Data-driven predictive models for residential building energy use based on the segregation of heating and cooling days
Data-driven models can estimate the buildings’ energy consumption using machine learning algorithms. This approach works based on the correlation between energy consumption and various inputs such as weather data, occupancy schedules, heating, air conditioning, and physical properties of buildings....
Gespeichert in:
| Veröffentlicht in: | Energy (Oxford) Jg. 206; S. 118045 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Elsevier Ltd
01.09.2020
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0360-5442, 1873-6785 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Data-driven models can estimate the buildings’ energy consumption using machine learning algorithms. This approach works based on the correlation between energy consumption and various inputs such as weather data, occupancy schedules, heating, air conditioning, and physical properties of buildings. Seasonal changes affect buildings’ energy use. Hence, the required data for data-driven models (DDMs) during the heating and cooling days could be different. Selecting the most impactful inputs can help to choose the type and quantity of sensors for deployment that improve the model’s accuracy and minimize the costs. This paper performs feature selection for heating, cooling, hot water, and ventilation loads in residential buildings under the mixed-humid climate zone. Filter method, wrapper backward elimination, wrapper recursive feature elimination, Lasso regression, linear regression, and Extreme Gradient Boosting (XGBoost) regression are adopted for heating and cooling days, separately. We use twenty-five outputs from a computer model, and the results show that the key features for a DDM are different for heating and cooling days, and XGBoost provides the most accurate forecast. The findings of this paper are useful for selecting proper models, sensors, and inputs for model-predictive control systems during the heating and cooling seasons.
•The energy loads in residential buildings can be predicted successfully by data-driven models.•Data-driven models need different inputs to predict the loads during the heating and cooling days.•Features such as air density, represent multiple factors that can reduce the number of inputs.•The eXtreme Gradient Boosting led to a high-performance data-driven model.•Depending on the predictive model, the number of required inputs might vary between 2 and 15. |
|---|---|
| AbstractList | Data-driven models can estimate the buildings' energy consumption using machine learning algorithms. This approach works based on the correlation between energy consumption and various inputs such as weather data, occupancy schedules, heating, air conditioning, and physical properties of buildings. Seasonal changes affect buildings' energy use. Hence, the required data for data-driven models (DDMs) during the heating and cooling days could be different. Selecting the most impactful inputs can help to choose the type and quantity of sensors for deployment that improve the model's accuracy and minimize the costs. This paper performs feature selection for heating, cooling, hot water, and ventilation loads in residential buildings under the mixed-humid climate zone. Filter method, wrapper backward elimination, wrapper recursive feature elimination, Lasso regression, linear regression, and Extreme Gradient Boosting (XGBoost) regression are adopted for heating and cooling days, separately. We use twenty-five outputs from a computer model, and the results show that the key features for a DDM are different for heating and cooling days, and XGBoost provides the most accurate forecast. The findings of this paper are useful for selecting proper models, sensors, and inputs for model-predictive control systems during the heating and cooling seasons. Data-driven models can estimate the buildings’ energy consumption using machine learning algorithms. This approach works based on the correlation between energy consumption and various inputs such as weather data, occupancy schedules, heating, air conditioning, and physical properties of buildings. Seasonal changes affect buildings’ energy use. Hence, the required data for data-driven models (DDMs) during the heating and cooling days could be different. Selecting the most impactful inputs can help to choose the type and quantity of sensors for deployment that improve the model’s accuracy and minimize the costs. This paper performs feature selection for heating, cooling, hot water, and ventilation loads in residential buildings under the mixed-humid climate zone. Filter method, wrapper backward elimination, wrapper recursive feature elimination, Lasso regression, linear regression, and Extreme Gradient Boosting (XGBoost) regression are adopted for heating and cooling days, separately. We use twenty-five outputs from a computer model, and the results show that the key features for a DDM are different for heating and cooling days, and XGBoost provides the most accurate forecast. The findings of this paper are useful for selecting proper models, sensors, and inputs for model-predictive control systems during the heating and cooling seasons. •The energy loads in residential buildings can be predicted successfully by data-driven models.•Data-driven models need different inputs to predict the loads during the heating and cooling days.•Features such as air density, represent multiple factors that can reduce the number of inputs.•The eXtreme Gradient Boosting led to a high-performance data-driven model.•Depending on the predictive model, the number of required inputs might vary between 2 and 15. |
| ArticleNumber | 118045 |
| Author | Kamel, Ehsan Sheikh, Shaya Huang, Xueqing |
| Author_xml | – sequence: 1 givenname: Ehsan surname: Kamel fullname: Kamel, Ehsan email: ekamel01@nyit.edu organization: Department of Energy Management, School of Engineering & Computing Sciences, New York Institute of Technology, Old Westbury, NY, USA – sequence: 2 givenname: Shaya surname: Sheikh fullname: Sheikh, Shaya email: ssheik11@nyit.edu organization: Department of Management Science Studies, School of Management, New York Institute of Technology, Manhattan, NY, USA – sequence: 3 givenname: Xueqing surname: Huang fullname: Huang, Xueqing email: xhuang25@nyit.edu organization: Department of Computer Science, School of Engineering & Computing Sciences, New York Institute of Technology, Old Westbury, NY, USA |
| BookMark | eNqFkU9v1DAQxS1UJLaFb8DBEhcu2fpf4oQDEmqBIlXiAmdrYk-2XmXtxXZW2m-Pl3DqAU7zxvq9GWveNbkKMSAhbznbcsa72_0WA6bdeSuYqE-8Z6p9QTa817LpdN9ekQ2THWtapcQrcp3znjHW9sOwIad7KNC45E8Y6DGh87ZUTQ_R4ZzpFBNNmL3DUDzMdFz87HzY0XUhXTLSETI6GgMtT0gz7hLuoPjax4k-YZUVh-CojXG-aAfn_Jq8nGDO-OZvvSE_v3z-cffQPH7_-u3u02NjZadLM4ByLbZtz5nUYmy51ijsMDnr2GjtyAUfEZgTOAIMXHNgUw8K1NQpzXQnb8j7de4xxV8L5mIOPlucZwgYl2xEq5WUTHNR0XfP0H1cUqi_M0KpTgspla6UWimbYs4JJ3NM_gDpbDgzlzDM3qy3MZcwzBpGtX14ZrO-_LlSSeDn_5k_ruaaCJ48JpOtx2BrWAltMS76fw_4DQa8q08 |
| CitedBy_id | crossref_primary_10_1007_s00404_022_06578_1 crossref_primary_10_1016_j_jobe_2024_109305 crossref_primary_10_3390_app11020823 crossref_primary_10_3390_en14061750 crossref_primary_10_1007_s00404_022_06824_6 crossref_primary_10_1016_j_rser_2024_114804 crossref_primary_10_1016_j_rser_2022_112704 crossref_primary_10_1016_j_energy_2022_126548 crossref_primary_10_1016_j_applthermaleng_2025_127664 crossref_primary_10_1016_j_apenergy_2023_121576 crossref_primary_10_1016_j_tsep_2023_102005 crossref_primary_10_1016_j_eneco_2023_107241 crossref_primary_10_1155_2021_9987101 crossref_primary_10_3390_su16125170 crossref_primary_10_1016_j_enbuild_2023_113829 crossref_primary_10_3390_app10238323 crossref_primary_10_1017_dce_2025_10016 crossref_primary_10_1177_01436244251315047 crossref_primary_10_1016_j_epsr_2024_111185 crossref_primary_10_3390_su13042273 crossref_primary_10_1016_j_jobe_2025_112295 crossref_primary_10_1016_j_chemosphere_2022_136525 crossref_primary_10_1177_09544089231207092 crossref_primary_10_3390_en17225664 crossref_primary_10_1016_j_jobe_2022_105028 crossref_primary_10_1016_j_enbuild_2024_114290 crossref_primary_10_3390_en16247969 crossref_primary_10_1007_s12273_023_0984_6 crossref_primary_10_1016_j_asoc_2022_109520 crossref_primary_10_1088_1742_6596_2181_1_012018 crossref_primary_10_1016_j_oceaneng_2022_112258 crossref_primary_10_1016_j_cie_2022_107966 crossref_primary_10_1016_j_enbuild_2021_111718 crossref_primary_10_3390_buildings13020532 crossref_primary_10_1016_j_enbuild_2025_115517 crossref_primary_10_3390_su162410941 crossref_primary_10_1016_j_rser_2022_112327 crossref_primary_10_1016_j_enbuild_2022_112529 crossref_primary_10_1016_j_egyai_2025_100561 crossref_primary_10_1016_j_enbuild_2021_111191 crossref_primary_10_1016_j_energy_2023_127334 crossref_primary_10_3390_buildings13092235 crossref_primary_10_1016_j_energy_2021_122720 crossref_primary_10_3390_buildings12081284 crossref_primary_10_1108_SASBE_09_2024_0385 crossref_primary_10_1007_s12273_021_0777_8 crossref_primary_10_1016_j_apenergy_2022_118947 crossref_primary_10_1016_j_jclepro_2024_144579 crossref_primary_10_1109_TEM_2024_3422821 crossref_primary_10_1016_j_egyai_2025_100617 crossref_primary_10_3390_en16062574 crossref_primary_10_1016_j_enbuild_2023_112832 crossref_primary_10_1016_j_energy_2024_131556 crossref_primary_10_3390_su17188339 crossref_primary_10_1016_j_enbuild_2021_111505 crossref_primary_10_1016_j_esd_2023_04_017 crossref_primary_10_1016_j_energy_2023_126878 crossref_primary_10_1016_j_rser_2025_116061 crossref_primary_10_1016_j_scs_2025_106500 crossref_primary_10_1016_j_enbuild_2025_116358 crossref_primary_10_3390_electronics13244985 crossref_primary_10_1016_j_est_2021_103653 crossref_primary_10_1016_j_jobe_2022_105602 crossref_primary_10_1016_j_energy_2021_120854 crossref_primary_10_1016_j_energy_2023_130050 crossref_primary_10_1016_j_energy_2021_121228 crossref_primary_10_3390_en16166030 |
| Cites_doi | 10.1016/j.enbuild.2017.10.054 10.1016/j.rser.2017.09.108 10.1016/j.enbuild.2018.01.017 10.1016/j.apenergy.2017.03.064 10.1016/j.apenergy.2014.02.057 10.1007/s00500-015-1679-4 10.1016/j.enbuild.2014.07.036 10.1016/j.enconman.2011.02.002 10.1016/j.apenergy.2019.114131 10.1016/j.apenergy.2009.09.004 10.1016/j.asoc.2019.105748 10.1016/j.enbuild.2018.11.010 10.1016/j.enbuild.2014.07.021 10.1016/j.apenergy.2017.05.015 10.1016/j.energy.2015.11.037 10.1016/j.enbuild.2004.09.009 10.1016/j.energy.2019.01.157 10.1115/1.1637640 10.1016/j.apenergy.2017.12.054 10.1016/j.apenergy.2016.08.096 10.1016/j.enbuild.2012.03.010 10.1016/j.enbuild.2017.01.083 10.1016/j.enbuild.2014.09.026 10.1016/j.enbuild.2013.03.035 10.1016/j.egypro.2019.01.967 10.1016/j.scs.2019.101623 10.1016/j.energy.2018.01.023 10.1016/j.enbuild.2012.11.010 10.1016/j.apenergy.2014.04.016 10.1016/j.apenergy.2016.03.112 10.1016/j.enbuild.2015.09.002 10.1016/j.apenergy.2008.11.035 10.1016/j.enbuild.2016.11.009 10.1016/j.enbuild.2012.08.032 10.1016/j.apenergy.2017.04.005 10.1016/j.enbuild.2016.12.016 10.1016/j.rser.2017.05.249 10.1016/j.rser.2017.04.095 10.1016/j.energy.2018.05.169 10.1016/j.energy.2009.12.005 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Sep 1, 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Sep 1, 2020 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2020.118045 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | 10_1016_j_energy_2020_118045 S036054422031152X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-9a4d5e55810372b5177e2c9fdcd0bccb121bea0d2ebaa9171a0f8a4a4f6470763 |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552898300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Mon Sep 29 03:31:02 EDT 2025 Wed Aug 13 05:55:47 EDT 2025 Sat Nov 29 07:22:48 EST 2025 Tue Nov 18 20:59:35 EST 2025 Fri Feb 23 02:48:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Energy consumption Feature selection Data-driven predictive model Residential buildings Heating and cooling days |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-9a4d5e55810372b5177e2c9fdcd0bccb121bea0d2ebaa9171a0f8a4a4f6470763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2446723347 |
| PQPubID | 2045484 |
| ParticipantIDs | proquest_miscellaneous_2574330712 proquest_journals_2446723347 crossref_primary_10_1016_j_energy_2020_118045 crossref_citationtrail_10_1016_j_energy_2020_118045 elsevier_sciencedirect_doi_10_1016_j_energy_2020_118045 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 2020-09-00 20200901 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Kusiak, Li, Zhang (bib29) 2010; 87 Amasyali, El-Gohary (bib3) 2018; 81 Edwards, New, Parker (bib13) 2012; 49 Satre-Meloy (bib33) 2019; 174 Papadopoulos, Azar, Woon, Kontokosta (bib42) 2017 Catalina, Iordache, Caracaleanu (bib35) 2013; 57 Turhan, Kazanasmaz, Uygun, Ekmen, Akkurt (bib39) 2014; 85 Naji, Keivani, Shamshirband, Alengaram, Jumaat, Mansor (bib41) 2016; 97 Li (bib9) 2009; 86 Chou, Bui (bib37) 2014; 82 Leung (bib7) 2012; 55 Gao, Alsarraf, Moayedi, Shahsavar, Nguyen (bib32) 2019; 84 Kwok, Lee (bib26) 2011; 52 Li, Wen (bib6) 2014; 82 Krarti (bib8) 2016 Jain, Damoulas, Kontokosta (bib40) 2014 Kamel, Memari (bib2) 2018; 147 Kontokosta, Tull (bib24) 2017; 197 Fan, Xiao, Zhao (bib51) 2017; 195 Ahmad, Chen, Huang (bib45) 2019; 158 Bourdeau, Zhai, Nefzaoui, Guo, Chatellier (bib48) 2019 Fan, Xiao, Wang (bib22) 2014; 127 Wang, Lu, Li (bib34) 2019; 49 Iwafune, Yagita, Ikegami, Ogimoto (bib38) 2014 Wei, Xingxing, Yong, Liang, Song, Jinshun, Mengjie (bib16) 2018; 82 Dong, Cao, Lee (bib10) 2005; 37 Lam (bib25) 2010; 35 Wang, Xiaohui (bib15) 2018; 159 Somu, Mr, Ramamritham (bib46) 2020; 261 Cui, Wu, Hu, Weir, Li (bib17) 2016; 172 Dodier, Henze (bib28) 2004; 126 Ma, Cheng (bib19) 2016; 183 Luis, Véronique, Dominique (bib4) 2017; 140 Ferracuti, Fonti, Ciabattoni, Pizzuti, Arteconi, Helsen, Comodi (bib23) 2017; 204 Zhang, Wen (bib31) 2019; 183 Kapetanakis, Mangina, Finn (bib30) 2017; 137 Paudel, Elmitri, Couturier, Nguyen, Kamphuis, Lacarrière, Le Corre (bib43) 2017; 138 Moreno, Dufour, Skarmeta, Jara, Genoud, Ladevie, Bezian (bib20) 2016; 20 Ahmad, Chen, Guo, Wang (bib11) 2018; 165 Roy, Roy, Balas (bib44) 2018; 82 Ahmad, Chen, Huang, Yabin, Wang, Shair, Kazim (bib12) 2018; 158 Jain, Smith, Culligan, Taylor (bib14) 2014; 123 Alobaidi, Chebana, Meguid (bib18) 2018; 212 Popescu, Ungureanu (bib36) 2013; 6B Li, Hu, Liu, Xue (bib21) 2015; 108 Li, Huang (bib5) 2013; 62 (bib1) 2019 Kolter, Ferreira (bib27) 2011 Cui (10.1016/j.energy.2020.118045_bib17) 2016; 172 Li (10.1016/j.energy.2020.118045_bib5) 2013; 62 (10.1016/j.energy.2020.118045_bib1) 2019 Li (10.1016/j.energy.2020.118045_bib9) 2009; 86 Zhang (10.1016/j.energy.2020.118045_bib31) 2019; 183 Amasyali (10.1016/j.energy.2020.118045_bib3) 2018; 81 Ma (10.1016/j.energy.2020.118045_bib19) 2016; 183 Roy (10.1016/j.energy.2020.118045_bib44) 2018; 82 Dong (10.1016/j.energy.2020.118045_bib10) 2005; 37 Satre-Meloy (10.1016/j.energy.2020.118045_bib33) 2019; 174 Gao (10.1016/j.energy.2020.118045_bib32) 2019; 84 Lam (10.1016/j.energy.2020.118045_bib25) 2010; 35 Jain (10.1016/j.energy.2020.118045_bib40) 2014 Ferracuti (10.1016/j.energy.2020.118045_bib23) 2017; 204 Chou (10.1016/j.energy.2020.118045_bib37) 2014; 82 Naji (10.1016/j.energy.2020.118045_bib41) 2016; 97 Kapetanakis (10.1016/j.energy.2020.118045_bib30) 2017; 137 Catalina (10.1016/j.energy.2020.118045_bib35) 2013; 57 Kolter (10.1016/j.energy.2020.118045_bib27) 2011 Kusiak (10.1016/j.energy.2020.118045_bib29) 2010; 87 Papadopoulos (10.1016/j.energy.2020.118045_bib42) 2017 Wang (10.1016/j.energy.2020.118045_bib15) 2018; 159 Bourdeau (10.1016/j.energy.2020.118045_bib48) 2019 Leung (10.1016/j.energy.2020.118045_bib7) 2012; 55 Fan (10.1016/j.energy.2020.118045_bib51) 2017; 195 Somu (10.1016/j.energy.2020.118045_bib46) 2020; 261 Iwafune (10.1016/j.energy.2020.118045_bib38) 2014 Fan (10.1016/j.energy.2020.118045_bib22) 2014; 127 Kamel (10.1016/j.energy.2020.118045_bib2) 2018; 147 Moreno (10.1016/j.energy.2020.118045_bib20) 2016; 20 Paudel (10.1016/j.energy.2020.118045_bib43) 2017; 138 Kontokosta (10.1016/j.energy.2020.118045_bib24) 2017; 197 Luis (10.1016/j.energy.2020.118045_bib4) 2017; 140 Krarti (10.1016/j.energy.2020.118045_bib8) 2016 Turhan (10.1016/j.energy.2020.118045_bib39) 2014; 85 Jain (10.1016/j.energy.2020.118045_bib14) 2014; 123 Li (10.1016/j.energy.2020.118045_bib21) 2015; 108 Wang (10.1016/j.energy.2020.118045_bib34) 2019; 49 Dodier (10.1016/j.energy.2020.118045_bib28) 2004; 126 Ahmad (10.1016/j.energy.2020.118045_bib45) 2019; 158 Alobaidi (10.1016/j.energy.2020.118045_bib18) 2018; 212 Ahmad (10.1016/j.energy.2020.118045_bib11) 2018; 165 Edwards (10.1016/j.energy.2020.118045_bib13) 2012; 49 Ahmad (10.1016/j.energy.2020.118045_bib12) 2018; 158 Wei (10.1016/j.energy.2020.118045_bib16) 2018; 82 Popescu (10.1016/j.energy.2020.118045_bib36) 2013; 6B Li (10.1016/j.energy.2020.118045_bib6) 2014; 82 Kwok (10.1016/j.energy.2020.118045_bib26) 2011; 52 |
| References_xml | – volume: 81 start-page: 1192 year: 2018 end-page: 1205 ident: bib3 article-title: A review of data-driven building energy consumption prediction studies publication-title: Renew Sustain Energy Rev – volume: 159 start-page: 454 year: 2018 end-page: 461 ident: bib15 article-title: Adaptive learning based data-driven models for predicting hourly building energy use publication-title: Energy Build – volume: 204 start-page: 1375 year: 2017 end-page: 1387 ident: bib23 article-title: Data-driven models for short-term thermal behaviour prediction in real buildings publication-title: Appl Energy – volume: 52 start-page: 2555 year: 2011 end-page: 2564 ident: bib26 article-title: A study of the importance of occupancy to building cooling load in prediction by intelligent approach publication-title: Energy Convers Manag – year: 2019 ident: bib1 article-title: Residential sector energy consumption – volume: 86 start-page: 2249 year: 2009 end-page: 2256 ident: bib9 article-title: Applying support vector machine to predict hourly cooling load in the building publication-title: Appl Energy – volume: 147 start-page: 15 year: 2018 end-page: 24 ident: bib2 article-title: Automated building energy modeling and assessment tool (ABEMAT) publication-title: Energy – volume: 37 start-page: 545 year: 2005 end-page: 553 ident: bib10 article-title: Applying support vector machines to predict building energy consumption in tropical region publication-title: Energy Build – start-page: 1197 year: 2014 end-page: 1204 ident: bib38 article-title: Short-term forecasting of residential building load for distributed energy management publication-title: 2014 IEEE int energy conf – volume: 108 start-page: 106 year: 2015 end-page: 113 ident: bib21 article-title: Building’s electricity consumption prediction using optimized artificial neural networks and principal component analysis publication-title: Energy Build – volume: 57 start-page: 302 year: 2013 end-page: 312 ident: bib35 article-title: Multiple regression model for fast prediction of the heating energy demand publication-title: Energy Build – start-page: 1675 year: 2014 end-page: 1682 ident: bib40 article-title: Towards data-driven energy consumption forecasting of multi-family residential buildings: feature selection via the lasso publication-title: Computing in civil and building engineering – year: 2011 ident: bib27 article-title: A large-scale study on predicting and contextualizing building energy usage – volume: 97 start-page: 506 year: 2016 end-page: 516 ident: bib41 article-title: Estimating building energy consumption using extreme learning machine method publication-title: Energy – volume: 197 start-page: 303 year: 2017 end-page: 317 ident: bib24 article-title: A data-driven predictive model of city-scale energy use in buildings publication-title: Appl Energy – volume: 82 start-page: 4256 year: 2018 end-page: 4268 ident: bib44 article-title: Estimating heating load in buildings using multivariate adaptive regression splines, extreme learning machine, a hybrid model of MARS and ELM publication-title: Renew Sustain Energy Rev – volume: 35 start-page: 1482 year: 2010 end-page: 1490 ident: bib25 article-title: An analysis of future building energy use in subtropical Hong Kong publication-title: Energy – volume: 82 start-page: 1 year: 2014 end-page: 12 ident: bib6 article-title: Building energy consumption on-line forecasting using physics based system identification publication-title: Energy Build – volume: 20 start-page: 1749 year: 2016 end-page: 1762 ident: bib20 article-title: Big data: the key to energy efficiency in smart buildings publication-title: Soft Computing – volume: 49 start-page: 101623 year: 2019 ident: bib34 article-title: Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption for residential buildings publication-title: Sustain Cities Soc – start-page: 1 year: 2017 end-page: 11 ident: bib42 article-title: Evaluation of tree-based ensemble learning algorithms for building energy performance estimation publication-title: J Building Performance Simulation – volume: 55 start-page: 151 year: 2012 end-page: 163 ident: bib7 article-title: The use of occupancy space electrical power demand in building cooling load prediction publication-title: Energy Build – volume: 87 start-page: 925 year: 2010 end-page: 933 ident: bib29 article-title: A data-driven approach for steam load prediction in buildings publication-title: Appl Energy – volume: 140 start-page: 81 year: 2017 end-page: 97 ident: bib4 article-title: Data driven prediction models of energy use of appliances in a low-energy house alow-energy house publication-title: Energy Build – volume: 137 start-page: 13 year: 2017 end-page: 26 ident: bib30 article-title: Input variable selection for thermal load predictive models of commercial buildings publication-title: Energy Build – volume: 174 start-page: 148 year: 2019 end-page: 168 ident: bib33 article-title: Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models publication-title: Energy – volume: 212 start-page: 997 year: 2018 end-page: 1012 ident: bib18 article-title: Robust ensemble learning framework for day ahead forecasting of household based energy consumption publication-title: Appl Energy – volume: 49 start-page: 591 year: 2012 end-page: 603 ident: bib13 article-title: Predicting future hourly residential electrical consumption: a machine learning case study publication-title: Energy Build – volume: 195 start-page: 222 year: 2017 end-page: 233 ident: bib51 article-title: A short-term building cooling load prediction method using deep learning algorithms publication-title: Appl Energy – volume: 126 start-page: 592 year: 2004 end-page: 600 ident: bib28 article-title: Statistical analysis of neural networks as applied to building energy prediction publication-title: J Sol Energy Eng – volume: 165 start-page: 301 year: 2018 end-page: 320 ident: bib11 article-title: A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: a review publication-title: Energy Build – volume: 85 start-page: 115 year: 2014 end-page: 125 ident: bib39 article-title: Comparative study of a building energy performance software (KEP-IYTE-ESS) and ANN-based building heat load estimation publication-title: Energy Build – volume: 123 start-page: 168 year: 2014 end-page: 178 ident: bib14 article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy publication-title: Appl Energy – volume: 158 start-page: 17 year: 2018 end-page: 32 ident: bib12 article-title: Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment publication-title: Energy – volume: 84 start-page: 105748 year: 2019 ident: bib32 article-title: Comprehensive preference learning and feature validity for designing energy-efficient residential buildings using machine learning paradigms publication-title: Appl Soft Comput – volume: 62 start-page: 442 year: 2013 end-page: 449 ident: bib5 article-title: Re-evaluation of building cooling load prediction models for use in humid subtropical area publication-title: Energy Build – volume: 158 start-page: 3331 year: 2019 end-page: 3338 ident: bib45 article-title: Short-term energy prediction for district-level load management using machine learning based approaches publication-title: Energy Procedia – year: 2016 ident: bib8 article-title: Energy audit of building systems: an engineering approach – volume: 183 start-page: 193 year: 2016 end-page: 201 ident: bib19 article-title: Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests publication-title: Appl Energy – volume: 6B year: 2013 ident: bib36 article-title: Prediction of space heating consumption in district heated apartments publication-title: Energy ASME – volume: 82 start-page: 437 year: 2014 end-page: 446 ident: bib37 article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design publication-title: Energy Build – volume: 82 start-page: 1027 year: 2018 end-page: 1047 ident: bib16 article-title: A review of data-driven approaches for prediction and classification of building energy consumption publication-title: Renew Sustain Energy Rev – volume: 261 start-page: 114131 year: 2020 ident: bib46 article-title: A hybrid model for building energy consumption forecasting using long short term memory networks publication-title: Appl Energy – year: 2019 ident: bib48 article-title: Modeling and forecasting building energy consumption: a review of data-driven techniques – volume: 172 start-page: 251 year: 2016 end-page: 263 ident: bib17 article-title: Short-term building energy model recommendation system: a meta-learning approach publication-title: Appl Energy – volume: 127 start-page: 1 year: 2014 end-page: 10 ident: bib22 article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques publication-title: Appl Energy – volume: 183 start-page: 428 year: 2019 end-page: 442 ident: bib31 article-title: A systematic feature selection procedure for short-term data-driven building energy forecasting model development publication-title: Energy Build – volume: 138 start-page: 240 year: 2017 end-page: 256 ident: bib43 article-title: A relevant data selection method for energy consumption prediction of low energy building based on support vector machine publication-title: Energy Build – volume: 159 start-page: 454 year: 2018 ident: 10.1016/j.energy.2020.118045_bib15 article-title: Adaptive learning based data-driven models for predicting hourly building energy use publication-title: Energy Build doi: 10.1016/j.enbuild.2017.10.054 – volume: 82 start-page: 1027 year: 2018 ident: 10.1016/j.energy.2020.118045_bib16 article-title: A review of data-driven approaches for prediction and classification of building energy consumption publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.09.108 – volume: 165 start-page: 301 year: 2018 ident: 10.1016/j.energy.2020.118045_bib11 article-title: A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: a review publication-title: Energy Build doi: 10.1016/j.enbuild.2018.01.017 – volume: 195 start-page: 222 year: 2017 ident: 10.1016/j.energy.2020.118045_bib51 article-title: A short-term building cooling load prediction method using deep learning algorithms publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.064 – volume: 123 start-page: 168 year: 2014 ident: 10.1016/j.energy.2020.118045_bib14 article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.02.057 – volume: 20 start-page: 1749 issue: 5 year: 2016 ident: 10.1016/j.energy.2020.118045_bib20 article-title: Big data: the key to energy efficiency in smart buildings publication-title: Soft Computing doi: 10.1007/s00500-015-1679-4 – volume: 82 start-page: 437 year: 2014 ident: 10.1016/j.energy.2020.118045_bib37 article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design publication-title: Energy Build doi: 10.1016/j.enbuild.2014.07.036 – volume: 52 start-page: 2555 issue: 7 year: 2011 ident: 10.1016/j.energy.2020.118045_bib26 article-title: A study of the importance of occupancy to building cooling load in prediction by intelligent approach publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2011.02.002 – volume: 261 start-page: 114131 year: 2020 ident: 10.1016/j.energy.2020.118045_bib46 article-title: A hybrid model for building energy consumption forecasting using long short term memory networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114131 – volume: 87 start-page: 925 issue: 3 year: 2010 ident: 10.1016/j.energy.2020.118045_bib29 article-title: A data-driven approach for steam load prediction in buildings publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.09.004 – volume: 84 start-page: 105748 year: 2019 ident: 10.1016/j.energy.2020.118045_bib32 article-title: Comprehensive preference learning and feature validity for designing energy-efficient residential buildings using machine learning paradigms publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105748 – volume: 183 start-page: 428 year: 2019 ident: 10.1016/j.energy.2020.118045_bib31 article-title: A systematic feature selection procedure for short-term data-driven building energy forecasting model development publication-title: Energy Build doi: 10.1016/j.enbuild.2018.11.010 – volume: 82 start-page: 1 year: 2014 ident: 10.1016/j.energy.2020.118045_bib6 article-title: Building energy consumption on-line forecasting using physics based system identification publication-title: Energy Build doi: 10.1016/j.enbuild.2014.07.021 – volume: 204 start-page: 1375 year: 2017 ident: 10.1016/j.energy.2020.118045_bib23 article-title: Data-driven models for short-term thermal behaviour prediction in real buildings publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.05.015 – start-page: 1 year: 2017 ident: 10.1016/j.energy.2020.118045_bib42 article-title: Evaluation of tree-based ensemble learning algorithms for building energy performance estimation publication-title: J Building Performance Simulation – year: 2019 ident: 10.1016/j.energy.2020.118045_bib48 – volume: 97 start-page: 506 year: 2016 ident: 10.1016/j.energy.2020.118045_bib41 article-title: Estimating building energy consumption using extreme learning machine method publication-title: Energy doi: 10.1016/j.energy.2015.11.037 – volume: 37 start-page: 545 issue: 5 year: 2005 ident: 10.1016/j.energy.2020.118045_bib10 article-title: Applying support vector machines to predict building energy consumption in tropical region publication-title: Energy Build doi: 10.1016/j.enbuild.2004.09.009 – volume: 174 start-page: 148 year: 2019 ident: 10.1016/j.energy.2020.118045_bib33 article-title: Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models publication-title: Energy doi: 10.1016/j.energy.2019.01.157 – volume: 126 start-page: 592 issue: 1 year: 2004 ident: 10.1016/j.energy.2020.118045_bib28 article-title: Statistical analysis of neural networks as applied to building energy prediction publication-title: J Sol Energy Eng doi: 10.1115/1.1637640 – volume: 212 start-page: 997 year: 2018 ident: 10.1016/j.energy.2020.118045_bib18 article-title: Robust ensemble learning framework for day ahead forecasting of household based energy consumption publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.12.054 – volume: 183 start-page: 193 year: 2016 ident: 10.1016/j.energy.2020.118045_bib19 article-title: Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.08.096 – volume: 49 start-page: 591 year: 2012 ident: 10.1016/j.energy.2020.118045_bib13 article-title: Predicting future hourly residential electrical consumption: a machine learning case study publication-title: Energy Build doi: 10.1016/j.enbuild.2012.03.010 – volume: 140 start-page: 81 year: 2017 ident: 10.1016/j.energy.2020.118045_bib4 article-title: Data driven prediction models of energy use of appliances in a low-energy house alow-energy house publication-title: Energy Build doi: 10.1016/j.enbuild.2017.01.083 – volume: 85 start-page: 115 year: 2014 ident: 10.1016/j.energy.2020.118045_bib39 article-title: Comparative study of a building energy performance software (KEP-IYTE-ESS) and ANN-based building heat load estimation publication-title: Energy Build doi: 10.1016/j.enbuild.2014.09.026 – volume: 62 start-page: 442 year: 2013 ident: 10.1016/j.energy.2020.118045_bib5 article-title: Re-evaluation of building cooling load prediction models for use in humid subtropical area publication-title: Energy Build doi: 10.1016/j.enbuild.2013.03.035 – volume: 158 start-page: 3331 year: 2019 ident: 10.1016/j.energy.2020.118045_bib45 article-title: Short-term energy prediction for district-level load management using machine learning based approaches publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.967 – volume: 49 start-page: 101623 year: 2019 ident: 10.1016/j.energy.2020.118045_bib34 article-title: Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption for residential buildings publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2019.101623 – volume: 147 start-page: 15 year: 2018 ident: 10.1016/j.energy.2020.118045_bib2 article-title: Automated building energy modeling and assessment tool (ABEMAT) publication-title: Energy doi: 10.1016/j.energy.2018.01.023 – volume: 57 start-page: 302 year: 2013 ident: 10.1016/j.energy.2020.118045_bib35 article-title: Multiple regression model for fast prediction of the heating energy demand publication-title: Energy Build doi: 10.1016/j.enbuild.2012.11.010 – volume: 127 start-page: 1 year: 2014 ident: 10.1016/j.energy.2020.118045_bib22 article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.04.016 – volume: 172 start-page: 251 year: 2016 ident: 10.1016/j.energy.2020.118045_bib17 article-title: Short-term building energy model recommendation system: a meta-learning approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.112 – year: 2019 ident: 10.1016/j.energy.2020.118045_bib1 – volume: 108 start-page: 106 year: 2015 ident: 10.1016/j.energy.2020.118045_bib21 article-title: Building’s electricity consumption prediction using optimized artificial neural networks and principal component analysis publication-title: Energy Build doi: 10.1016/j.enbuild.2015.09.002 – volume: 86 start-page: 2249 issue: 10 year: 2009 ident: 10.1016/j.energy.2020.118045_bib9 article-title: Applying support vector machine to predict hourly cooling load in the building publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.11.035 – start-page: 1197 year: 2014 ident: 10.1016/j.energy.2020.118045_bib38 article-title: Short-term forecasting of residential building load for distributed energy management – volume: 138 start-page: 240 year: 2017 ident: 10.1016/j.energy.2020.118045_bib43 article-title: A relevant data selection method for energy consumption prediction of low energy building based on support vector machine publication-title: Energy Build doi: 10.1016/j.enbuild.2016.11.009 – volume: 55 start-page: 151 year: 2012 ident: 10.1016/j.energy.2020.118045_bib7 article-title: The use of occupancy space electrical power demand in building cooling load prediction publication-title: Energy Build doi: 10.1016/j.enbuild.2012.08.032 – volume: 197 start-page: 303 year: 2017 ident: 10.1016/j.energy.2020.118045_bib24 article-title: A data-driven predictive model of city-scale energy use in buildings publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.04.005 – year: 2016 ident: 10.1016/j.energy.2020.118045_bib8 – volume: 137 start-page: 13 year: 2017 ident: 10.1016/j.energy.2020.118045_bib30 article-title: Input variable selection for thermal load predictive models of commercial buildings publication-title: Energy Build doi: 10.1016/j.enbuild.2016.12.016 – start-page: 1675 year: 2014 ident: 10.1016/j.energy.2020.118045_bib40 article-title: Towards data-driven energy consumption forecasting of multi-family residential buildings: feature selection via the lasso – year: 2011 ident: 10.1016/j.energy.2020.118045_bib27 – volume: 82 start-page: 4256 year: 2018 ident: 10.1016/j.energy.2020.118045_bib44 article-title: Estimating heating load in buildings using multivariate adaptive regression splines, extreme learning machine, a hybrid model of MARS and ELM publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.05.249 – volume: 81 start-page: 1192 year: 2018 ident: 10.1016/j.energy.2020.118045_bib3 article-title: A review of data-driven building energy consumption prediction studies publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.04.095 – volume: 158 start-page: 17 year: 2018 ident: 10.1016/j.energy.2020.118045_bib12 article-title: Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment publication-title: Energy doi: 10.1016/j.energy.2018.05.169 – volume: 35 start-page: 1482 issue: 3 year: 2010 ident: 10.1016/j.energy.2020.118045_bib25 article-title: An analysis of future building energy use in subtropical Hong Kong publication-title: Energy doi: 10.1016/j.energy.2009.12.005 – volume: 6B year: 2013 ident: 10.1016/j.energy.2020.118045_bib36 article-title: Prediction of space heating consumption in district heated apartments publication-title: Energy ASME |
| SSID | ssj0005899 |
| Score | 2.562266 |
| Snippet | Data-driven models can estimate the buildings’ energy consumption using machine learning algorithms. This approach works based on the correlation between... Data-driven models can estimate the buildings' energy consumption using machine learning algorithms. This approach works based on the correlation between... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118045 |
| SubjectTerms | air Air conditioning Algorithms Buildings climatic zones computer simulation Control systems Cooling Data-driven predictive model energy Energy consumption Feature selection heat Heating Heating and cooling days Hot water heating Humid climates Learning algorithms Machine learning Meteorological data Model accuracy Occupancy Physical properties Prediction models Predictive control Recursive methods Regression regression analysis Residential areas Residential buildings Residential energy Schedules Seasonal variations Sensors Ventilation |
| Title | Data-driven predictive models for residential building energy use based on the segregation of heating and cooling days |
| URI | https://dx.doi.org/10.1016/j.energy.2020.118045 https://www.proquest.com/docview/2446723347 https://www.proquest.com/docview/2574330712 |
| Volume | 206 |
| WOSCitedRecordID | wos000552898300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgQvCAYTHQMZibcqVS5OnTxOUAQITUgbUt8i30K7jWQ0adXt13Mc20m6CcYeeImqxHGsfF_PLeccI_SOh34qGE89QVTskYgoL4kkA69VJKBgqe-LpmX-V3p8nMxm6bfB4NrVwqwvaFEkm016-V-hhnMAti6dvQfc7aRwAn4D6HAE2OH4T8B_YDXz5FJLMd0BQC4aiWa2vGmaL4zAw1409bkAD7fbYo-UKQJcVWqkNZu0XxFGlQKP_EffsKxdXaMoy6aYXbKraivCb6bSjUw3Jne-y-hmP01awHTeywY6mavFeRPfOZmzK9ZRzQazZyv1y6lYG6EAd9SlYHWVWb4XE7IldUO_Lzd1IzrTVvKWSDfRhbOxeQ1j_YBxN3y7g_YNzdbmG7pUtrPMzJLpWTIzywO0G9I4BaG-e_R5OvvSJQglze6j7epd4WWTHXh7NX8ybG6o-MZuOX2KnliHAx8ZojxDA1XsoUeuHr3aQ_vTrtYRBlphXz1H6x6TcMckbJiEAVncYxJ2TMJm0RiYhBsm4bLAwCTcYxIuc2yZhIFJ2DIJaya9QN8_Tk_ff_LsNh2eiCa09lJGZKziONElpyGPA0pVKNJcCulzIXgQBlwxX4aKM5YGNGB-njDCSD4h1Af9to92irJQLxEOJdjjKpYiylPCmeBwNSCcgA_DI-GTIYrcO86E7WGvt1K5yP6G8BB57V2XpofLHeOpgy-zdqixLzPg5B13Hjq0MysSqgwM6AkNo4jQIXrbXgYprj_NsUKVKxgTgyUP6jYID-652FfocfefO0Q79XKlXqOHYl0vquUby-nfe0bEIw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+predictive+models+for+residential+building+energy+use+based+on+the+segregation+of+heating+and+cooling+days&rft.jtitle=Energy+%28Oxford%29&rft.au=Kamel%2C+Ehsan&rft.au=Sheikh%2C+Shaya&rft.au=Huang%2C+Xueqing&rft.date=2020-09-01&rft.issn=0360-5442&rft.volume=206&rft.spage=118045&rft_id=info:doi/10.1016%2Fj.energy.2020.118045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2020_118045 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |