_UbGNjQcxLXZqVv7uMp_v9qAWecsQ80Vxe2okSYP8f8jhtMge3_vf3bpObWb2k3RU_3CFXYHKX3BhssFkX98iPIxgH1vV2hpKOYsbOlCcCPE3RuOxt-2klBenLnD0lSoEx7Z9lLqXd8Un89PL0M-3FPdDTWBXHp0lvvfh-3k2hErFwCOiSGwuXW-ggZa2-T94f9N-9eMVyOgbmpKqXzBZFK0KlIEQVBDgEUduCO6WABwe1i2ddLcFb4DbETU97rr0xTnpRGytMIXfI1mQ6gQeEqjhTEIxsEUCt1KDji67UobZGAriwS56tSdO4jFWOUzFu4pkFCdn8Tshd8nTTe7bC6PhLvx5SedMHkbVTxXR-0uSF2gjljXKy8K21ZfCVbstKOlFWLtSlhTjI3poBmrzcF80v6j_8d_Mjcl1g_ERyYtsjW8v5V3hMrrmz5cfFvEO2e_3h6LCTDAOdxMsddEY9wue3fmwfvR6MPvwEUoIGQA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLVKQQIWvBGFAl7QFbI6Y3s89gKhlLZqlSYgKFJ3g8e-7kMhCUkoYseOD-A_-Ci-hGvPJFAh2HXBzrI9lsY-Pn7dew8hT7xw8XVNsJAHzWQQwDQUikmjDUcQ5LUKSWyi7Pf1wYF5tUS-z31holnlnBMTUfuRi3fk61wJ3KlEt8nn4w8sqkbF19W5hEYDiy58_oRHtumz3U0c3zXOt7f2X-ywVlWAOaHKGbNZVvNQKAi4kkIOgZc2y51SkAcHpcMjmxbgLeQ2IHdrn2tvjBOel8Zykwls9wK5KIUuY6z-bskWdzoxxqaWprGvF8Jk67jrPMpjjBWdizMrXxII-IP_06K2ff1_644b5Fq7faadBu83yRIMb5GrvUXs2elt8vUNDALreDuOTE6jImnSwQBPk7cxe1mfNCxPN1t1GGS5Ad06bWch7QwO8VdnR-_pBq7xnmIWtk_TvvzHl2-d5AqCidcQTY4xcbaE9pIq9x3y9lx64i5ZHo6GcI9QhSMDwYg6BoiTGjR-6KQOpTUCwIUV8nQOhcq1sdhjVwwqPJNF4FS_A2eFrC1qj5sYJH-ptxFRtagTI4enjNHksGqJqOLKG-VE5mtrZfCFrmUhHJeFC6W0gI2szgFXtXQ2rX6h7f6_ix-Tyzv7vb1qb7fffUCu8Ogrkgz2VsnybPIRHpJL7nR2PJ08SjOHknfnjc2fiMNduA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxELZKQYge-Ee0FPCBnpCVXXvXax8QSkkjqtBQ8SP1tnjtcQsKSZqkRdy48QC8DY_DkzD27gYqBLceuFm219La38z4Z2Y-Qh45YcPrmmA-9YplXgBTkEuWaaU5giCtpI9kE8VwqA4O9P4K-d7GwgS3ylYnRkXtJjbckXe4FLhTCWGTHd-4Rez3-k-nxywwSIWX1pZOo4bIAD5_wuPb_MluD9d6i_P-zptnz1nDMMCskMWCmSSpuM8leLSqkILnhUlSKyWk3kJh8fimBDgDqfGox5VLldPaCscLbbhOBI57gVxEK5wHGRsUbHm_E_JtqkzXvvZC6KSDO9CjNORbUak4YwUjWcAftiAauP61_3lqrpOrzbaadms5uEFWYHyTrO0tc9LOb5Gvr2HkWdeZadDwNDCVRn4McDRGIbOX1Yda-9NewxqD2m9Ed04b6aTd0SH-6uLoI91G2-8oVuH4NO7Xf3z51o0hIlh4BcEVGQtnW-heZOu-Td6ey0zcIavjyRjuEipxlcBrUYXEcZkChR_aTPnCaAFg_Tp53MKitE2O9jAVoxLPagFE5e8gWidby97TOjfJX_ptB4Qt-4SM4rFiMjssGwVVcum0tCJxlTGZd7mqslxYnuXWF5kBHGSzBV_ZqLl5-Qt5G_9ufkguIyTLF7vDwT1yhYcQkujHt0lWF7MTuE8u2dPF-_nsQRQiSt6dNzR_AsjyZnI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Adaptive+Constrained+Multi-Objective+Differential+Evolution+Algorithm+Based+on+the+State%E2%80%93Action%E2%80%93Reward%E2%80%93State%E2%80%93Action+Method&rft.jtitle=Mathematics+%28Basel%29&rft.au=Liu%2C+Qingqing&rft.au=Cui%2C+Caixia&rft.au=Fan%2C+Qinqin&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=5&rft.spage=813&rft_id=info:doi/10.3390%2Fmath10050813&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |