Data-driven predictive models for residential building energy use based on the segregation of heating and cooling days

Data-driven models can estimate the buildings’ energy consumption using machine learning algorithms. This approach works based on the correlation between energy consumption and various inputs such as weather data, occupancy schedules, heating, air conditioning, and physical properties of buildings....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) Jg. 206; S. 118045
Hauptverfasser: Kamel, Ehsan, Sheikh, Shaya, Huang, Xueqing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 01.09.2020
Elsevier BV
Schlagworte:
ISSN:0360-5442, 1873-6785
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Data-driven models can estimate the buildings’ energy consumption using machine learning algorithms. This approach works based on the correlation between energy consumption and various inputs such as weather data, occupancy schedules, heating, air conditioning, and physical properties of buildings. Seasonal changes affect buildings’ energy use. Hence, the required data for data-driven models (DDMs) during the heating and cooling days could be different. Selecting the most impactful inputs can help to choose the type and quantity of sensors for deployment that improve the model’s accuracy and minimize the costs. This paper performs feature selection for heating, cooling, hot water, and ventilation loads in residential buildings under the mixed-humid climate zone. Filter method, wrapper backward elimination, wrapper recursive feature elimination, Lasso regression, linear regression, and Extreme Gradient Boosting (XGBoost) regression are adopted for heating and cooling days, separately. We use twenty-five outputs from a computer model, and the results show that the key features for a DDM are different for heating and cooling days, and XGBoost provides the most accurate forecast. The findings of this paper are useful for selecting proper models, sensors, and inputs for model-predictive control systems during the heating and cooling seasons. •The energy loads in residential buildings can be predicted successfully by data-driven models.•Data-driven models need different inputs to predict the loads during the heating and cooling days.•Features such as air density, represent multiple factors that can reduce the number of inputs.•The eXtreme Gradient Boosting led to a high-performance data-driven model.•Depending on the predictive model, the number of required inputs might vary between 2 and 15.
AbstractList Data-driven models can estimate the buildings' energy consumption using machine learning algorithms. This approach works based on the correlation between energy consumption and various inputs such as weather data, occupancy schedules, heating, air conditioning, and physical properties of buildings. Seasonal changes affect buildings' energy use. Hence, the required data for data-driven models (DDMs) during the heating and cooling days could be different. Selecting the most impactful inputs can help to choose the type and quantity of sensors for deployment that improve the model's accuracy and minimize the costs. This paper performs feature selection for heating, cooling, hot water, and ventilation loads in residential buildings under the mixed-humid climate zone. Filter method, wrapper backward elimination, wrapper recursive feature elimination, Lasso regression, linear regression, and Extreme Gradient Boosting (XGBoost) regression are adopted for heating and cooling days, separately. We use twenty-five outputs from a computer model, and the results show that the key features for a DDM are different for heating and cooling days, and XGBoost provides the most accurate forecast. The findings of this paper are useful for selecting proper models, sensors, and inputs for model-predictive control systems during the heating and cooling seasons.
Data-driven models can estimate the buildings’ energy consumption using machine learning algorithms. This approach works based on the correlation between energy consumption and various inputs such as weather data, occupancy schedules, heating, air conditioning, and physical properties of buildings. Seasonal changes affect buildings’ energy use. Hence, the required data for data-driven models (DDMs) during the heating and cooling days could be different. Selecting the most impactful inputs can help to choose the type and quantity of sensors for deployment that improve the model’s accuracy and minimize the costs. This paper performs feature selection for heating, cooling, hot water, and ventilation loads in residential buildings under the mixed-humid climate zone. Filter method, wrapper backward elimination, wrapper recursive feature elimination, Lasso regression, linear regression, and Extreme Gradient Boosting (XGBoost) regression are adopted for heating and cooling days, separately. We use twenty-five outputs from a computer model, and the results show that the key features for a DDM are different for heating and cooling days, and XGBoost provides the most accurate forecast. The findings of this paper are useful for selecting proper models, sensors, and inputs for model-predictive control systems during the heating and cooling seasons. •The energy loads in residential buildings can be predicted successfully by data-driven models.•Data-driven models need different inputs to predict the loads during the heating and cooling days.•Features such as air density, represent multiple factors that can reduce the number of inputs.•The eXtreme Gradient Boosting led to a high-performance data-driven model.•Depending on the predictive model, the number of required inputs might vary between 2 and 15.
ArticleNumber 118045
Author Kamel, Ehsan
Sheikh, Shaya
Huang, Xueqing
Author_xml – sequence: 1
  givenname: Ehsan
  surname: Kamel
  fullname: Kamel, Ehsan
  email: ekamel01@nyit.edu
  organization: Department of Energy Management, School of Engineering & Computing Sciences, New York Institute of Technology, Old Westbury, NY, USA
– sequence: 2
  givenname: Shaya
  surname: Sheikh
  fullname: Sheikh, Shaya
  email: ssheik11@nyit.edu
  organization: Department of Management Science Studies, School of Management, New York Institute of Technology, Manhattan, NY, USA
– sequence: 3
  givenname: Xueqing
  surname: Huang
  fullname: Huang, Xueqing
  email: xhuang25@nyit.edu
  organization: Department of Computer Science, School of Engineering & Computing Sciences, New York Institute of Technology, Old Westbury, NY, USA
BookMark eNqFkU9v1DAQxS1UJLaFb8DBEhcu2fpf4oQDEmqBIlXiAmdrYk-2XmXtxXZW2m-Pl3DqAU7zxvq9GWveNbkKMSAhbznbcsa72_0WA6bdeSuYqE-8Z6p9QTa817LpdN9ekQ2THWtapcQrcp3znjHW9sOwIad7KNC45E8Y6DGh87ZUTQ_R4ZzpFBNNmL3DUDzMdFz87HzY0XUhXTLSETI6GgMtT0gz7hLuoPjax4k-YZUVh-CojXG-aAfn_Jq8nGDO-OZvvSE_v3z-cffQPH7_-u3u02NjZadLM4ByLbZtz5nUYmy51ijsMDnr2GjtyAUfEZgTOAIMXHNgUw8K1NQpzXQnb8j7de4xxV8L5mIOPlucZwgYl2xEq5WUTHNR0XfP0H1cUqi_M0KpTgspla6UWimbYs4JJ3NM_gDpbDgzlzDM3qy3MZcwzBpGtX14ZrO-_LlSSeDn_5k_ruaaCJ48JpOtx2BrWAltMS76fw_4DQa8q08
CitedBy_id crossref_primary_10_1007_s00404_022_06578_1
crossref_primary_10_1016_j_jobe_2024_109305
crossref_primary_10_3390_app11020823
crossref_primary_10_3390_en14061750
crossref_primary_10_1007_s00404_022_06824_6
crossref_primary_10_1016_j_rser_2024_114804
crossref_primary_10_1016_j_rser_2022_112704
crossref_primary_10_1016_j_energy_2022_126548
crossref_primary_10_1016_j_applthermaleng_2025_127664
crossref_primary_10_1016_j_apenergy_2023_121576
crossref_primary_10_1016_j_tsep_2023_102005
crossref_primary_10_1016_j_eneco_2023_107241
crossref_primary_10_1155_2021_9987101
crossref_primary_10_3390_su16125170
crossref_primary_10_1016_j_enbuild_2023_113829
crossref_primary_10_3390_app10238323
crossref_primary_10_1017_dce_2025_10016
crossref_primary_10_1177_01436244251315047
crossref_primary_10_1016_j_epsr_2024_111185
crossref_primary_10_3390_su13042273
crossref_primary_10_1016_j_jobe_2025_112295
crossref_primary_10_1016_j_chemosphere_2022_136525
crossref_primary_10_1177_09544089231207092
crossref_primary_10_3390_en17225664
crossref_primary_10_1016_j_jobe_2022_105028
crossref_primary_10_1016_j_enbuild_2024_114290
crossref_primary_10_3390_en16247969
crossref_primary_10_1007_s12273_023_0984_6
crossref_primary_10_1016_j_asoc_2022_109520
crossref_primary_10_1088_1742_6596_2181_1_012018
crossref_primary_10_1016_j_oceaneng_2022_112258
crossref_primary_10_1016_j_cie_2022_107966
crossref_primary_10_1016_j_enbuild_2021_111718
crossref_primary_10_3390_buildings13020532
crossref_primary_10_1016_j_enbuild_2025_115517
crossref_primary_10_3390_su162410941
crossref_primary_10_1016_j_rser_2022_112327
crossref_primary_10_1016_j_enbuild_2022_112529
crossref_primary_10_1016_j_egyai_2025_100561
crossref_primary_10_1016_j_enbuild_2021_111191
crossref_primary_10_1016_j_energy_2023_127334
crossref_primary_10_3390_buildings13092235
crossref_primary_10_1016_j_energy_2021_122720
crossref_primary_10_3390_buildings12081284
crossref_primary_10_1108_SASBE_09_2024_0385
crossref_primary_10_1007_s12273_021_0777_8
crossref_primary_10_1016_j_apenergy_2022_118947
crossref_primary_10_1016_j_jclepro_2024_144579
crossref_primary_10_1109_TEM_2024_3422821
crossref_primary_10_1016_j_egyai_2025_100617
crossref_primary_10_3390_en16062574
crossref_primary_10_1016_j_enbuild_2023_112832
crossref_primary_10_1016_j_energy_2024_131556
crossref_primary_10_3390_su17188339
crossref_primary_10_1016_j_enbuild_2021_111505
crossref_primary_10_1016_j_esd_2023_04_017
crossref_primary_10_1016_j_energy_2023_126878
crossref_primary_10_1016_j_rser_2025_116061
crossref_primary_10_1016_j_scs_2025_106500
crossref_primary_10_1016_j_enbuild_2025_116358
crossref_primary_10_3390_electronics13244985
crossref_primary_10_1016_j_est_2021_103653
crossref_primary_10_1016_j_jobe_2022_105602
crossref_primary_10_1016_j_energy_2021_120854
crossref_primary_10_1016_j_energy_2023_130050
crossref_primary_10_1016_j_energy_2021_121228
crossref_primary_10_3390_en16166030
Cites_doi 10.1016/j.enbuild.2017.10.054
10.1016/j.rser.2017.09.108
10.1016/j.enbuild.2018.01.017
10.1016/j.apenergy.2017.03.064
10.1016/j.apenergy.2014.02.057
10.1007/s00500-015-1679-4
10.1016/j.enbuild.2014.07.036
10.1016/j.enconman.2011.02.002
10.1016/j.apenergy.2019.114131
10.1016/j.apenergy.2009.09.004
10.1016/j.asoc.2019.105748
10.1016/j.enbuild.2018.11.010
10.1016/j.enbuild.2014.07.021
10.1016/j.apenergy.2017.05.015
10.1016/j.energy.2015.11.037
10.1016/j.enbuild.2004.09.009
10.1016/j.energy.2019.01.157
10.1115/1.1637640
10.1016/j.apenergy.2017.12.054
10.1016/j.apenergy.2016.08.096
10.1016/j.enbuild.2012.03.010
