Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm
Estimating parameters and establishing high-accuracy and high-reliability models of photovoltaic (PV) modules by using the actual current-voltage data is important to simulate, model, and optimize the PV systems. Several meta-heuristic optimization techniques have been developed to estimate the para...
Saved in:
| Published in: | Energy (Oxford) Vol. 249; p. 123760 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Elsevier Ltd
15.06.2022
Elsevier BV |
| Subjects: | |
| ISSN: | 0360-5442, 1873-6785 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Estimating parameters and establishing high-accuracy and high-reliability models of photovoltaic (PV) modules by using the actual current-voltage data is important to simulate, model, and optimize the PV systems. Several meta-heuristic optimization techniques have been developed to estimate the parameters of the solar PV models. However, it is still a challenging task to accurately, reliably, and quickly estimate the unknown parameters of PV models. This paper proposes a novel hybrid seagull optimization algorithm (HSOA) for estimating the unknown parameters of PV models effectively and accurately. In proposed HSOA, the personal historical best information is embedded into position search equation to improve the solution precision. A novel nonlinear escaping energy factor based on cosine function is presented for balancing global exploration and local exploitation. The differential mutation strategy is introduced to escape from the local optima. We firstly select twelve classical benchmark test functions to investigate the feasibility of HSOA, and experimental results show that HSOA is superior to most compared methods. Then, HSOA is used for solving parameters estimation problem of three benchmark solar PV models. The comparison results demonstrate that HSOA is superior to BOA, GWO, WOA, HHO, SOA, EEGWO, and ISCA on solution quality, convergence and reliability.
•A hybrid algorithm called HSOA is proposed.•HSOA is applied to estimate the unknown parameters of PV models.•A modified position updating equation is presented.•A new nonlinear escaping energy strategy is designed.•Experimental results show the competitive performance of HSOA. |
|---|---|
| AbstractList | Estimating parameters and establishing high-accuracy and high-reliability models of photovoltaic (PV) modules by using the actual current-voltage data is important to simulate, model, and optimize the PV systems. Several meta-heuristic optimization techniques have been developed to estimate the parameters of the solar PV models. However, it is still a challenging task to accurately, reliably, and quickly estimate the unknown parameters of PV models. This paper proposes a novel hybrid seagull optimization algorithm (HSOA) for estimating the unknown parameters of PV models effectively and accurately. In proposed HSOA, the personal historical best information is embedded into position search equation to improve the solution precision. A novel nonlinear escaping energy factor based on cosine function is presented for balancing global exploration and local exploitation. The differential mutation strategy is introduced to escape from the local optima. We firstly select twelve classical benchmark test functions to investigate the feasibility of HSOA, and experimental results show that HSOA is superior to most compared methods. Then, HSOA is used for solving parameters estimation problem of three benchmark solar PV models. The comparison results demonstrate that HSOA is superior to BOA, GWO, WOA, HHO, SOA, EEGWO, and ISCA on solution quality, convergence and reliability. Estimating parameters and establishing high-accuracy and high-reliability models of photovoltaic (PV) modules by using the actual current-voltage data is important to simulate, model, and optimize the PV systems. Several meta-heuristic optimization techniques have been developed to estimate the parameters of the solar PV models. However, it is still a challenging task to accurately, reliably, and quickly estimate the unknown parameters of PV models. This paper proposes a novel hybrid seagull optimization algorithm (HSOA) for estimating the unknown parameters of PV models effectively and accurately. In proposed HSOA, the personal historical best information is embedded into position search equation to improve the solution precision. A novel nonlinear escaping energy factor based on cosine function is presented for balancing global exploration and local exploitation. The differential mutation strategy is introduced to escape from the local optima. We firstly select twelve classical benchmark test functions to investigate the feasibility of HSOA, and experimental results show that HSOA is superior to most compared methods. Then, HSOA is used for solving parameters estimation problem of three benchmark solar PV models. The comparison results demonstrate that HSOA is superior to BOA, GWO, WOA, HHO, SOA, EEGWO, and ISCA on solution quality, convergence and reliability. •A hybrid algorithm called HSOA is proposed.•HSOA is applied to estimate the unknown parameters of PV models.•A modified position updating equation is presented.•A new nonlinear escaping energy strategy is designed.•Experimental results show the competitive performance of HSOA. |
| ArticleNumber | 123760 |
| Author | Cai, Shaohong Xu, Ming Tang, Mingzhu Liang, Ximing Long, Wen Jiao, Jianjun |
| Author_xml | – sequence: 1 givenname: Wen surname: Long fullname: Long, Wen organization: Key Laboratory of Economics System Simulation, Guizhou University of Finance & Economics, Guiyang 550025, China – sequence: 2 givenname: Jianjun surname: Jiao fullname: Jiao, Jianjun organization: School of Mathematics and Statistics, Guizhou University of Finance & Economics, Guiyang 550025, China – sequence: 3 givenname: Ximing surname: Liang fullname: Liang, Ximing organization: School of Science, Beijing University of Civil Engineering and Architecture, Beijing 100044, China – sequence: 4 givenname: Ming surname: Xu fullname: Xu, Ming organization: School of Mathematics and Statistics, Guizhou University of Finance & Economics, Guiyang 550025, China – sequence: 5 givenname: Mingzhu surname: Tang fullname: Tang, Mingzhu organization: School of Energy Power and Engineering, Changsha University of Science & Technology, Changsha 410114, China – sequence: 6 givenname: Shaohong orcidid: 0000-0002-2843-974X surname: Cai fullname: Cai, Shaohong email: gzcd_csh58@126.com organization: Key Laboratory of Economics System Simulation, Guizhou University of Finance & Economics, Guiyang 550025, China |
| BookMark | eNqFkMFO3DAQhq0KpC7QN-jBEpdestix4yQcKlUISiWk9gBn13HGu1459tZ2VlqeHtP0xKHMZS7f_2vmO0MnPnhA6DMla0qouNqtwUPcHNc1qes1rVkryAe0ol3LKtF2zQlaESZI1XBef0RnKe0IIU3X9yv0-5eKaoIMMWFI2U4q2-BxMHi_DTkcgsvKajyFEVzCc7J-gxX24QAOb49DtCNOoDazczjsS9w-LwXKbUK0eTtdoFOjXIJP__Y5erq7fby5rx5-fv9x8-2h0ky0uepgJA2UMbQHzjhVQATlRDTGDIy1I-eDZno0gzGsH02nNNdsKIghTd8bdo6-LL37GP7M5RU52aTBOeUhzEnWgnddy1knCnr5Bt2FOfpyXaEK1ouW1IW6XigdQ0oRjNQ2_30uR2WdpES-ypc7uciXr_LlIr-E-ZvwPha38fhe7OsSK7LhYCHKpC14DaONoLMcg_1_wQtkNaUm |
| CitedBy_id | crossref_primary_10_1016_j_jece_2024_112210 crossref_primary_10_1016_j_solener_2024_112353 crossref_primary_10_3390_math11081861 crossref_primary_10_1016_j_asoc_2024_112221 crossref_primary_10_1016_j_asoc_2024_112220 crossref_primary_10_1016_j_eswa_2022_117255 crossref_primary_10_3390_su15043312 crossref_primary_10_3390_en16104152 crossref_primary_10_3390_su15065027 crossref_primary_10_1007_s42235_024_00510_w crossref_primary_10_3390_su151411089 crossref_primary_10_1088_2631_8695_adcb04 crossref_primary_10_1007_s11831_025_10249_0 crossref_primary_10_34248_bsengineering_1490859 crossref_primary_10_3390_en16248022 crossref_primary_10_1049_rpg2_12973 crossref_primary_10_1016_j_compeleceng_2025_110582 crossref_primary_10_1016_j_ijhydene_2024_06_424 crossref_primary_10_1007_s13198_025_02915_0 crossref_primary_10_3390_math11194200 crossref_primary_10_1016_j_heliyon_2024_e39902 crossref_primary_10_3390_su15107896 crossref_primary_10_1080_03772063_2025_2541909 crossref_primary_10_1016_j_heliyon_2024_e38412 crossref_primary_10_1016_j_robot_2024_104678 crossref_primary_10_1016_j_ijleo_2022_170391 crossref_primary_10_1016_j_compeleceng_2023_108603 crossref_primary_10_3390_s22114173 crossref_primary_10_1016_j_rser_2024_114349 crossref_primary_10_1002_ese3_1673 crossref_primary_10_1007_s11042_024_19317_2 crossref_primary_10_3390_en15218059 crossref_primary_10_1002_tee_24250 crossref_primary_10_1038_s41598_024_52416_6 crossref_primary_10_3390_eng4030103 crossref_primary_10_1007_s00500_022_07389_x crossref_primary_10_3233_JIFS_236372 crossref_primary_10_3390_en15249261 crossref_primary_10_3390_app14188549 crossref_primary_10_1016_j_compind_2024_104209 crossref_primary_10_1007_s11804_023_00371_5 crossref_primary_10_1016_j_compeleceng_2023_108893 crossref_primary_10_1016_j_indcrop_2023_116579 crossref_primary_10_1016_j_knosys_2025_113420 crossref_primary_10_1155_er_3384091 crossref_primary_10_1007_s10462_023_10613_1 crossref_primary_10_1038_s41598_025_89595_9 crossref_primary_10_1016_j_applthermaleng_2023_120386 crossref_primary_10_1049_rpg2_13057 crossref_primary_10_1080_23311916_2024_2380805 crossref_primary_10_1109_JSEN_2022_3222510 crossref_primary_10_3390_e24070973 crossref_primary_10_1016_j_ijleo_2023_171467 |
| Cites_doi | 10.1016/j.energy.2021.120136 10.1016/j.energy.2020.117804 10.3390/atmos12030336 10.1002/dac.4519 10.1016/j.enconman.2019.112243 10.1016/j.enconman.2020.113491 10.1016/j.advengsoft.2013.12.007 10.1016/j.rser.2021.110828 10.1016/j.enconman.2020.112716 10.1016/j.solener.2020.09.047 10.1016/j.eswa.2020.113750 10.1016/j.jpowsour.2019.05.089 10.1155/2021/6639671 10.1016/j.solener.2021.02.038 10.1016/j.apenergy.2017.05.029 10.1016/j.renene.2017.04.014 10.1016/j.engappai.2019.103457 10.1007/s00521-020-04714-z 10.1016/j.enconman.2018.08.053 10.1016/j.energy.2017.09.110 10.1016/j.solener.2017.01.064 10.1016/j.enconman.2020.112764 10.1016/j.enconman.2020.112872 10.1080/08839514.2018.1508807 10.1016/j.egyr.2020.11.249 10.1109/TSTE.2017.2736060 10.1016/j.apenergy.2012.06.036 10.1016/j.renene.2020.02.084 10.1016/j.asoc.2021.107218 10.1016/0038-1101(86)90212-1 10.1109/ACCESS.2019.2909945 10.1016/j.solener.2020.11.046 10.1016/j.enconman.2014.09.070 10.1016/j.engappai.2017.10.024 10.1016/j.enconman.2020.113614 10.1109/ACCESS.2020.3005236 10.1016/j.apenergy.2018.06.010 10.1016/j.energy.2021.120750 10.3390/en14071867 10.1016/j.energy.2020.118644 10.1016/j.apenergy.2019.05.013 10.1016/j.eswa.2018.06.023 10.1016/j.enconman.2019.05.057 10.1109/ACCESS.2020.3019244 10.1016/j.advengsoft.2016.01.008 10.1016/j.egyr.2019.11.013 10.1016/j.matcom.2015.10.008 10.1016/j.eswa.2020.114150 10.1016/j.egyr.2021.01.093 10.3390/pr9020387 10.1080/01425918608909835 10.1016/j.enconman.2016.09.005 10.1016/j.solener.2020.09.032 10.1016/j.energy.2020.117040 10.1016/j.solener.2020.04.036 10.1016/j.enconman.2014.06.026 10.1016/j.asoc.2021.107146 10.1016/j.energy.2020.116979 10.3139/120.111529 10.1016/j.solener.2020.06.100 10.1016/j.swevo.2017.02.005 10.1016/j.enconman.2014.10.025 10.1109/ACCESS.2020.2997791 10.1016/j.energy.2020.117054 10.1016/j.enconman.2020.113474 10.1016/j.apenergy.2019.01.008 10.1016/j.enconman.2020.112904 10.1016/j.enconman.2019.112443 10.1016/j.enconman.2017.08.088 10.1016/j.future.2019.02.028 10.1016/j.energy.2019.116001 10.1016/j.swevo.2018.01.001 10.1016/j.jclepro.2019.118778 10.1016/j.knosys.2018.11.024 10.1016/j.ijleo.2020.165277 10.1016/j.energy.2020.117333 10.1016/j.eswa.2018.11.032 10.1007/s00500-018-3102-4 10.1016/j.rser.2016.03.049 10.1007/s40095-015-0198-5 10.1016/j.asoc.2020.106724 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jun 15, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jun 15, 2022 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2022.123760 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | 10_1016_j_energy_2022_123760 S0360544222006636 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-8ed05eeeef19e4341ae0614065ffb337d44bc3cdfbff39df8ac4c3b614f0599f3 |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000794028600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 02:11:37 EDT 2025 Wed Aug 13 11:01:41 EDT 2025 Sat Nov 29 07:21:33 EST 2025 Tue Nov 18 20:56:35 EST 2025 Fri Feb 23 02:38:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Seagull optimization algorithm Differential evolution Parameter estimation Function optimization Photovoltaic models |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-8ed05eeeef19e4341ae0614065ffb337d44bc3cdfbff39df8ac4c3b614f0599f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2843-974X |
| PQID | 2664896702 |
| PQPubID | 2045484 |
| ParticipantIDs | proquest_miscellaneous_2648874386 proquest_journals_2664896702 crossref_citationtrail_10_1016_j_energy_2022_123760 crossref_primary_10_1016_j_energy_2022_123760 elsevier_sciencedirect_doi_10_1016_j_energy_2022_123760 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-15 |
| PublicationDateYYYYMMDD | 2022-06-15 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Liang, Qiao, Yu, Ge, Qu, Xu, Li (bib28) 2020; 207 Che, He (bib71) 2021; 2021 Chen, Li, Zhang, Ye, Xiong, Zhang (bib65) 2021; 9 Calasan, Aleem, Zobaa (bib16) 2021; 218 Jiang, Yang, Ping, Dong (bib68) 2020; 8 Ridha (bib13) 2020; 209 Long, Cai, Jiao, Xu, Wu (bib4) 2020; 203 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (bib83) 2019; 97 Kler, Sharma, Banerjee, Rana, Kumar (bib58) 2017; 35 Ibrahim, Hossain, Duck, Nadarajah (bib31) 2020; 213 Abdel-Basset, El-Shahat, Chakrabortty, Ryan (bib22) 2021; 227 Mirjalili, Mirjalili, Lewis (bib81) 2014; 69 Yang, Gong (bib24) 2021; 104 Ćalasan, Aleem, Zobaa (bib11) 2020; 210 Chen, Jiao, Heidari, Wang, Chen, Zhao (bib56) 2019; 195 Meng, Zhao, Tang, Sun (bib5) 2020; 153 Li, Gong, Wang, Yan, Hu (bib78) 2020; 225 Yu, Liang, Qu, Cheng, Wang (bib9) 2018; 226 Mokeddem (bib34) 2021; 16 Panagant, Pholdee, Bureerat, Yildiz, Sait (bib69) 2020; 62 Jamadi, Merrikh-Bayat, Bigdeli (bib53) 2016; 7 Chen, Jiao, Wang, Heidari, Zhao (bib36) 2020; 244 Ewees, Abd Elaziz, Houssein (bib74) 2018; 112 Bait, Si-Ameur (bib3) 2017; 141 Jordehi (bib8) 2016; 61 Abdel-Basset, Mohamed, Mirjalili, Chakrabortty, Ryan (bib37) 2020; 209 Long, Jiao, Liang, Wu, Xu, Cai (bib75) 2021; 103 Ridha, Hizam, Gomes, Heidari, Chen, Ahmadipour, Muhsen, Alghrairi (bib17) 2021; 224 Abbassi, Abbassi, Heidari, Oliva, Chen, Habib, Jemli, Wang (bib57) 2020; 198 Arora, Singh (bib80) 2019; 23 Lin, Cheng, Yeh, Chen, Wu (bib52) 2017; 144 Navabi, Abedi, Hosseinian, Pal (bib6) 2015; 89 Pardhu, Kota (bib32) 2021; 213 Long, Jiao, Liang, Tang (bib79) 2018; 68 Yousri, Thanikanti, Allam, Ramachandaramurthy, Etiba (bib42) 2020; 195 Qais, Hasanien, Alghuwainem (bib46) 2019; 250 Wu, Yu, Kang (bib51) 2017; 151 Abdel-Basset, Mohamed, Chakrabortty, Ryan, El-Fergany (bib27) 2021; 14 Ridha, Gomes, Hizam (bib44) 2020; 32 Oliva, Elaziz, Elsheikh, Ewees (bib2) 2019; 435 Easwarakhanthan, Bottin, Bouhouch, Boutrit (bib15) 1986; 4 Qais, Hasanien, Alghuwainem, Nouh (bib30) 2019; 187 Oliva, Abd El Aziz, Hassanien (bib49) 2017; 200 Mani, Jayaraman, Ellappan (bib72) 2020; 33 Chan, Phillips, Phang (bib19) 1986; 29 Qais, Hasanien, Alghuwainem (bib35) 2020; 195 Soliman, Hasanien, Alkuhayli (bib23) 2020; 8 Pires Deotti, Rezende Pereira, da Silva Junior (bib38) 2020; 221 Cao, Li, Zhang, Jermsittiparsert, Razmjooy (bib67) 2019; 5 Jiao, Chong, Huang, Hu, Wang, Heidari, Chen, Zhao (bib1) 2020; 203 Yu, Qu, Yue, Ge, Chen, Liang (bib25) 2019; 237 Abdel-Basset, Mohamed, Chakrabortty, Sallam, Ryan (bib33) 2021; 227 Jia, Xing, Song (bib66) 2019; 7 Askarzadeh, Coelho (bib59) 2015; 89 El-Fergany (bib12) 2021; 7 Gude, Jana (bib39) 2020; 204 Dhiman, Kumar (bib62) 2019; 165 Lei, Song, Rodriguez (bib70) 2020; 6 Qais, Hasanien, Alghuwainem (bib40) 2020; 214 Long, Wu, Liang, Xu (bib84) 2019; 123 Dhiman, Singh, Soni, Nagar, Dehghani, Slowik, Kaur, Sharma, Houssein, Cengiz (bib63) 2021; 167 Xu, Yan, Bai (bib64) 2021; 12 Zhang, Ma, Jin (bib26) 2020; 211 Kumar, Raj, Premkumar, Raj (bib21) 2020; 223 Zhang, Heidari, Wang, Zhang, Chen, Li (bib41) 2020; 211 Zhang, Ma, Jin (bib20) 2020; 160 Diab, Sultan, Aljendy, Al-Sumaiti, Shoyama, Ali (bib45) 2020; 8 Chawla, Duhan (bib76) 2018; 32 Long, Wu, Xu, Tang, Cai (bib10) 2021; 229 Bastidas-Rodriguez, Petrone, Ramos-Paja, Spagnuolo (bib54) 2017; 131 Niu, Zhang, Li (bib55) 2014; 86 Deng, Xu, Song, Zhao (bib73) 2021; 100 Orioli, Di Gangi (bib18) 2013; 102 Li, Gong, Gu (bib7) 2021; 141 Subudhi, Pradhan (bib50) 2018; 9 Ali, El-Hameed, El-Fergany, El-Arini (bib61) 2016; 17 Xiong, Zhang, Shi, He (bib48) 2018; 174 Long, Wu, Jiao, Tang, Xu (bib47) 2020; 89 Lin, Wu (bib43) 2020; 196 Gupta, Deep (bib77) 2019; 44 Mirjalili, Lewis (bib82) 2016; 95 Li, Gu, Gong, Ning (bib29) 2020; 205 Fathy, Rezk (bib60) 2017; 111 Gao, Cui, Hu, Xu, Yu (bib14) 2016; 127 Zhang (10.1016/j.energy.2022.123760_bib20) 2020; 160 Mani (10.1016/j.energy.2022.123760_bib72) 2020; 33 Jiao (10.1016/j.energy.2022.123760_bib1) 2020; 203 Yang (10.1016/j.energy.2022.123760_bib24) 2021; 104 Ridha (10.1016/j.energy.2022.123760_bib44) 2020; 32 Niu (10.1016/j.energy.2022.123760_bib55) 2014; 86 Li (10.1016/j.energy.2022.123760_bib7) 2021; 141 Abdel-Basset (10.1016/j.energy.2022.123760_bib33) 2021; 227 Cao (10.1016/j.energy.2022.123760_bib67) 2019; 5 Dhiman (10.1016/j.energy.2022.123760_bib62) 2019; 165 Askarzadeh (10.1016/j.energy.2022.123760_bib59) 2015; 89 Navabi (10.1016/j.energy.2022.123760_bib6) 2015; 89 Calasan (10.1016/j.energy.2022.123760_bib16) 2021; 218 Lei (10.1016/j.energy.2022.123760_bib70) 2020; 6 Long (10.1016/j.energy.2022.123760_bib10) 2021; 229 Oliva (10.1016/j.energy.2022.123760_bib2) 2019; 435 Long (10.1016/j.energy.2022.123760_bib4) 2020; 203 Pires Deotti (10.1016/j.energy.2022.123760_bib38) 2020; 221 Chen (10.1016/j.energy.2022.123760_bib65) 2021; 9 Jiang (10.1016/j.energy.2022.123760_bib68) 2020; 8 Che (10.1016/j.energy.2022.123760_bib71) 2021; 2021 Mokeddem (10.1016/j.energy.2022.123760_bib34) 2021; 16 Diab (10.1016/j.energy.2022.123760_bib45) 2020; 8 Gupta (10.1016/j.energy.2022.123760_bib77) 2019; 44 Jordehi (10.1016/j.energy.2022.123760_bib8) 2016; 61 Mirjalili (10.1016/j.energy.2022.123760_bib82) 2016; 95 Meng (10.1016/j.energy.2022.123760_bib5) 2020; 153 Abbassi (10.1016/j.energy.2022.123760_bib57) 2020; 198 Long (10.1016/j.energy.2022.123760_bib47) 2020; 89 Mirjalili (10.1016/j.energy.2022.123760_bib81) 2014; 69 Li (10.1016/j.energy.2022.123760_bib78) 2020; 225 Qais (10.1016/j.energy.2022.123760_bib46) 2019; 250 Liang (10.1016/j.energy.2022.123760_bib28) 2020; 207 Oliva (10.1016/j.energy.2022.123760_bib49) 2017; 200 Deng (10.1016/j.energy.2022.123760_bib73) 2021; 100 Ridha (10.1016/j.energy.2022.123760_bib17) 2021; 224 El-Fergany (10.1016/j.energy.2022.123760_bib12) 2021; 7 Bastidas-Rodriguez (10.1016/j.energy.2022.123760_bib54) 2017; 131 Soliman (10.1016/j.energy.2022.123760_bib23) 2020; 8 Yousri (10.1016/j.energy.2022.123760_bib42) 2020; 195 Dhiman (10.1016/j.energy.2022.123760_bib63) 2021; 167 Chen (10.1016/j.energy.2022.123760_bib56) 2019; 195 Zhang (10.1016/j.energy.2022.123760_bib41) 2020; 211 Kler (10.1016/j.energy.2022.123760_bib58) 2017; 35 Fathy (10.1016/j.energy.2022.123760_bib60) 2017; 111 Xu (10.1016/j.energy.2022.123760_bib64) 2021; 12 Long (10.1016/j.energy.2022.123760_bib84) 2019; 123 Abdel-Basset (10.1016/j.energy.2022.123760_bib37) 2020; 209 Long (10.1016/j.energy.2022.123760_bib79) 2018; 68 Panagant (10.1016/j.energy.2022.123760_bib69) 2020; 62 Jia (10.1016/j.energy.2022.123760_bib66) 2019; 7 Ewees (10.1016/j.energy.2022.123760_bib74) 2018; 112 Orioli (10.1016/j.energy.2022.123760_bib18) 2013; 102 Chawla (10.1016/j.energy.2022.123760_bib76) 2018; 32 Subudhi (10.1016/j.energy.2022.123760_bib50) 2018; 9 Bait (10.1016/j.energy.2022.123760_bib3) 2017; 141 Yu (10.1016/j.energy.2022.123760_bib9) 2018; 226 Gude (10.1016/j.energy.2022.123760_bib39) 2020; 204 Qais (10.1016/j.energy.2022.123760_bib35) 2020; 195 Arora (10.1016/j.energy.2022.123760_bib80) 2019; 23 Ćalasan (10.1016/j.energy.2022.123760_bib11) 2020; 210 Abdel-Basset (10.1016/j.energy.2022.123760_bib27) 2021; 14 Qais (10.1016/j.energy.2022.123760_bib30) 2019; 187 Jamadi (10.1016/j.energy.2022.123760_bib53) 2016; 7 Long (10.1016/j.energy.2022.123760_bib75) 2021; 103 Heidari (10.1016/j.energy.2022.123760_bib83) 2019; 97 Ridha (10.1016/j.energy.2022.123760_bib13) 2020; 209 Chan (10.1016/j.energy.2022.123760_bib19) 1986; 29 Pardhu (10.1016/j.energy.2022.123760_bib32) 2021; 213 Ibrahim (10.1016/j.energy.2022.123760_bib31) 2020; 213 Kumar (10.1016/j.energy.2022.123760_bib21) 2020; 223 Chen (10.1016/j.energy.2022.123760_bib36) 2020; 244 Ali (10.1016/j.energy.2022.123760_bib61) 2016; 17 Easwarakhanthan (10.1016/j.energy.2022.123760_bib15) 1986; 4 Lin (10.1016/j.energy.2022.123760_bib43) 2020; 196 Yu (10.1016/j.energy.2022.123760_bib25) 2019; 237 Wu (10.1016/j.energy.2022.123760_bib51) 2017; 151 Lin (10.1016/j.energy.2022.123760_bib52) 2017; 144 Qais (10.1016/j.energy.2022.123760_bib40) 2020; 214 Abdel-Basset (10.1016/j.energy.2022.123760_bib22) 2021; 227 Xiong (10.1016/j.energy.2022.123760_bib48) 2018; 174 Zhang (10.1016/j.energy.2022.123760_bib26) 2020; 211 Li (10.1016/j.energy.2022.123760_bib29) 2020; 205 Gao (10.1016/j.energy.2022.123760_bib14) 2016; 127 |
| References_xml | – volume: 174 start-page: 388 year: 2018 end-page: 405 ident: bib48 article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm publication-title: Energy Convers Manag – volume: 9 start-page: 381 year: 2018 end-page: 389 ident: bib50 article-title: Bacterial foraging optimization approach to parameter extraction of a photovoltaic module publication-title: IEEE Trans Sustain Energy – volume: 89 start-page: 608 year: 2015 end-page: 614 ident: bib59 article-title: Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach publication-title: Energy Convers Manag – volume: 204 start-page: 280 year: 2020 end-page: 293 ident: bib39 article-title: Parameter extraction of photovoltaic cell using an improved cuckoo search optimization publication-title: Sol Energy – volume: 237 start-page: 241 year: 2019 end-page: 257 ident: bib25 article-title: A performance-guided JAYA algorithm for parameters identification of photo- voltaic cell and module publication-title: Appl Energy – volume: 4 start-page: 1 year: 1986 end-page: 12 ident: bib15 article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers publication-title: Int J Sol Energy – volume: 203 year: 2020 ident: bib1 article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models publication-title: Energy – volume: 141 year: 2021 ident: bib7 article-title: A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models publication-title: Renew Sustain Energy Rev – volume: 35 start-page: 93 year: 2017 end-page: 110 ident: bib58 article-title: PV cell and module efficient parameters estimation using evaporation rate based water cycle algorithm publication-title: Swarm Evol Comput – volume: 151 start-page: 107 year: 2017 end-page: 115 ident: bib51 article-title: Parameter identification of photovoltaic cell model based on improved ant lion optimizer publication-title: Energy Convers Manag – volume: 12 start-page: 336 year: 2021 ident: bib64 article-title: Air pollutant analysis and AQI prediction based on GRA and improved SOA-SVR by considering COVID-19 publication-title: Atmosphere – volume: 68 start-page: 63 year: 2018 end-page: 80 ident: bib79 article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization publication-title: Eng Appl Artif Intell – volume: 196 year: 2020 ident: bib43 article-title: Parameters identification of photovoltaic models using niche-based particle swarm optimization in parallel computing architecture publication-title: Energy – volume: 227 year: 2021 ident: bib33 article-title: An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: analysis and validations publication-title: Energy Convers Manag – volume: 218 start-page: 392 year: 2021 end-page: 412 ident: bib16 article-title: A new approach for parameters estimation of double and triple diode models of photo- voltaic cells based on iterative Lambert W function publication-title: Sol Energy – volume: 14 start-page: 1867 year: 2021 ident: bib27 article-title: An improved artificial jellyfish search optimizer for parameter identification of photovoltaic models publication-title: Energies – volume: 127 start-page: 443 year: 2016 end-page: 460 ident: bib14 article-title: Lambert W-function based exact representation for double diode model of solar cells: comparison on fitness and parameter extraction publication-title: Energy Convers Manag – volume: 8 start-page: 155832 year: 2020 end-page: 155842 ident: bib23 article-title: Marine predators algorithm for parameters identification of triple-diode photo- voltaic models publication-title: IEEE Access – volume: 213 start-page: 312 year: 2021 end-page: 327 ident: bib32 article-title: Radial movement optimization based parameter extraction of double diode model of solar photo- voltaic cell publication-title: Sol Energy – volume: 9 start-page: 387 year: 2021 ident: bib65 article-title: A novel hybrid model based on an improved seagull optimization algorithm for short-term wind speed forecasting publication-title: Processes – volume: 29 start-page: 329 year: 1986 end-page: 337 ident: bib19 article-title: A comparative study of extraction methods for solar cell model parameters publication-title: Solid State Electron – volume: 211 year: 2020 ident: bib26 article-title: Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models publication-title: Energy – volume: 141 start-page: 818 year: 2017 end-page: 838 ident: bib3 article-title: Tubular solar-energy collector integration: performance enhancement of classical distillation unit publication-title: Energy – volume: 103 year: 2021 ident: bib75 article-title: Pinhole-imaging-based learning butterfly optimization algorithm for global optimization and feature selection publication-title: Appl Soft Comput – volume: 23 start-page: 715 year: 2019 end-page: 734 ident: bib80 article-title: Butterfly optimization algorithm: a novel approach for global optimization publication-title: Soft Comput – volume: 165 start-page: 169 year: 2019 end-page: 196 ident: bib62 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowl-Based Syst – volume: 250 start-page: 109 year: 2019 end-page: 117 ident: bib46 article-title: Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm publication-title: Appl Energy – volume: 200 start-page: 141 year: 2017 end-page: 154 ident: bib49 article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm publication-title: Appl Energy – volume: 8 start-page: 100778 year: 2020 end-page: 100790 ident: bib68 article-title: A novel hybrid classification method based on the opposition-based seagull optimization algorithm publication-title: IEEE Access – volume: 112 start-page: 156 year: 2018 end-page: 172 ident: bib74 article-title: Improved grasshopper optimization algorithm using opposition-based learning publication-title: Expert Syst Appl – volume: 227 year: 2021 ident: bib22 article-title: Parameter estimation of photovoltaic models using an improved marine predators algorithm publication-title: Energy Convers Manag – volume: 221 year: 2020 ident: bib38 article-title: Parameter extraction of photovoltaic models using an enhanced Levy flight bat algorithm publication-title: Energy Convers Manag – volume: 244 year: 2020 ident: bib36 article-title: Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts publication-title: J Clean Prod – volume: 209 start-page: 694 year: 2020 end-page: 708 ident: bib37 article-title: Solar photovoltaic parameter estimation using an improved equilibrium optimizer publication-title: Sol Energy – volume: 229 year: 2021 ident: bib10 article-title: Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm publication-title: Energy – volume: 210 year: 2020 ident: bib11 article-title: On the root mean square error (RMSE) calculation for parameter estimation of photo- voltaic models: a novel exact analytical solution based on Lambert W function publication-title: Energy Convers Manag – volume: 167 year: 2021 ident: bib63 article-title: MOSOA: a new multi-objective seagull optimization algorithm publication-title: Expert Syst Appl – volume: 33 year: 2020 ident: bib72 article-title: Hybrid seagull and thermal exchange optimization algorithm-based NLOS nodes detection technique for enhancing reliability under data dissemination in VANETs publication-title: Int J Commun Syst – volume: 131 start-page: 38 year: 2017 end-page: 54 ident: bib54 article-title: A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel publication-title: Math Comput Simulat – volume: 195 year: 2020 ident: bib42 article-title: Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models' parameters publication-title: Energy – volume: 195 year: 2020 ident: bib35 article-title: Parameters extraction of three-diode photovoltaic model using computation and Harris hawks optimization publication-title: Energy – volume: 32 start-page: 802 year: 2018 end-page: 821 ident: bib76 article-title: Levy flight in meta-heuristic optimization algorithms – a review publication-title: Appl Artif Intell – volume: 435 year: 2019 ident: bib2 article-title: A review on meta-heuristics methods for estimating parameters of solar cells publication-title: J Power Sources – volume: 214 year: 2020 ident: bib40 article-title: Transient search optimization for electrical parameters estimation of photovoltaic module based on datasheet values publication-title: Energy Convers Manag – volume: 6 start-page: 3365 year: 2020 end-page: 3376 ident: bib70 article-title: Power generation cost minimization of the grid-connected hybrid renewable energy system through optimal sizing using the modified seagull optimization technique publication-title: Energy Rep – volume: 100 year: 2021 ident: bib73 article-title: Differential evolution algorithm with wavelet basis function and optimal mutation strategy for complex optimization problem publication-title: Appl Soft Comput – volume: 160 year: 2020 ident: bib20 article-title: Backtracking search algorithm with competitive learning for identification of unknown parameters of photovoltaic systems publication-title: Expert Syst Appl – volume: 5 start-page: 1616 year: 2019 end-page: 1625 ident: bib67 article-title: Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm publication-title: Energy Rep – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib81 article-title: Grey wolf optimizer publication-title: Adv Eng Software – volume: 89 year: 2020 ident: bib47 article-title: Refraction-learning-based whale optimization algorithm for high-dimensional problems and parameter estimation of PV model publication-title: Eng Appl Artif Intell – volume: 205 year: 2020 ident: bib29 article-title: An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models publication-title: Energy Convers Manag – volume: 2021 year: 2021 ident: bib71 article-title: A hybrid whale optimization with seagull algorithm for global optimization problems publication-title: Math Probl Eng – volume: 16 start-page: 171 year: 2021 end-page: 179 ident: bib34 article-title: Parameter extraction of solar photovoltaic models using enhanced Levy flight based grasshopper optimization algorithm publication-title: J Elect Eng Tech – volume: 226 start-page: 408 year: 2018 end-page: 422 ident: bib9 article-title: Multiple learning backtracking search algorithm for estimating parameters of photo- voltaic models publication-title: Appl Energy – volume: 225 year: 2020 ident: bib78 article-title: A hybrid adaptive teaching-learning-based optimization and differential evolution for parameter identification of photovoltaic models publication-title: Energy Convers Manag – volume: 17 start-page: 68 year: 2016 end-page: 76 ident: bib61 article-title: Parameter extraction of photovoltaic generating units using multi- verse optimizer publication-title: Sustain Energy Tech Assess – volume: 207 start-page: 336 year: 2020 end-page: 346 ident: bib28 article-title: Parameters estimation of solar photovoltaic models via a self-adaptive ensemble-based differential evolution publication-title: Sol Energy – volume: 213 year: 2020 ident: bib31 article-title: An improved wind driven optimization algorithm for parameters identification of a triple-diode photovoltaic cell model publication-title: Energy Convers Manag – volume: 111 start-page: 307 year: 2017 end-page: 320 ident: bib60 article-title: Parameter estimation of photovoltaic system using imperialist competitive algorithm publication-title: Renew Energy – volume: 211 year: 2020 ident: bib41 article-title: Orthogonal Nelder-Mead moth flame method for parameter identification of photovoltaic modules publication-title: Energy Convers Manag – volume: 209 start-page: 674 year: 2020 end-page: 693 ident: bib13 article-title: Parameters extraction of single and double diodes photovoltaic models using marine predators algorithm and Lambert M function publication-title: Sol Energy – volume: 32 start-page: 12627 year: 2020 end-page: 12642 ident: bib44 article-title: Estimation of photovoltaic module model's parameters using an improved electromagnetic- like algorithm publication-title: Neural Comput Appl – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: bib82 article-title: The whale optimization algorithm publication-title: Adv Eng Software – volume: 89 start-page: 497 year: 2015 end-page: 506 ident: bib6 article-title: On the fast convergence modeling and accurate calculation of PV output energy for operation and planning studies publication-title: Energy Convers Manag – volume: 198 year: 2020 ident: bib57 article-title: Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach publication-title: Energy – volume: 104 year: 2021 ident: bib24 article-title: Opposition-based JAYA with population reduction for parameter estimation of photovoltaic solar cells and modules publication-title: Appl Soft Comput – volume: 153 start-page: 1174 year: 2020 end-page: 1182 ident: bib5 article-title: An efficient datasheet-based parameters extraction method for two-diode photovoltaic cell and cells model publication-title: Renew Energy – volume: 44 start-page: 101 year: 2019 end-page: 112 ident: bib77 article-title: A novel random walk grey wolf optimizer publication-title: Swarm Evol Comput – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: bib83 article-title: Harris hawks optimization: algorithm and applications publication-title: Future Generat Comput Syst – volume: 7 start-page: 875 year: 2021 end-page: 887 ident: bib12 article-title: Parameters identification of PV model using improved slime mould optimizer and Lambert W-function publication-title: Energy Rep – volume: 8 start-page: 119668 year: 2020 end-page: 119687 ident: bib45 article-title: Tree growth based optimization algorithm for parameter extraction of different models of photovoltaic cells and modules publication-title: IEEE Access – volume: 7 start-page: 49614 year: 2019 end-page: 49631 ident: bib66 article-title: A new hybrid seagull optimization algorithm for feature selection publication-title: IEEE Access – volume: 61 start-page: 354 year: 2016 end-page: 371 ident: bib8 article-title: Parameter estimation of solar photovoltaic (PV) cells: a review publication-title: Renew Sustain Energy Rev – volume: 187 year: 2019 ident: bib30 article-title: Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules publication-title: Energy – volume: 223 year: 2020 ident: bib21 article-title: A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters publication-title: Optik – volume: 86 start-page: 1173 year: 2014 end-page: 1185 ident: bib55 article-title: A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells publication-title: Energy Convers Manag – volume: 62 start-page: 640 year: 2020 end-page: 644 ident: bib69 article-title: Seagull optimization algorithm for solving real-world design optimization problems publication-title: Mater Test – volume: 102 start-page: 1160 year: 2013 end-page: 1177 ident: bib18 article-title: A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data publication-title: Appl Energy – volume: 203 year: 2020 ident: bib4 article-title: A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models publication-title: Energy Convers Manag – volume: 195 start-page: 927 year: 2019 end-page: 942 ident: bib56 article-title: An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models publication-title: Energy Convers Manag – volume: 144 start-page: 594 year: 2017 end-page: 603 ident: bib52 article-title: Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm publication-title: Sol Energy – volume: 123 start-page: 108 year: 2019 end-page: 126 ident: bib84 article-title: Solving high-dimensional global optimization problems using an improved sine cosine algorithm publication-title: Expert Syst Appl – volume: 224 year: 2021 ident: bib17 article-title: Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method publication-title: Energy – volume: 7 start-page: 13 year: 2016 end-page: 25 ident: bib53 article-title: Very accurate parameter estimation of single-and double-diode solar cell models using a modified artificial bee colony algorithm publication-title: Int J Energy Environ Eng – volume: 224 year: 2021 ident: 10.1016/j.energy.2022.123760_bib17 article-title: Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method publication-title: Energy doi: 10.1016/j.energy.2021.120136 – volume: 203 year: 2020 ident: 10.1016/j.energy.2022.123760_bib1 article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models publication-title: Energy doi: 10.1016/j.energy.2020.117804 – volume: 12 start-page: 336 year: 2021 ident: 10.1016/j.energy.2022.123760_bib64 article-title: Air pollutant analysis and AQI prediction based on GRA and improved SOA-SVR by considering COVID-19 publication-title: Atmosphere doi: 10.3390/atmos12030336 – volume: 33 year: 2020 ident: 10.1016/j.energy.2022.123760_bib72 article-title: Hybrid seagull and thermal exchange optimization algorithm-based NLOS nodes detection technique for enhancing reliability under data dissemination in VANETs publication-title: Int J Commun Syst doi: 10.1002/dac.4519 – volume: 203 year: 2020 ident: 10.1016/j.energy.2022.123760_bib4 article-title: A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112243 – volume: 227 year: 2021 ident: 10.1016/j.energy.2022.123760_bib22 article-title: Parameter estimation of photovoltaic models using an improved marine predators algorithm publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113491 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.energy.2022.123760_bib81 article-title: Grey wolf optimizer publication-title: Adv Eng Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 141 year: 2021 ident: 10.1016/j.energy.2022.123760_bib7 article-title: A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.110828 – volume: 210 year: 2020 ident: 10.1016/j.energy.2022.123760_bib11 article-title: On the root mean square error (RMSE) calculation for parameter estimation of photo- voltaic models: a novel exact analytical solution based on Lambert W function publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112716 – volume: 209 start-page: 674 year: 2020 ident: 10.1016/j.energy.2022.123760_bib13 article-title: Parameters extraction of single and double diodes photovoltaic models using marine predators algorithm and Lambert M function publication-title: Sol Energy doi: 10.1016/j.solener.2020.09.047 – volume: 160 year: 2020 ident: 10.1016/j.energy.2022.123760_bib20 article-title: Backtracking search algorithm with competitive learning for identification of unknown parameters of photovoltaic systems publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113750 – volume: 435 year: 2019 ident: 10.1016/j.energy.2022.123760_bib2 article-title: A review on meta-heuristics methods for estimating parameters of solar cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2019.05.089 – volume: 2021 year: 2021 ident: 10.1016/j.energy.2022.123760_bib71 article-title: A hybrid whale optimization with seagull algorithm for global optimization problems publication-title: Math Probl Eng doi: 10.1155/2021/6639671 – volume: 218 start-page: 392 year: 2021 ident: 10.1016/j.energy.2022.123760_bib16 article-title: A new approach for parameters estimation of double and triple diode models of photo- voltaic cells based on iterative Lambert W function publication-title: Sol Energy doi: 10.1016/j.solener.2021.02.038 – volume: 200 start-page: 141 year: 2017 ident: 10.1016/j.energy.2022.123760_bib49 article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.05.029 – volume: 111 start-page: 307 year: 2017 ident: 10.1016/j.energy.2022.123760_bib60 article-title: Parameter estimation of photovoltaic system using imperialist competitive algorithm publication-title: Renew Energy doi: 10.1016/j.renene.2017.04.014 – volume: 89 year: 2020 ident: 10.1016/j.energy.2022.123760_bib47 article-title: Refraction-learning-based whale optimization algorithm for high-dimensional problems and parameter estimation of PV model publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.103457 – volume: 32 start-page: 12627 year: 2020 ident: 10.1016/j.energy.2022.123760_bib44 article-title: Estimation of photovoltaic module model's parameters using an improved electromagnetic- like algorithm publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04714-z – volume: 174 start-page: 388 year: 2018 ident: 10.1016/j.energy.2022.123760_bib48 article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.08.053 – volume: 141 start-page: 818 year: 2017 ident: 10.1016/j.energy.2022.123760_bib3 article-title: Tubular solar-energy collector integration: performance enhancement of classical distillation unit publication-title: Energy doi: 10.1016/j.energy.2017.09.110 – volume: 144 start-page: 594 year: 2017 ident: 10.1016/j.energy.2022.123760_bib52 article-title: Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm publication-title: Sol Energy doi: 10.1016/j.solener.2017.01.064 – volume: 211 year: 2020 ident: 10.1016/j.energy.2022.123760_bib41 article-title: Orthogonal Nelder-Mead moth flame method for parameter identification of photovoltaic modules publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112764 – volume: 213 year: 2020 ident: 10.1016/j.energy.2022.123760_bib31 article-title: An improved wind driven optimization algorithm for parameters identification of a triple-diode photovoltaic cell model publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112872 – volume: 32 start-page: 802 year: 2018 ident: 10.1016/j.energy.2022.123760_bib76 article-title: Levy flight in meta-heuristic optimization algorithms – a review publication-title: Appl Artif Intell doi: 10.1080/08839514.2018.1508807 – volume: 6 start-page: 3365 year: 2020 ident: 10.1016/j.energy.2022.123760_bib70 article-title: Power generation cost minimization of the grid-connected hybrid renewable energy system through optimal sizing using the modified seagull optimization technique publication-title: Energy Rep doi: 10.1016/j.egyr.2020.11.249 – volume: 9 start-page: 381 year: 2018 ident: 10.1016/j.energy.2022.123760_bib50 article-title: Bacterial foraging optimization approach to parameter extraction of a photovoltaic module publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2017.2736060 – volume: 102 start-page: 1160 year: 2013 ident: 10.1016/j.energy.2022.123760_bib18 article-title: A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.06.036 – volume: 153 start-page: 1174 year: 2020 ident: 10.1016/j.energy.2022.123760_bib5 article-title: An efficient datasheet-based parameters extraction method for two-diode photovoltaic cell and cells model publication-title: Renew Energy doi: 10.1016/j.renene.2020.02.084 – volume: 104 year: 2021 ident: 10.1016/j.energy.2022.123760_bib24 article-title: Opposition-based JAYA with population reduction for parameter estimation of photovoltaic solar cells and modules publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107218 – volume: 29 start-page: 329 year: 1986 ident: 10.1016/j.energy.2022.123760_bib19 article-title: A comparative study of extraction methods for solar cell model parameters publication-title: Solid State Electron doi: 10.1016/0038-1101(86)90212-1 – volume: 7 start-page: 49614 year: 2019 ident: 10.1016/j.energy.2022.123760_bib66 article-title: A new hybrid seagull optimization algorithm for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909945 – volume: 213 start-page: 312 year: 2021 ident: 10.1016/j.energy.2022.123760_bib32 article-title: Radial movement optimization based parameter extraction of double diode model of solar photo- voltaic cell publication-title: Sol Energy doi: 10.1016/j.solener.2020.11.046 – volume: 89 start-page: 497 year: 2015 ident: 10.1016/j.energy.2022.123760_bib6 article-title: On the fast convergence modeling and accurate calculation of PV output energy for operation and planning studies publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.09.070 – volume: 68 start-page: 63 year: 2018 ident: 10.1016/j.energy.2022.123760_bib79 article-title: An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2017.10.024 – volume: 227 year: 2021 ident: 10.1016/j.energy.2022.123760_bib33 article-title: An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: analysis and validations publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113614 – volume: 8 start-page: 119668 year: 2020 ident: 10.1016/j.energy.2022.123760_bib45 article-title: Tree growth based optimization algorithm for parameter extraction of different models of photovoltaic cells and modules publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3005236 – volume: 226 start-page: 408 year: 2018 ident: 10.1016/j.energy.2022.123760_bib9 article-title: Multiple learning backtracking search algorithm for estimating parameters of photo- voltaic models publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.06.010 – volume: 229 year: 2021 ident: 10.1016/j.energy.2022.123760_bib10 article-title: Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2021.120750 – volume: 14 start-page: 1867 year: 2021 ident: 10.1016/j.energy.2022.123760_bib27 article-title: An improved artificial jellyfish search optimizer for parameter identification of photovoltaic models publication-title: Energies doi: 10.3390/en14071867 – volume: 211 year: 2020 ident: 10.1016/j.energy.2022.123760_bib26 article-title: Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models publication-title: Energy doi: 10.1016/j.energy.2020.118644 – volume: 250 start-page: 109 year: 2019 ident: 10.1016/j.energy.2022.123760_bib46 article-title: Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.05.013 – volume: 112 start-page: 156 year: 2018 ident: 10.1016/j.energy.2022.123760_bib74 article-title: Improved grasshopper optimization algorithm using opposition-based learning publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.06.023 – volume: 195 start-page: 927 year: 2019 ident: 10.1016/j.energy.2022.123760_bib56 article-title: An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.05.057 – volume: 8 start-page: 155832 year: 2020 ident: 10.1016/j.energy.2022.123760_bib23 article-title: Marine predators algorithm for parameters identification of triple-diode photo- voltaic models publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3019244 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.energy.2022.123760_bib82 article-title: The whale optimization algorithm publication-title: Adv Eng Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 5 start-page: 1616 year: 2019 ident: 10.1016/j.energy.2022.123760_bib67 article-title: Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm publication-title: Energy Rep doi: 10.1016/j.egyr.2019.11.013 – volume: 131 start-page: 38 year: 2017 ident: 10.1016/j.energy.2022.123760_bib54 article-title: A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel publication-title: Math Comput Simulat doi: 10.1016/j.matcom.2015.10.008 – volume: 167 year: 2021 ident: 10.1016/j.energy.2022.123760_bib63 article-title: MOSOA: a new multi-objective seagull optimization algorithm publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114150 – volume: 7 start-page: 875 year: 2021 ident: 10.1016/j.energy.2022.123760_bib12 article-title: Parameters identification of PV model using improved slime mould optimizer and Lambert W-function publication-title: Energy Rep doi: 10.1016/j.egyr.2021.01.093 – volume: 9 start-page: 387 year: 2021 ident: 10.1016/j.energy.2022.123760_bib65 article-title: A novel hybrid model based on an improved seagull optimization algorithm for short-term wind speed forecasting publication-title: Processes doi: 10.3390/pr9020387 – volume: 4 start-page: 1 year: 1986 ident: 10.1016/j.energy.2022.123760_bib15 article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers publication-title: Int J Sol Energy doi: 10.1080/01425918608909835 – volume: 16 start-page: 171 year: 2021 ident: 10.1016/j.energy.2022.123760_bib34 article-title: Parameter extraction of solar photovoltaic models using enhanced Levy flight based grasshopper optimization algorithm publication-title: J Elect Eng Tech – volume: 127 start-page: 443 year: 2016 ident: 10.1016/j.energy.2022.123760_bib14 article-title: Lambert W-function based exact representation for double diode model of solar cells: comparison on fitness and parameter extraction publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.09.005 – volume: 209 start-page: 694 year: 2020 ident: 10.1016/j.energy.2022.123760_bib37 article-title: Solar photovoltaic parameter estimation using an improved equilibrium optimizer publication-title: Sol Energy doi: 10.1016/j.solener.2020.09.032 – volume: 195 year: 2020 ident: 10.1016/j.energy.2022.123760_bib35 article-title: Parameters extraction of three-diode photovoltaic model using computation and Harris hawks optimization publication-title: Energy doi: 10.1016/j.energy.2020.117040 – volume: 204 start-page: 280 year: 2020 ident: 10.1016/j.energy.2022.123760_bib39 article-title: Parameter extraction of photovoltaic cell using an improved cuckoo search optimization publication-title: Sol Energy doi: 10.1016/j.solener.2020.04.036 – volume: 86 start-page: 1173 year: 2014 ident: 10.1016/j.energy.2022.123760_bib55 article-title: A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.06.026 – volume: 103 year: 2021 ident: 10.1016/j.energy.2022.123760_bib75 article-title: Pinhole-imaging-based learning butterfly optimization algorithm for global optimization and feature selection publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107146 – volume: 195 year: 2020 ident: 10.1016/j.energy.2022.123760_bib42 article-title: Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models' parameters publication-title: Energy doi: 10.1016/j.energy.2020.116979 – volume: 62 start-page: 640 year: 2020 ident: 10.1016/j.energy.2022.123760_bib69 article-title: Seagull optimization algorithm for solving real-world design optimization problems publication-title: Mater Test doi: 10.3139/120.111529 – volume: 207 start-page: 336 year: 2020 ident: 10.1016/j.energy.2022.123760_bib28 article-title: Parameters estimation of solar photovoltaic models via a self-adaptive ensemble-based differential evolution publication-title: Sol Energy doi: 10.1016/j.solener.2020.06.100 – volume: 35 start-page: 93 year: 2017 ident: 10.1016/j.energy.2022.123760_bib58 article-title: PV cell and module efficient parameters estimation using evaporation rate based water cycle algorithm publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2017.02.005 – volume: 89 start-page: 608 year: 2015 ident: 10.1016/j.energy.2022.123760_bib59 article-title: Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.10.025 – volume: 8 start-page: 100778 year: 2020 ident: 10.1016/j.energy.2022.123760_bib68 article-title: A novel hybrid classification method based on the opposition-based seagull optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997791 – volume: 221 year: 2020 ident: 10.1016/j.energy.2022.123760_bib38 article-title: Parameter extraction of photovoltaic models using an enhanced Levy flight bat algorithm publication-title: Energy Convers Manag – volume: 196 year: 2020 ident: 10.1016/j.energy.2022.123760_bib43 article-title: Parameters identification of photovoltaic models using niche-based particle swarm optimization in parallel computing architecture publication-title: Energy doi: 10.1016/j.energy.2020.117054 – volume: 225 year: 2020 ident: 10.1016/j.energy.2022.123760_bib78 article-title: A hybrid adaptive teaching-learning-based optimization and differential evolution for parameter identification of photovoltaic models publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113474 – volume: 237 start-page: 241 year: 2019 ident: 10.1016/j.energy.2022.123760_bib25 article-title: A performance-guided JAYA algorithm for parameters identification of photo- voltaic cell and module publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.01.008 – volume: 214 year: 2020 ident: 10.1016/j.energy.2022.123760_bib40 article-title: Transient search optimization for electrical parameters estimation of photovoltaic module based on datasheet values publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112904 – volume: 205 year: 2020 ident: 10.1016/j.energy.2022.123760_bib29 article-title: An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112443 – volume: 151 start-page: 107 year: 2017 ident: 10.1016/j.energy.2022.123760_bib51 article-title: Parameter identification of photovoltaic cell model based on improved ant lion optimizer publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.08.088 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.energy.2022.123760_bib83 article-title: Harris hawks optimization: algorithm and applications publication-title: Future Generat Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 187 year: 2019 ident: 10.1016/j.energy.2022.123760_bib30 article-title: Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules publication-title: Energy doi: 10.1016/j.energy.2019.116001 – volume: 44 start-page: 101 year: 2019 ident: 10.1016/j.energy.2022.123760_bib77 article-title: A novel random walk grey wolf optimizer publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.01.001 – volume: 244 year: 2020 ident: 10.1016/j.energy.2022.123760_bib36 article-title: Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.118778 – volume: 165 start-page: 169 year: 2019 ident: 10.1016/j.energy.2022.123760_bib62 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.11.024 – volume: 223 year: 2020 ident: 10.1016/j.energy.2022.123760_bib21 article-title: A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters publication-title: Optik doi: 10.1016/j.ijleo.2020.165277 – volume: 198 year: 2020 ident: 10.1016/j.energy.2022.123760_bib57 article-title: Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach publication-title: Energy doi: 10.1016/j.energy.2020.117333 – volume: 123 start-page: 108 year: 2019 ident: 10.1016/j.energy.2022.123760_bib84 article-title: Solving high-dimensional global optimization problems using an improved sine cosine algorithm publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.11.032 – volume: 23 start-page: 715 year: 2019 ident: 10.1016/j.energy.2022.123760_bib80 article-title: Butterfly optimization algorithm: a novel approach for global optimization publication-title: Soft Comput doi: 10.1007/s00500-018-3102-4 – volume: 61 start-page: 354 year: 2016 ident: 10.1016/j.energy.2022.123760_bib8 article-title: Parameter estimation of solar photovoltaic (PV) cells: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.03.049 – volume: 7 start-page: 13 year: 2016 ident: 10.1016/j.energy.2022.123760_bib53 article-title: Very accurate parameter estimation of single-and double-diode solar cell models using a modified artificial bee colony algorithm publication-title: Int J Energy Environ Eng doi: 10.1007/s40095-015-0198-5 – volume: 17 start-page: 68 year: 2016 ident: 10.1016/j.energy.2022.123760_bib61 article-title: Parameter extraction of photovoltaic generating units using multi- verse optimizer publication-title: Sustain Energy Tech Assess – volume: 100 year: 2021 ident: 10.1016/j.energy.2022.123760_bib73 article-title: Differential evolution algorithm with wavelet basis function and optimal mutation strategy for complex optimization problem publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106724 |
| SSID | ssj0005899 |
| Score | 2.5818856 |
| Snippet | Estimating parameters and establishing high-accuracy and high-reliability models of photovoltaic (PV) modules by using the actual current-voltage data is... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 123760 |
| SubjectTerms | Algorithms Benchmarks Differential evolution energy equations Function optimization Heuristic methods Laridae Mathematical models Model accuracy Mutation Optimization Optimization algorithms Optimization techniques Parameter estimation Photovoltaic cells Photovoltaic models Photovoltaics Reliability Reliability analysis Seagull optimization algorithm Trigonometric functions |
| Title | Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.energy.2022.123760 https://www.proquest.com/docview/2664896702 https://www.proquest.com/docview/2648874386 |
| Volume | 249 |
| WOSCitedRecordID | wos000794028600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLegQ4ILgsG0wkBG4halSuskdo4TKoJpmnYYkFtwErtN1SZVk0zdf7_n2Ena8TF2oIeocm3Hzfvl-b3n94HQRyrGQo7TFNRUSW2XgoISB0IlQvYoDBBUG3O-n9OLCxaGwaU5LiibcgI0z9l2G6z_K6mhDYitQmcfQO5uUmiA70B0uALZ4fpPhL_kyt9KJc20VAaNVScTrudFVQA3qniW6Ao4pVU3pgJu5cW1WFrzGxW_ZcEjmYFmahXATlYmTtPiy1mxyar5as-WryMHVcrSrfaS7-wK58bX90cfa3aWcX3OA5Bc1L0vUGZs1qGqMDZrm8Nau_WbFmOZAKVWlfTxdhgY8R3bc909bjvRGUoNvxw3Tjm_ZeXaqrAYieafjNQNRn33_czZd3a0zs-wdWFbRHqWSM0S6Vkeo4MJ9QI2QAenX6fhWe8YxJqqo93q24DLxivw19X8SaC5s7U38srVC_TcKBr4VAPkJXok8kP0tI1DLw_R0bSPcYSOhsmXr9DPHkG4RxAuJN5FENYIwg2CMMcNgrBGEDYIwrsIwh2CXqNvn6dXn77YphCHnRCfVjYTqeMJ-MhxIFyQe7hQhgSQXqWMCaGp68YJSVIZS0mCVDKeuAmJoYtU6X8kOUKDvMjFMcIgEcY8lsThDnETP45Z4AVcSBDDhc-IP0SkfZpRYrLUq2Ipy-hvtBwiuxu11lla7ulPW0JFRtLUEmQE6Ltn5ElL18i89GUEQq7LAp86kyH60P0MfFodvvFcFLXqA1sliOvMf_PAxb5Fz_q36wQNqk0t3qEnyXWVlZv3Br231i-7cw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameters+estimation+of+photovoltaic+models+using+a+novel+hybrid+seagull+optimization+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Long%2C+Wen&rft.au=Jiao%2C+Jianjun&rft.au=Liang%2C+Ximing&rft.au=Xu%2C+Ming&rft.date=2022-06-15&rft.issn=0360-5442&rft.volume=249&rft.spage=123760&rft_id=info:doi/10.1016%2Fj.energy.2022.123760&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2022_123760 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |