Simulation Aided Co-Design for Robust Robot Optimization

This letter outlines a bi-level algorithm to concurrently optimize robot hardware and control parameters in order to minimize energy consumption during the execution of tasks and to ensure robust performance. The outer loop consists in a genetic algorithm that optimizes the co-design variables accor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE robotics and automation letters Ročník 7; číslo 4; s. 11306 - 11313
Hlavní autoři: Fadini, Gabriele, Flayols, Thomas, Prete, Andrea Del, Soueres, Philippe
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2377-3766, 2377-3766
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This letter outlines a bi-level algorithm to concurrently optimize robot hardware and control parameters in order to minimize energy consumption during the execution of tasks and to ensure robust performance. The outer loop consists in a genetic algorithm that optimizes the co-design variables according to the system average performance when tracking a locally optimal trajectory in perturbed simulations. The tracking controller exploits the locally optimal feedback gains computed in the inner loop with a Differential Dynamic Programming algorithm, which finds the optimal reference trajectories. Our simulations feature a complete actuation model, including friction compensation and bandwidth limits. This strategy can potentially account for arbitrary perturbations, and discards solutions that cannot robustly meet the task requirements. The results show improved performance of the designed platform in realistic application scenarios, autonomously leading to the selection of lightweight and more transparent hardware.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2022.3200142