10.1016/j.enbuild.2017.01.083
10.1016/j.enbuild.2014.09.026
10.1016/j.enbuild.2013.03.035
10.1016/j.egypro.2019.01.967
10.1016/j.scs.2019.101623
10.1016/j.energy.2018.01.023
10.1016/j.enbuild.2012.11.010
10.1016/j.apenergy.2014.04.016
10.1016/j.apenergy.2016.03.112
10.1016/j.enbuild.2015.09.002
10.1016/j.apenergy.2008.11.035
10.1016/j.enbuild.2016.11.009
10.1016/j.enbuild.2012.08.032
10.1016/j.apenergy.2017.04.005
10.1016/j.enbuild.2016.12.016
10.1016/j.rser.2017.05.249
10.1016/j.rser.2017.04.095
10.1016/j.energy.2018.05.169
10.1016/j.energy.2009.12.005
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Sep 1, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 1, 2020
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2020.118045
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2020_118045
S036054422031152X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-9a4d5e55810372b5177e2c9fdcd0bccb121bea0d2ebaa9171a0f8a4a4f6470763
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552898300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Mon Sep 29 03:31:02 EDT 2025
Wed Aug 13 05:55:47 EDT 2025
Sat Nov 29 07:22:48 EST 2025
Tue Nov 18 20:59:35 EST 2025
Fri Feb 23 02:48:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy consumption
Feature selection
Data-driven predictive model
Residential buildings
Heating and cooling days
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-9a4d5e55810372b5177e2c9fdcd0bccb121bea0d2ebaa9171a0f8a4a4f6470763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2446723347
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2574330712
proquest_journals_2446723347
crossref_primary_10_1016_j_energy_2020_118045
crossref_citationtrail_10_1016_j_energy_2020_118045
elsevier_sciencedirect_doi_10_1016_j_energy_2020_118045
PublicationCentury 2000
PublicationDate 2020-09-01
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Kusiak, Li, Zhang (bib29) 2010; 87
Amasyali, El-Gohary (bib3) 2018; 81
Edwards, New, Parker (bib13) 2012; 49
Satre-Meloy (bib33) 2019; 174
Papadopoulos, Azar, Woon, Kontokosta (bib42) 2017
Catalina, Iordache, Caracaleanu (bib35) 2013; 57
Turhan, Kazanasmaz, Uygun, Ekmen, Akkurt (bib39) 2014; 85
Naji, Keivani, Shamshirband, Alengaram, Jumaat, Mansor (bib41) 2016; 97
Li (bib9) 2009; 86
Chou, Bui (bib37) 2014; 82
Leung (bib7) 2012; 55
Gao, Alsarraf, Moayedi, Shahsavar, Nguyen (bib32) 2019; 84
Kwok, Lee (bib26) 2011; 52
Li, Wen (bib6) 2014; 82
Krarti (bib8) 2016
Jain, Damoulas, Kontokosta (bib40) 2014
Kamel, Memari (bib2) 2018; 147
Kontokosta, Tull (bib24) 2017; 197
Fan, Xiao, Zhao (bib51) 2017; 195
Ahmad, Chen, Huang (bib45) 2019; 158
Bourdeau, Zhai, Nefzaoui, Guo, Chatellier (bib48) 2019
Fan, Xiao, Wang (bib22) 2014; 127
Wang, Lu, Li (bib34) 2019; 49
Iwafune, Yagita, Ikegami, Ogimoto (bib38) 2014
Wei, Xingxing, Yong, Liang, Song, Jinshun, Mengjie (bib16) 2018; 82
Dong, Cao, Lee (bib10) 2005; 37
Lam (bib25) 2010; 35
Wang, Xiaohui (bib15) 2018; 159
Somu, Mr, Ramamritham (bib46) 2020; 261
Cui, Wu, Hu, Weir, Li (bib17) 2016; 172
Dodier, Henze (bib28) 2004; 126
Ma, Cheng (bib19) 2016; 183
Luis, Véronique, Dominique (bib4) 2017; 140
Ferracuti, Fonti, Ciabattoni, Pizzuti, Arteconi, Helsen, Comodi (bib23) 2017; 204
Zhang, Wen (bib31) 2019; 183
Kapetanakis, Mangina, Finn (bib30) 2017; 137
Paudel, Elmitri, Couturier, Nguyen, Kamphuis, Lacarrière, Le Corre (bib43) 2017; 138
Moreno, Dufour, Skarmeta, Jara, Genoud, Ladevie, Bezian (bib20) 2016; 20
Ahmad, Chen, Guo, Wang (bib11) 2018; 165
Roy, Roy, Balas (bib44) 2018; 82
Ahmad, Chen, Huang, Yabin, Wang, Shair, Kazim (bib12) 2018; 158
Jain, Smith, Culligan, Taylor (bib14) 2014; 123
Alobaidi, Chebana, Meguid (bib18) 2018; 212
Popescu, Ungureanu (bib36) 2013; 6B
Li, Hu, Liu, Xue (bib21) 2015; 108
Li, Huang (bib5) 2013; 62
(bib1) 2019
Kolter, Ferreira (bib27) 2011
Cui (10.1016/j.energy.2020.118045_bib17) 2016; 172
Li (10.1016/j.energy.2020.118045_bib5) 2013; 62
(10.1016/j.energy.2020.118045_bib1) 2019
Li (10.1016/j.energy.2020.118045_bib9) 2009; 86
Zhang (10.1016/j.energy.2020.118045_bib31) 2019; 183
Amasyali (10.1016/j.energy.2020.118045_bib3) 2018; 81
Ma (10.1016/j.energy.2020.118045_bib19) 2016; 183
Roy (10.1016/j.energy.2020.118045_bib44) 2018; 82
Dong (10.1016/j.energy.2020.118045_bib10) 2005; 37
Satre-Meloy (10.1016/j.energy.2020.118045_bib33) 2019; 174
Gao (10.1016/j.energy.2020.118045_bib32) 2019; 84
Lam (10.1016/j.energy.2020.118045_bib25) 2010; 35
Jain (10.1016/j.energy.2020.118045_bib40) 2014
Ferracuti (10.1016/j.energy.2020.118045_bib23) 2017; 204
Chou (10.1016/j.energy.2020.118045_bib37) 2014; 82
Naji (10.1016/j.energy.2020.118045_bib41) 2016; 97
Kapetanakis (10.1016/j.energy.2020.118045_bib30) 2017; 137
Catalina (10.1016/j.energy.2020.118045_bib35) 2013; 57
Kolter (10.1016/j.energy.2020.118045_bib27) 2011
Kusiak (10.1016/j.energy.2020.118045_bib29) 2010; 87
Papadopoulos (10.1016/j.energy.2020.118045_bib42) 2017
Wang (10.1016/j.energy.2020.118045_bib15) 2018; 159
Bourdeau (10.1016/j.energy.2020.118045_bib48) 2019
Leung (10.1016/j.energy.2020.118045_bib7) 2012; 55
Fan (10.1016/j.energy.2020.118045_bib51) 2017; 195
Somu (10.1016/j.energy.2020.118045_bib46) 2020; 261
Iwafune (10.1016/j.energy.2020.118045_bib38) 2014
Fan (10.1016/j.energy.2020.118045_bib22) 2014; 127
Kamel (10.1016/j.energy.2020.118045_bib2) 2018; 147
Moreno (10.1016/j.energy.2020.118045_bib20) 2016; 20
Paudel (10.1016/j.energy.2020.118045_bib43) 2017; 138
Kontokosta (10.1016/j.energy.2020.118045_bib24) 2017; 197
Luis (10.1016/j.energy.2020.118045_bib4) 2017; 140
Krarti (10.1016/j.energy.2020.118045_bib8) 2016
Turhan (10.1016/j.energy.2020.118045_bib39) 2014; 85
Jain (10.1016/j.energy.2020.118045_bib14) 2014; 123
Li (10.1016/j.energy.2020.118045_bib21) 2015; 108
Wang (10.1016/j.energy.2020.118045_bib34) 2019; 49
Dodier (10.1016/j.energy.2020.118045_bib28) 2004; 126
Ahmad (10.1016/j.energy.2020.118045_bib45) 2019; 158
Alobaidi (10.1016/j.energy.2020.118045_bib18) 2018; 212
Ahmad (10.1016/j.energy.2020.118045_bib11) 2018; 165
Edwards (10.1016/j.energy.2020.118045_bib13) 2012; 49
Ahmad (10.1016/j.energy.2020.118045_bib12) 2018; 158
Wei (10.1016/j.energy.2020.118045_bib16) 2018; 82
Popescu (10.1016/j.energy.2020.118045_bib36) 2013; 6B
Li (10.1016/j.energy.2020.118045_bib6) 2014; 82
Kwok (10.1016/j.energy.2020.118045_bib26) 2011; 52
References_xml – volume: 81
  start-page: 1192
  year: 2018
  end-page: 1205
  ident: bib3
  article-title: A review of data-driven building energy consumption prediction studies
  publication-title: Renew Sustain Energy Rev
– volume: 159
  start-page: 454
  year: 2018
  end-page: 461
  ident: bib15
  article-title: Adaptive learning based data-driven models for predicting hourly building energy use
  publication-title: Energy Build
– volume: 204
  start-page: 1375
  year: 2017
  end-page: 1387
  ident: bib23
  article-title: Data-driven models for short-term thermal behaviour prediction in real buildings
  publication-title: Appl Energy
– volume: 52
  start-page: 2555
  year: 2011
  end-page: 2564
  ident: bib26
  article-title: A study of the importance of occupancy to building cooling load in prediction by intelligent approach
  publication-title: Energy Convers Manag
– year: 2019
  ident: bib1
  article-title: Residential sector energy consumption
– volume: 86
  start-page: 2249
  year: 2009
  end-page: 2256
  ident: bib9
  article-title: Applying support vector machine to predict hourly cooling load in the building
  publication-title: Appl Energy
– volume: 147
  start-page: 15
  year: 2018
  end-page: 24
  ident: bib2
  article-title: Automated building energy modeling and assessment tool (ABEMAT)
  publication-title: Energy
– volume: 37
  start-page: 545
  year: 2005
  end-page: 553
  ident: bib10
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy Build
– start-page: 1197
  year: 2014
  end-page: 1204
  ident: bib38
  article-title: Short-term forecasting of residential building load for distributed energy management
  publication-title: 2014 IEEE int energy conf
– volume: 108
  start-page: 106
  year: 2015
  end-page: 113
  ident: bib21
  article-title: Building’s electricity consumption prediction using optimized artificial neural networks and principal component analysis
  publication-title: Energy Build
– volume: 57
  start-page: 302
  year: 2013
  end-page: 312
  ident: bib35
  article-title: Multiple regression model for fast prediction of the heating energy demand
  publication-title: Energy Build
– start-page: 1675
  year: 2014
  end-page: 1682
  ident: bib40
  article-title: Towards data-driven energy consumption forecasting of multi-family residential buildings: feature selection via the lasso
  publication-title: Computing in civil and building engineering
– year: 2011
  ident: bib27
  article-title: A large-scale study on predicting and contextualizing building energy usage
– volume: 97
  start-page: 506
  year: 2016
  end-page: 516
  ident: bib41
  article-title: Estimating building energy consumption using extreme learning machine method
  publication-title: Energy
– volume: 197
  start-page: 303
  year: 2017
  end-page: 317
  ident: bib24
  article-title: A data-driven predictive model of city-scale energy use in buildings
  publication-title: Appl Energy
– volume: 82
  start-page: 4256
  year: 2018
  end-page: 4268
  ident: bib44
  article-title: Estimating heating load in buildings using multivariate adaptive regression splines, extreme learning machine, a hybrid model of MARS and ELM
  publication-title: Renew Sustain Energy Rev
– volume: 35
  start-page: 1482
  year: 2010
  end-page: 1490
  ident: bib25
  article-title: An analysis of future building energy use in subtropical Hong Kong
  publication-title: Energy
– volume: 82
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib6
  article-title: Building energy consumption on-line forecasting using physics based system identification
  publication-title: Energy Build
– volume: 20
  start-page: 1749
  year: 2016
  end-page: 1762
  ident: bib20
  article-title: Big data: the key to energy efficiency in smart buildings
  publication-title: Soft Computing
– volume: 49
  start-page: 101623
  year: 2019
  ident: bib34
  article-title: Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption for residential buildings
  publication-title: Sustain Cities Soc
– start-page: 1
  year: 2017
  end-page: 11
  ident: bib42
  article-title: Evaluation of tree-based ensemble learning algorithms for building energy performance estimation
  publication-title: J Building Performance Simulation
– volume: 55
  start-page: 151
  year: 2012
  end-page: 163
  ident: bib7
  article-title: The use of occupancy space electrical power demand in building cooling load prediction
  publication-title: Energy Build
– volume: 87
  start-page: 925
  year: 2010
  end-page: 933
  ident: bib29
  article-title: A data-driven approach for steam load prediction in buildings
  publication-title: Appl Energy
– volume: 140
  start-page: 81
  year: 2017
  end-page: 97
  ident: bib4
  article-title: Data driven prediction models of energy use of appliances in a low-energy house alow-energy house
  publication-title: Energy Build
– volume: 137
  start-page: 13
  year: 2017
  end-page: 26
  ident: bib30
  article-title: Input variable selection for thermal load predictive models of commercial buildings
  publication-title: Energy Build
– volume: 174
  start-page: 148
  year: 2019
  end-page: 168
  ident: bib33
  article-title: Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models
  publication-title: Energy
– volume: 212
  start-page: 997
  year: 2018
  end-page: 1012
  ident: bib18
  article-title: Robust ensemble learning framework for day ahead forecasting of household based energy consumption
  publication-title: Appl Energy
– volume: 49
  start-page: 591
  year: 2012
  end-page: 603
  ident: bib13
  article-title: Predicting future hourly residential electrical consumption: a machine learning case study
  publication-title: Energy Build
– volume: 195
  start-page: 222
  year: 2017
  end-page: 233
  ident: bib51
  article-title: A short-term building cooling load prediction method using deep learning algorithms
  publication-title: Appl Energy
– volume: 126
  start-page: 592
  year: 2004
  end-page: 600
  ident: bib28
  article-title: Statistical analysis of neural networks as applied to building energy prediction
  publication-title: J Sol Energy Eng
– volume: 165
  start-page: 301
  year: 2018
  end-page: 320
  ident: bib11
  article-title: A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: a review
  publication-title: Energy Build
– volume: 85
  start-page: 115
  year: 2014
  end-page: 125
  ident: bib39
  article-title: Comparative study of a building energy performance software (KEP-IYTE-ESS) and ANN-based building heat load estimation
  publication-title: Energy Build
– volume: 123
  start-page: 168
  year: 2014
  end-page: 178
  ident: bib14
  article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy
  publication-title: Appl Energy
– volume: 158
  start-page: 17
  year: 2018
  end-page: 32
  ident: bib12
  article-title: Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment
  publication-title: Energy
– volume: 84
  start-page: 105748
  year: 2019
  ident: bib32
  article-title: Comprehensive preference learning and feature validity for designing energy-efficient residential buildings using machine learning paradigms
  publication-title: Appl Soft Comput
– volume: 62
  start-page: 442
  year: 2013
  end-page: 449
  ident: bib5
  article-title: Re-evaluation of building cooling load prediction models for use in humid subtropical area
  publication-title: Energy Build
– volume: 158
  start-page: 3331
  year: 2019
  end-page: 3338
  ident: bib45
  article-title: Short-term energy prediction for district-level load management using machine learning based approaches
  publication-title: Energy Procedia
– year: 2016
  ident: bib8
  article-title: Energy audit of building systems: an engineering approach
– volume: 183
  start-page: 193
  year: 2016
  end-page: 201
  ident: bib19
  article-title: Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests
  publication-title: Appl Energy
– volume: 6B
  year: 2013
  ident: bib36
  article-title: Prediction of space heating consumption in district heated apartments
  publication-title: Energy ASME
– volume: 82
  start-page: 437
  year: 2014
  end-page: 446
  ident: bib37
  article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design
  publication-title: Energy Build
– volume: 82
  start-page: 1027
  year: 2018
  end-page: 1047
  ident: bib16
  article-title: A review of data-driven approaches for prediction and classification of building energy consumption
  publication-title: Renew Sustain Energy Rev
– volume: 261
  start-page: 114131
  year: 2020
  ident: bib46
  article-title: A hybrid model for building energy consumption forecasting using long short term memory networks
  publication-title: Appl Energy
– year: 2019
  ident: bib48
  article-title: Modeling and forecasting building energy consumption: a review of data-driven techniques
– volume: 172
  start-page: 251
  year: 2016
  end-page: 263
  ident: bib17
  article-title: Short-term building energy model recommendation system: a meta-learning approach
  publication-title: Appl Energy
– volume: 127
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib22
  article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques
  publication-title: Appl Energy
– volume: 183
  start-page: 428
  year: 2019
  end-page: 442
  ident: bib31
  article-title: A systematic feature selection procedure for short-term data-driven building energy forecasting model development
  publication-title: Energy Build
– volume: 138
  start-page: 240
  year: 2017
  end-page: 256
  ident: bib43
  article-title: A relevant data selection method for energy consumption prediction of low energy building based on support vector machine
  publication-title: Energy Build
– volume: 159
  start-page: 454
  year: 2018
  ident: 10.1016/j.energy.2020.118045_bib15
  article-title: Adaptive learning based data-driven models for predicting hourly building energy use
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.10.054
– volume: 82
  start-page: 1027
  year: 2018
  ident: 10.1016/j.energy.2020.118045_bib16
  article-title: A review of data-driven approaches for prediction and classification of building energy consumption
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.09.108
– volume: 165
  start-page: 301
  year: 2018
  ident: 10.1016/j.energy.2020.118045_bib11
  article-title: A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: a review
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2018.01.017
– volume: 195
  start-page: 222
  year: 2017
  ident: 10.1016/j.energy.2020.118045_bib51
  article-title: A short-term building cooling load prediction method using deep learning algorithms
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.064
– volume: 123
  start-page: 168
  year: 2014
  ident: 10.1016/j.energy.2020.118045_bib14
  article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.02.057
– volume: 20
  start-page: 1749
  issue: 5
  year: 2016
  ident: 10.1016/j.energy.2020.118045_bib20
  article-title: Big data: the key to energy efficiency in smart buildings
  publication-title: Soft Computing
  doi: 10.1007/s00500-015-1679-4
– volume: 82
  start-page: 437
  year: 2014
  ident: 10.1016/j.energy.2020.118045_bib37
  article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.07.036
– volume: 52
  start-page: 2555
  issue: 7
  year: 2011
  ident: 10.1016/j.energy.2020.118045_bib26
  article-title: A study of the importance of occupancy to building cooling load in prediction by intelligent approach
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2011.02.002
– volume: 261
  start-page: 114131
  year: 2020
  ident: 10.1016/j.energy.2020.118045_bib46
  article-title: A hybrid model for building energy consumption forecasting using long short term memory networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114131
– volume: 87
  start-page: 925
  issue: 3
  year: 2010
  ident: 10.1016/j.energy.2020.118045_bib29
  article-title: A data-driven approach for steam load prediction in buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.09.004
– volume: 84
  start-page: 105748
  year: 2019
  ident: 10.1016/j.energy.2020.118045_bib32
  article-title: Comprehensive preference learning and feature validity for designing energy-efficient residential buildings using machine learning paradigms
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105748
– volume: 183
  start-page: 428
  year: 2019
  ident: 10.1016/j.energy.2020.118045_bib31
  article-title: A systematic feature selection procedure for short-term data-driven building energy forecasting model development
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2018.11.010
– volume: 82
  start-page: 1
  year: 2014
  ident: 10.1016/j.energy.2020.118045_bib6
  article-title: Building energy consumption on-line forecasting using physics based system identification
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.07.021
– volume: 204
  start-page: 1375
  year: 2017
  ident: 10.1016/j.energy.2020.118045_bib23
  article-title: Data-driven models for short-term thermal behaviour prediction in real buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.015
– start-page: 1
  year: 2017
  ident: 10.1016/j.energy.2020.118045_bib42
  article-title: Evaluation of tree-based ensemble learning algorithms for building energy performance estimation
  publication-title: J Building Performance Simulation
– year: 2019
  ident: 10.1016/j.energy.2020.118045_bib48
– volume: 97
  start-page: 506
  year: 2016
  ident: 10.1016/j.energy.2020.118045_bib41
  article-title: Estimating building energy consumption using extreme learning machine method
  publication-title: Energy
  doi: 10.1016/j.energy.2015.11.037
– volume: 37
  start-page: 545
  issue: 5
  year: 2005
  ident: 10.1016/j.energy.2020.118045_bib10
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2004.09.009
– volume: 174
  start-page: 148
  year: 2019
  ident: 10.1016/j.energy.2020.118045_bib33
  article-title: Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.157
– volume: 126
  start-page: 592
  issue: 1
  year: 2004
  ident: 10.1016/j.energy.2020.118045_bib28
  article-title: Statistical analysis of neural networks as applied to building energy prediction
  publication-title: J Sol Energy Eng
  doi: 10.1115/1.1637640
– volume: 212
  start-page: 997
  year: 2018
  ident: 10.1016/j.energy.2020.118045_bib18
  article-title: Robust ensemble learning framework for day ahead forecasting of household based energy consumption
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.054
– volume: 183
  start-page: 193
  year: 2016
  ident: 10.1016/j.energy.2020.118045_bib19
  article-title: Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.096
– volume: 49
  start-page: 591
  year: 2012
  ident: 10.1016/j.energy.2020.118045_bib13
  article-title: Predicting future hourly residential electrical consumption: a machine learning case study
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.03.010
– volume: 140
  start-page: 81
  year: 2017
  ident: 10.1016/j.energy.2020.118045_bib4
  article-title: Data driven prediction models of energy use of appliances in a low-energy house alow-energy house
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.01.083
– volume: 85
  start-page: 115
  year: 2014
  ident: 10.1016/j.energy.2020.118045_bib39
  article-title: Comparative study of a building energy performance software (KEP-IYTE-ESS) and ANN-based building heat load estimation
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.09.026
– volume: 62
  start-page: 442
  year: 2013
  ident: 10.1016/j.energy.2020.118045_bib5
  article-title: Re-evaluation of building cooling load prediction models for use in humid subtropical area
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2013.03.035
– volume: 158
  start-page: 3331
  year: 2019
  ident: 10.1016/j.energy.2020.118045_bib45
  article-title: Short-term energy prediction for district-level load management using machine learning based approaches
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.967
– volume: 49
  start-page: 101623
  year: 2019
  ident: 10.1016/j.energy.2020.118045_bib34
  article-title: Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption for residential buildings
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2019.101623
– volume: 147
  start-page: 15
  year: 2018
  ident: 10.1016/j.energy.2020.118045_bib2
  article-title: Automated building energy modeling and assessment tool (ABEMAT)
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.023
– volume: 57
  start-page: 302
  year: 2013
  ident: 10.1016/j.energy.2020.118045_bib35
  article-title: Multiple regression model for fast prediction of the heating energy demand
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.11.010
– volume: 127
  start-page: 1
  year: 2014
  ident: 10.1016/j.energy.2020.118045_bib22
  article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.04.016
– volume: 172
  start-page: 251
  year: 2016
  ident: 10.1016/j.energy.2020.118045_bib17
  article-title: Short-term building energy model recommendation system: a meta-learning approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.03.112
– year: 2019
  ident: 10.1016/j.energy.2020.118045_bib1
– volume: 108
  start-page: 106
  year: 2015
  ident: 10.1016/j.energy.2020.118045_bib21
  article-title: Building’s electricity consumption prediction using optimized artificial neural networks and principal component analysis
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.09.002
– volume: 86
  start-page: 2249
  issue: 10
  year: 2009
  ident: 10.1016/j.energy.2020.118045_bib9
  article-title: Applying support vector machine to predict hourly cooling load in the building
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.11.035
– start-page: 1197
  year: 2014
  ident: 10.1016/j.energy.2020.118045_bib38
  article-title: Short-term forecasting of residential building load for distributed energy management
– volume: 138
  start-page: 240
  year: 2017
  ident: 10.1016/j.energy.2020.118045_bib43
  article-title: A relevant data selection method for energy consumption prediction of low energy building based on support vector machine
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.11.009
– volume: 55
  start-page: 151
  year: 2012
  ident: 10.1016/j.energy.2020.118045_bib7
  article-title: The use of occupancy space electrical power demand in building cooling load prediction
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.08.032
– volume: 197
  start-page: 303
  year: 2017
  ident: 10.1016/j.energy.2020.118045_bib24
  article-title: A data-driven predictive model of city-scale energy use in buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.04.005
– year: 2016
  ident: 10.1016/j.energy.2020.118045_bib8
– volume: 137
  start-page: 13
  year: 2017
  ident: 10.1016/j.energy.2020.118045_bib30
  article-title: Input variable selection for thermal load predictive models of commercial buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.12.016
– start-page: 1675
  year: 2014
  ident: 10.1016/j.energy.2020.118045_bib40
  article-title: Towards data-driven energy consumption forecasting of multi-family residential buildings: feature selection via the lasso
– year: 2011
  ident: 10.1016/j.energy.2020.118045_bib27
– volume: 82
  start-page: 4256
  year: 2018
  ident: 10.1016/j.energy.2020.118045_bib44
  article-title: Estimating heating load in buildings using multivariate adaptive regression splines, extreme learning machine, a hybrid model of MARS and ELM
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.05.249
– volume: 81
  start-page: 1192
  year: 2018
  ident: 10.1016/j.energy.2020.118045_bib3
  article-title: A review of data-driven building energy consumption prediction studies
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.04.095
– volume: 158
  start-page: 17
  year: 2018
  ident: 10.1016/j.energy.2020.118045_bib12
  article-title: Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment
  publication-title: Energy
  doi: 10.1016/j.energy.2018.05.169
– volume: 35
  start-page: 1482
  issue: 3
  year: 2010
  ident: 10.1016/j.energy.2020.118045_bib25
  article-title: An analysis of future building energy use in subtropical Hong Kong
  publication-title: Energy
  doi: 10.1016/j.energy.2009.12.005
– volume: 6B
  year: 2013
  ident: 10.1016/j.energy.2020.118045_bib36
  article-title: Prediction of space heating consumption in district heated apartments
  publication-title: Energy ASME
SSID ssj0005899
Score 2.562266
Snippet Data-driven models can estimate the buildings’ energy consumption using machine learning algorithms. This approach works based on the correlation between...
Data-driven models can estimate the buildings' energy consumption using machine learning algorithms. This approach works based on the correlation between...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118045
SubjectTerms air
Air conditioning
Algorithms
Buildings
climatic zones
computer simulation
Control systems
Cooling
Data-driven predictive model
energy
Energy consumption
Feature selection
heat
Heating
Heating and cooling days
Hot water heating
Humid climates
Learning algorithms
Machine learning
Meteorological data
Model accuracy
Occupancy
Physical properties
Prediction models
Predictive control
Recursive methods
Regression
regression analysis
Residential areas
Residential buildings
Residential energy
Schedules
Seasonal variations
Sensors
Ventilation
Title Data-driven predictive models for residential building energy use based on the segregation of heating and cooling days
URI https://dx.doi.org/10.1016/j.energy.2020.118045
https://www.proquest.com/docview/2446723347
https://www.proquest.com/docview/2574330712
Volume 206
WOSCitedRecordID wos000552898300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgQvCAYTHQMZibcqVS5OnTxOUAQITUgbUt8i30K7jWQ0adXt13Mc20m6CcYeeImqxHGsfF_PLeccI_SOh34qGE89QVTskYgoL4kkA69VJKBgqe-LpmX-V3p8nMxm6bfB4NrVwqwvaFEkm016-V-hhnMAti6dvQfc7aRwAn4D6HAE2OH4T8B_YDXz5FJLMd0BQC4aiWa2vGmaL4zAw1409bkAD7fbYo-UKQJcVWqkNZu0XxFGlQKP_EffsKxdXaMoy6aYXbKraivCb6bSjUw3Jne-y-hmP01awHTeywY6mavFeRPfOZmzK9ZRzQazZyv1y6lYG6EAd9SlYHWVWb4XE7IldUO_Lzd1IzrTVvKWSDfRhbOxeQ1j_YBxN3y7g_YNzdbmG7pUtrPMzJLpWTIzywO0G9I4BaG-e_R5OvvSJQglze6j7epd4WWTHXh7NX8ybG6o-MZuOX2KnliHAx8ZojxDA1XsoUeuHr3aQ_vTrtYRBlphXz1H6x6TcMckbJiEAVncYxJ2TMJm0RiYhBsm4bLAwCTcYxIuc2yZhIFJ2DIJaya9QN8_Tk_ff_LsNh2eiCa09lJGZKziONElpyGPA0pVKNJcCulzIXgQBlwxX4aKM5YGNGB-njDCSD4h1Af9to92irJQLxEOJdjjKpYiylPCmeBwNSCcgA_DI-GTIYrcO86E7WGvt1K5yP6G8BB57V2XpofLHeOpgy-zdqixLzPg5B13Hjq0MysSqgwM6AkNo4jQIXrbXgYprj_NsUKVKxgTgyUP6jYID-652FfocfefO0Q79XKlXqOHYl0vquUby-nfe0bEIw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+predictive+models+for+residential+building+energy+use+based+on+the+segregation+of+heating+and+cooling+days&rft.jtitle=Energy+%28Oxford%29&rft.au=Kamel%2C+Ehsan&rft.au=Sheikh%2C+Shaya&rft.au=Huang%2C+Xueqing&rft.date=2020-09-01&rft.issn=0360-5442&rft.volume=206&rft.spage=118045&rft_id=info:doi/10.1016%2Fj.energy.2020.118045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2020_118045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon