Self-Adaptive Constrained Multi-Objective Differential Evolution Algorithm Based on the State–Action–Reward–State–Action Method

The performance of constrained multi-objective differential evolution algorithms (CMOEAs) is mainly determined by constraint handling techniques (CHTs) and their generation strategies. To realize the adaptive adjustment of CHTs and generation strategies, an adaptive constrained multi-objective diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) Jg. 10; H. 5; S. 813
Hauptverfasser: Liu, Qingqing, Cui, Caixia, Fan, Qinqin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.03.2022
Schlagworte:
ISSN:2227-7390, 2227-7390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The performance of constrained multi-objective differential evolution algorithms (CMOEAs) is mainly determined by constraint handling techniques (CHTs) and their generation strategies. To realize the adaptive adjustment of CHTs and generation strategies, an adaptive constrained multi-objective differential evolution algorithm based on the state–action–reward–state–action (SARSA) approach (ACMODE) is introduced in the current study. In the proposed algorithm, the suitable CHT and the appropriate generation strategy can be automatically selected via a SARSA method. The performance of the proposed algorithm is compared with four other famous CMOEAs on five test suites. Experimental results show that the overall performance of the ACMODE is the best among all competitors, and the proposed algorithm is capable of selecting an appropriate CHT and a suitable generation strategy to solve a particular type of constrained multi-objective optimization problems.
AbstractList The performance of constrained multi-objective differential evolution algorithms (CMOEAs) is mainly determined by constraint handling techniques (CHTs) and their generation strategies. To realize the adaptive adjustment of CHTs and generation strategies, an adaptive constrained multi-objective differential evolution algorithm based on the state–action–reward–state–action (SARSA) approach (ACMODE) is introduced in the current study. In the proposed algorithm, the suitable CHT and the appropriate generation strategy can be automatically selected via a SARSA method. The performance of the proposed algorithm is compared with four other famous CMOEAs on five test suites. Experimental results show that the overall performance of the ACMODE is the best among all competitors, and the proposed algorithm is capable of selecting an appropriate CHT and a suitable generation strategy to solve a particular type of constrained multi-objective optimization problems.
Author Fan, Qinqin
Cui, Caixia
Liu, Qingqing
Author_xml – sequence: 1
  givenname: Qingqing
  surname: Liu
  fullname: Liu, Qingqing
– sequence: 2
  givenname: Caixia
  surname: Cui
  fullname: Cui, Caixia
– sequence: 3
  givenname: Qinqin
  orcidid: 0000-0002-8603-5161
  surname: Fan
  fullname: Fan, Qinqin
BookMark eNptUU1PGzEQtSqQCjS3_oCVuLLFX7vePYZAAQkUCeh5NbHHxNFmnXq9oN564wfwD_kldZKqChX2wU8z772x5h2Svc53SMhXRr8JUdPTJcQ5o7SgFROfyAHnXOUqNfZ28Gcy6vsFTadmopL1AXm5x9bmYwOr6J4wm_iujwFchya7Hdro8ulsgXrTO3fWYsAuOmiziyffDtH5Lhu3jz64OF9mZ9AnWSrFOWb3ESK-_X4d6zUrgTt8hmASeN_JbjHOvflC9i20PY7-vkfkx_eLh8lVfjO9vJ6Mb3ItShVzoHTGbVGiLQqJDC1XQJkuS2RWo9KiShcNIAPLK1kZVpm61sJwVQOvqTgi11tf42HRrIJbQvjVeHDNpuDDYwMhOt1iw0tTl1pQMwOQ1hTVTBZCc1loqySgSF7HW69V8D8H7GOz8EPo0veTViglS6lUYp1sWTr4vg9o_01ltFkn1-wml-j8P7p2aWFpU-tc2o9FfwBtQaRU
CitedBy_id crossref_primary_10_1016_j_cie_2024_110080
crossref_primary_10_1016_j_epsr_2024_111119
crossref_primary_10_3390_math10142523
crossref_primary_10_1016_j_fuel_2023_128548
crossref_primary_10_3390_math12142285
crossref_primary_10_3390_polym17121667
crossref_primary_10_1007_s10586_025_05203_5
crossref_primary_10_1016_j_ins_2023_119572
crossref_primary_10_3390_sym15030699
crossref_primary_10_3390_math11030493
crossref_primary_10_3390_math11010010
Cites_doi 10.1109/TCYB.2019.2914060
10.1109/4235.797969
10.1016/j.knosys.2021.107222
10.1016/j.asoc.2018.10.027
10.1016/j.asoc.2019.02.041
10.1016/j.asoc.2020.106143
10.1016/j.cie.2017.05.026
10.1109/CEC.2017.7969329
10.2307/3001968
10.1016/j.asoc.2017.05.044
10.1016/j.swevo.2021.100940
10.1109/TEVC.2013.2281534
10.1109/TEVC.2019.2896967
10.1016/j.swevo.2018.08.017
10.1016/j.asoc.2012.07.027
10.1162/evco_a_00259
10.1023/A:1008202821328
10.1109/4235.996017
10.1016/j.swevo.2021.101020
10.1109/TEVC.2020.3004012
10.1007/s40747-020-00138-3
10.1080/01621459.1937.10503522
10.1109/TEVC.2008.2009032
10.1016/j.swevo.2021.100938
10.1016/j.asoc.2018.03.028
10.1109/TSMC.2019.2954491
10.1007/s00500-018-3087-z
10.1016/j.asoc.2017.04.005
10.1109/TEVC.2003.810761
10.1109/TEVC.2007.902851
10.1109/CACRE50138.2020.9230079
10.1142/S0218001421590321
10.1109/TEVC.2019.2894743
10.1109/CEC.2016.7744320
10.1007/s10489-017-1126-6
10.1109/EIConRus49466.2020.9039074
10.1109/ACCESS.2021.3053041
10.1007/s10489-020-01733-0
10.1109/TCYB.2018.2819208
10.23919/ChiCC.2019.8865589
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math10050813
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_26d96c30dbaa4fd58b453c245cf74ae3
10_3390_math10050813
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c367t-a00b2f56ef554e1ef27a01c66e1fce7c38383edae1af2848d18d99c3d279a2903
IEDL.DBID K7-
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771523100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Fri Oct 03 12:44:52 EDT 2025
Fri Jul 25 12:01:43 EDT 2025
Tue Nov 18 22:34:12 EST 2025
Sat Nov 29 07:12:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-a00b2f56ef554e1ef27a01c66e1fce7c38383edae1af2848d18d99c3d279a2903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8603-5161
OpenAccessLink https://www.proquest.com/docview/2637746477?pq-origsite=%requestingapplication%
PQID 2637746477
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_26d96c30dbaa4fd58b453c245cf74ae3
proquest_journals_2637746477
crossref_primary_10_3390_math10050813
crossref_citationtrail_10_3390_math10050813
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Tian (ref_14) 2021; 25
Wang (ref_34) 2008; 12
Bosman (ref_35) 2003; 7
ref_10
Liu (ref_15) 2019; 23
Friedman (ref_44) 1937; 32
ref_19
Yang (ref_20) 2021; 66
Liu (ref_27) 2021; 9
ref_16
Liu (ref_13) 2021; 51
Zhang (ref_29) 2019; 13
Yuan (ref_36) 2022; 68
Jan (ref_41) 2013; 13
Zhang (ref_45) 2008; 264
Lin (ref_21) 2019; 23
Fan (ref_11) 2019; 44
Fan (ref_49) 2020; 28
Wang (ref_23) 2019; 49
Samanipour (ref_30) 2020; 90
Uribe (ref_12) 2021; 67
ref_31
Moniz (ref_24) 2021; 227
Yang (ref_26) 2021; 35
Shahrabi (ref_40) 2017; 110
Deb (ref_33) 2002; 6
Cui (ref_7) 2021; 7
Jain (ref_42) 2014; 18
Ma (ref_48) 2019; 23
Fan (ref_39) 2017; 59
Yang (ref_25) 2019; 80
Mashwani (ref_28) 2017; 57
Wilcoxon (ref_43) 1945; 1
Fan (ref_38) 2021; 51
ref_47
Zitzler (ref_37) 1999; 3
Storn (ref_17) 1997; 11
ref_1
Xu (ref_18) 2020; 50
ref_3
ref_2
Yu (ref_9) 2018; 48
ref_8
Fan (ref_46) 2018; 74
ref_5
Yu (ref_22) 2018; 67
ref_4
Woldesenbet (ref_32) 2009; 13
ref_6
Liu (ref_50) 2021; 7
References_xml – volume: 51
  start-page: 2712
  year: 2021
  ident: ref_38
  article-title: A Variable Search Space Strategy Based on Sequential Trust Region Determination Technique
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2914060
– volume: 3
  start-page: 257
  year: 1999
  ident: ref_37
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– volume: 227
  start-page: 107222
  year: 2021
  ident: ref_24
  article-title: No Free Lunch in imbalanced learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107222
– volume: 74
  start-page: 621
  year: 2018
  ident: ref_46
  article-title: MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2018.10.027
– volume: 80
  start-page: 42
  year: 2019
  ident: ref_25
  article-title: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.02.041
– ident: ref_16
– volume: 90
  start-page: 106143
  year: 2020
  ident: ref_30
  article-title: Adaptive repair method for constraint handling in multi-objective genetic algorithm based on relationship between constraints and variables
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106143
– volume: 110
  start-page: 75
  year: 2017
  ident: ref_40
  article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.05.026
– ident: ref_5
  doi: 10.1109/CEC.2017.7969329
– volume: 1
  start-page: 80
  year: 1945
  ident: ref_43
  article-title: Individual Comparisons by Ranking Methods
  publication-title: Biom. Bull.
  doi: 10.2307/3001968
– volume: 59
  start-page: 33
  year: 2017
  ident: ref_39
  article-title: Multi-objective differential evolution with performance-metric-based self-adaptive mutation operator for chemical and qbiochemical dynamic optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.044
– volume: 66
  start-page: 100940
  year: 2021
  ident: ref_20
  article-title: A partition-based constrained multi-objective evolutionary algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100940
– volume: 13
  start-page: 5489
  year: 2019
  ident: ref_29
  article-title: Adaptive Truncation technique for Constrained Multi-Objective Optimization
  publication-title: Ksii Trans. Internet Inf. Syst.
– volume: 18
  start-page: 602
  year: 2014
  ident: ref_42
  article-title: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281534
– volume: 23
  start-page: 972
  year: 2019
  ident: ref_48
  article-title: Evolutionary Constrained Multiobjective Optimization: Test Suite Construction and Performance Comparisons
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2896967
– volume: 44
  start-page: 665
  year: 2019
  ident: ref_11
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.08.017
– ident: ref_8
– ident: ref_4
– ident: ref_31
– volume: 13
  start-page: 128
  year: 2013
  ident: ref_41
  article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.07.027
– volume: 28
  start-page: 339
  year: 2020
  ident: ref_49
  article-title: Difficulty Adjustable and Scalable Constrained Multiobjective Test Problem Toolkit
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00259
– ident: ref_10
– volume: 11
  start-page: 341
  year: 1997
  ident: ref_17
  article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 6
  start-page: 182
  year: 2002
  ident: ref_33
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 68
  start-page: 101020
  year: 2022
  ident: ref_36
  article-title: A constrained multi-objective evolutionary algorithm using valuable infeasible solutions
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.101020
– volume: 25
  start-page: 102
  year: 2021
  ident: ref_14
  article-title: A Coevolutionary Framework for Constrained Multiobjective Optimization Problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.3004012
– volume: 7
  start-page: 1711
  year: 2021
  ident: ref_50
  article-title: Improving ant colony optimization algorithm with epsilon greedy and Levy flight
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-020-00138-3
– volume: 32
  start-page: 675
  year: 1937
  ident: ref_44
  article-title: The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1937.10503522
– volume: 13
  start-page: 514
  year: 2009
  ident: ref_32
  article-title: Constraint Handling in Multiobjective Evolutionary Optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.2009032
– volume: 67
  start-page: 100938
  year: 2021
  ident: ref_12
  article-title: A new gradient free local search mechanism for constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100938
– volume: 7
  start-page: 322
  year: 2021
  ident: ref_7
  article-title: Constrained Multi-objective Differential Evolutionary Algorithm with Adaptive Constraint Handling Technique
  publication-title: World Sci. Res. J.
– volume: 67
  start-page: 452
  year: 2018
  ident: ref_22
  article-title: Differential evolution mutation operators for constrained multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.03.028
– volume: 51
  start-page: 5414
  year: 2021
  ident: ref_13
  article-title: Indicator-Based Constrained Multiobjective Evolutionary Algorithms
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2019.2954491
– volume: 23
  start-page: 4341
  year: 2019
  ident: ref_21
  article-title: Multi-objective differential evolution with dynamic hybrid constraint handling mechanism
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3087-z
– volume: 57
  start-page: 363
  year: 2017
  ident: ref_28
  article-title: Hybrid adaptive evolutionary algorithm based on decomposition
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.04.005
– volume: 7
  start-page: 174
  year: 2003
  ident: ref_35
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810761
– volume: 12
  start-page: 80
  year: 2008
  ident: ref_34
  article-title: An Adaptive Tradeoff Model for Constrained Evolutionary Optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.902851
– ident: ref_3
  doi: 10.1109/CACRE50138.2020.9230079
– volume: 35
  start-page: 2159032
  year: 2021
  ident: ref_26
  article-title: Adaptively Allocating Constraint-Handling Techniques for Constrained Multi-objective Optimization Problems
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001421590321
– ident: ref_6
– volume: 23
  start-page: 870
  year: 2019
  ident: ref_15
  article-title: Handling Constrained Multiobjective Optimization Problems With Constraints in Both the Decision and Objective Spaces
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2894743
– volume: 264
  start-page: 1
  year: 2008
  ident: ref_45
  article-title: Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition
  publication-title: Mech. Eng.
– ident: ref_47
  doi: 10.1109/CEC.2016.7744320
– volume: 48
  start-page: 3019
  year: 2018
  ident: ref_9
  article-title: A corner point-based algorithm to solve constrained multi-objective optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-1126-6
– ident: ref_1
  doi: 10.1109/EIConRus49466.2020.9039074
– volume: 9
  start-page: 17596
  year: 2021
  ident: ref_27
  article-title: Adaptive ε-Constraint Multi-Objective Evolutionary Algorithm Based on Decomposition and Differential Evolution
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053041
– ident: ref_19
– volume: 50
  start-page: 4459
  year: 2020
  ident: ref_18
  article-title: Differential evolution with infeasible-guiding mutation operators for constrained multi-objective optimization
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01733-0
– volume: 49
  start-page: 2060
  year: 2019
  ident: ref_23
  article-title: Cooperative Differential Evolution Framework for Constrained Multiobjective Optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2819208
– ident: ref_2
  doi: 10.23919/ChiCC.2019.8865589
SSID ssj0000913849
Score 2.2592802
Snippet The performance of constrained multi-objective differential evolution algorithms (CMOEAs) is mainly determined by constraint handling techniques (CHTs) and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 813
SubjectTerms constrained multi-objective optimization
Constraints
Decomposition
Design optimization
Evolutionary algorithms
Evolutionary computation
Food science
Genetic algorithms
Multiple objective analysis
Optimization
Optimization algorithms
reinforcement learning
SARSA method
Search strategies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELaqFYdyQKVQsfzJh3JCFnHsOPZxKSAu0KoFiVvk2GMWtOyudrd75sYD8IY8ScdOWC2qKi69RY6dRJ7x_Cgz30fIVy9c_LsmWOBBMxkEMA2FYtJok6MS8FqFRDZRXl7qmxvzY4nqK9aENfDAzcYd5cob5UTma2tl8IWuZSFcLgsXSmkh4Xxi1LOUTCUbbLjQ0jSV7gLz-iOM__o8op1oLt74oATV_5clTu7l7BNZa-NC2mu-Z518gOFnsnqxAFWdbpCnXzAIrOftOJooGqk2E8EDeJraaNn3-r4xX_SkpT3B4zugp_NWvWhvcDua3M36D_QYnZenOITPpyngfHl87qUeB7z4CbGWFi_e3qEXiW56k1yfnV59O2ctjwJzQpUzZrOszkOhIGDsABxCXtqMO6WABwelwyRVC_AWuA3orbTn2hvjhM9LY3OTiS-kMxwNYYtQJZWEYEQdkc-kBo0LndShtEYAuNAlh687W7kWZDxuxaDCZCPKoVqWQ5ccLGaPG3CNf8w7jkJazImQ2GkAFaVqFaV6T1G6ZPdVxFV7Tqe4SGD8G5txt__HO3bIxzy2R6QatV3SmU1-wx5ZcfPZ3XSyn1T0D-2t8qg
  priority: 102
  providerName: Directory of Open Access Journals
Title Self-Adaptive Constrained Multi-Objective Differential Evolution Algorithm Based on the State–Action–Reward–State–Action Method
URI https://www.proquest.com/docview/2637746477
https://doaj.org/article/26d96c30dbaa4fd58b453c245cf74ae3
Volume 10
WOSCitedRecordID wos000771523100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELag5QAH_isKJfIBTsjq2t712ieUQCoQSohakMpp5bXHLSgkIQk9Im48QN-wT4LHcQIVgguXlWV7vSvPeDwez3xDyBMvHd6uSRZ40KwMEpiGSrHSaCMiE_BWhZRsoh4O9fGxGWWD2yK7Va5lYhLUfurQRr4vlIyaCoZNPp99YZg1Cm9XcwqNq2SbC8GRz9_UbGNjQcxLXZqVv7uMp_v9qAWecsQ80Vxe2okSYP8f8jhtMge3_vf3bpObWb2k3RU_3CFXYHKX3BhssFkX98iPIxgH1vV2hpKOYsbOlCcCPE3RuOxt-2klBenLnD0lSoEx7Z9lLqXd8Un89PL0M-3FPdDTWBXHp0lvvfh-3k2hErFwCOiSGwuXW-ggZa2-T94f9N-9eMVyOgbmpKqXzBZFK0KlIEQVBDgEUduCO6WABwe1i2ddLcFb4DbETU97rr0xTnpRGytMIXfI1mQ6gQeEqjhTEIxsEUCt1KDji67UobZGAriwS56tSdO4jFWOUzFu4pkFCdn8Tshd8nTTe7bC6PhLvx5SedMHkbVTxXR-0uSF2gjljXKy8K21ZfCVbstKOlFWLtSlhTjI3poBmrzcF80v6j_8d_Mjcl1g_ERyYtsjW8v5V3hMrrmz5cfFvEO2e_3h6LCTDAOdxMsddEY9wue3fmwfvR6MPvwEUoIGQA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLVKQQIWvBGFAl7QFbI6Y3s89gKhlLZqlSYgKFJ3g8e-7kMhCUkoYseOD-A_-Ci-hGvPJFAh2HXBzrI9lsY-Pn7dew8hT7xw8XVNsJAHzWQQwDQUikmjDUcQ5LUKSWyi7Pf1wYF5tUS-z31holnlnBMTUfuRi3fk61wJ3KlEt8nn4w8sqkbF19W5hEYDiy58_oRHtumz3U0c3zXOt7f2X-ywVlWAOaHKGbNZVvNQKAi4kkIOgZc2y51SkAcHpcMjmxbgLeQ2IHdrn2tvjBOel8Zykwls9wK5KIUuY6z-bskWdzoxxqaWprGvF8Jk67jrPMpjjBWdizMrXxII-IP_06K2ff1_644b5Fq7faadBu83yRIMb5GrvUXs2elt8vUNDALreDuOTE6jImnSwQBPk7cxe1mfNCxPN1t1GGS5Ad06bWch7QwO8VdnR-_pBq7xnmIWtk_TvvzHl2-d5AqCidcQTY4xcbaE9pIq9x3y9lx64i5ZHo6GcI9QhSMDwYg6BoiTGjR-6KQOpTUCwIUV8nQOhcq1sdhjVwwqPJNF4FS_A2eFrC1qj5sYJH-ptxFRtagTI4enjNHksGqJqOLKG-VE5mtrZfCFrmUhHJeFC6W0gI2szgFXtXQ2rX6h7f6_ix-Tyzv7vb1qb7fffUCu8Ogrkgz2VsnybPIRHpJL7nR2PJ08SjOHknfnjc2fiMNduA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxELZKQYge-Ee0FPCBnpCVXXvXax8QSkkjqtBQ8SP1tnjtcQsKSZqkRdy48QC8DY_DkzD27gYqBLceuFm219La38z4Z2Y-Qh45YcPrmmA-9YplXgBTkEuWaaU5giCtpI9kE8VwqA4O9P4K-d7GwgS3ylYnRkXtJjbckXe4FLhTCWGTHd-4Rez3-k-nxywwSIWX1pZOo4bIAD5_wuPb_MluD9d6i_P-zptnz1nDMMCskMWCmSSpuM8leLSqkILnhUlSKyWk3kJh8fimBDgDqfGox5VLldPaCscLbbhOBI57gVxEK5wHGRsUbHm_E_JtqkzXvvZC6KSDO9CjNORbUak4YwUjWcAftiAauP61_3lqrpOrzbaadms5uEFWYHyTrO0tc9LOb5Gvr2HkWdeZadDwNDCVRn4McDRGIbOX1Yda-9NewxqD2m9Ed04b6aTd0SH-6uLoI91G2-8oVuH4NO7Xf3z51o0hIlh4BcEVGQtnW-heZOu-Td6ey0zcIavjyRjuEipxlcBrUYXEcZkChR_aTPnCaAFg_Tp53MKitE2O9jAVoxLPagFE5e8gWidby97TOjfJX_ptB4Qt-4SM4rFiMjssGwVVcum0tCJxlTGZd7mqslxYnuXWF5kBHGSzBV_ZqLl5-Qt5G_9ufkguIyTLF7vDwT1yhYcQkujHt0lWF7MTuE8u2dPF-_nsQRQiSt6dNzR_AsjyZnI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Adaptive+Constrained+Multi-Objective+Differential+Evolution+Algorithm+Based+on+the+State%E2%80%93Action%E2%80%93Reward%E2%80%93State%E2%80%93Action+Method&rft.jtitle=Mathematics+%28Basel%29&rft.au=Liu%2C+Qingqing&rft.au=Cui%2C+Caixia&rft.au=Fan%2C+Qinqin&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=5&rft.spage=813&rft_id=info:doi/10.3390%2Fmath10050813&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon