Data-driven prediction of unsteady flow over a circular cylinder using deep learning

Unsteady flow fields over a circular cylinder are used for training and then prediction using four different deep learning networks: generative adversarial networks with and without consideration of conservation laws; and convolutional neural networks with and without consideration of conservation l...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics Vol. 879; pp. 217 - 254
Main Authors: Lee, Sangseung, You, Donghyun
Format: Journal Article
Language:English
Published: Cambridge Cambridge University Press 25.11.2019
Subjects:
ISSN:0022-1120, 1469-7645
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Unsteady flow fields over a circular cylinder are used for training and then prediction using four different deep learning networks: generative adversarial networks with and without consideration of conservation laws; and convolutional neural networks with and without consideration of conservation laws. Flow fields at future occasions are predicted based on information on flow fields at previous occasions. Predictions of deep learning networks are made for flow fields at Reynolds numbers that were not used during training. Physical loss functions are proposed to explicitly provide information on conservation of mass and momentum to deep learning networks. An adversarial training is applied to extract features of flow dynamics in an unsupervised manner. Effects of the proposed physical loss functions and adversarial training on predicted results are analysed. Captured and missed flow physics from predictions are also analysed. Predicted flow fields using deep learning networks are in good agreement with flow fields computed by numerical simulations.
AbstractList Unsteady flow fields over a circular cylinder are used for training and then prediction using four different deep learning networks: generative adversarial networks with and without consideration of conservation laws; and convolutional neural networks with and without consideration of conservation laws. Flow fields at future occasions are predicted based on information on flow fields at previous occasions. Predictions of deep learning networks are made for flow fields at Reynolds numbers that were not used during training. Physical loss functions are proposed to explicitly provide information on conservation of mass and momentum to deep learning networks. An adversarial training is applied to extract features of flow dynamics in an unsupervised manner. Effects of the proposed physical loss functions and adversarial training on predicted results are analysed. Captured and missed flow physics from predictions are also analysed. Predicted flow fields using deep learning networks are in good agreement with flow fields computed by numerical simulations.
Author You, Donghyun
Lee, Sangseung
Author_xml – sequence: 1
  givenname: Sangseung
  orcidid: 0000-0001-7341-8289
  surname: Lee
  fullname: Lee, Sangseung
– sequence: 2
  givenname: Donghyun
  orcidid: 0000-0003-2470-5411
  surname: You
  fullname: You, Donghyun
BookMark eNptkE1LAzEQhoNUsFZv_oCAV7fmY7PZHKV-QsFLPYfZ3URStsma7Fb6702pJ_E0zPDMzMtziWY-eIPQDSVLSqi839rdkhGqlpKQMzSnZaUKWZVihuaEMFZQysgFukxpSwjlRMk52jzCCEUX3d54PETTuXZ0weNg8eTTaKA7YNuHbxz2JmLArYvt1EPE7aF3vsuzKTn_iTtjBtwbiD53V-jcQp_M9W9doI_np83qtVi_v7ytHtZFyys5FjVTDTSlJNBVloicsLYCqIASWKl4LQXwupZNZcFI1XQMMi0sA8pKLqngC3R7ujvE8DWZNOptmKLPLzXjghPOWa0ydXei2hhSisbqIbodxIOmRB-96exNH73p7C3j7A_euhGOUsYIrv9_6QeMvXMD
CitedBy_id crossref_primary_10_1016_j_oceaneng_2022_113321
crossref_primary_10_1063_5_0268110
crossref_primary_10_1061_JAEEEZ_ASENG_5333
crossref_primary_10_1007_s11663_025_03707_4
crossref_primary_10_1016_j_dt_2023_06_007
crossref_primary_10_1016_j_compfluid_2022_105312
crossref_primary_10_3390_aerospace12030238
crossref_primary_10_1016_j_energy_2023_127289
crossref_primary_10_1016_j_ast_2023_108425
crossref_primary_10_1016_j_renene_2024_120245
crossref_primary_10_3390_math12182933
crossref_primary_10_1017_jfm_2022_1088
crossref_primary_10_1007_s42405_023_00598_0
crossref_primary_10_1080_10618562_2023_2260763
crossref_primary_10_1017_jfm_2020_690
crossref_primary_10_3390_su141911996
crossref_primary_10_1038_s41598_022_16463_1
crossref_primary_10_1016_j_oceaneng_2025_121634
crossref_primary_10_1016_j_energy_2022_124440
crossref_primary_10_1016_j_cam_2023_115170
crossref_primary_10_1017_dce_2022_2
crossref_primary_10_1016_j_compfluid_2024_106498
crossref_primary_10_1002_er_7879
crossref_primary_10_1038_s41598_019_42339_y
crossref_primary_10_1063_5_0065073
crossref_primary_10_1016_j_asoc_2021_108369
crossref_primary_10_1017_jfm_2020_725
crossref_primary_10_3390_machines11040460
crossref_primary_10_1007_s40314_023_02547_9
crossref_primary_10_1016_j_jcp_2021_110896
crossref_primary_10_3390_aerospace11120972
crossref_primary_10_1016_j_ast_2025_110518
crossref_primary_10_2478_pomr_2024_0046
crossref_primary_10_1016_j_jcp_2024_113121
crossref_primary_10_1007_s12206_022_0813_3
crossref_primary_10_1007_s10462_025_11343_2
crossref_primary_10_1016_j_engappai_2024_108896
crossref_primary_10_1177_0309524X231162638
crossref_primary_10_1061_JAEEEZ_ASENG_4599
crossref_primary_10_1038_s41598_019_54707_9
crossref_primary_10_1017_jfm_2022_61
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120626
crossref_primary_10_3389_fphys_2022_953702
crossref_primary_10_1007_s00366_024_02057_0
crossref_primary_10_1016_j_cja_2021_07_027
crossref_primary_10_1016_j_compfluid_2024_106420
crossref_primary_10_1038_s42003_020_01638_1
crossref_primary_10_1007_s00162_023_00663_0
crossref_primary_10_1063_5_0074724
crossref_primary_10_1029_2021WR030163
crossref_primary_10_1016_j_jweia_2022_105123
crossref_primary_10_1007_s00521_021_06784_z
crossref_primary_10_1016_j_cma_2024_117441
crossref_primary_10_1016_j_jcp_2022_111010
crossref_primary_10_1007_s11071_025_10953_3
crossref_primary_10_1016_j_compfluid_2022_105379
crossref_primary_10_1017_jfm_2024_77
crossref_primary_10_1080_19942060_2023_2288235
crossref_primary_10_1016_j_oceaneng_2025_121807
crossref_primary_10_1016_j_eswa_2022_117038
crossref_primary_10_3390_fluids7120367
crossref_primary_10_1017_jfm_2022_1069
crossref_primary_10_1007_s00162_020_00528_w
crossref_primary_10_1007_s13369_024_09763_3
crossref_primary_10_1063_5_0280899
crossref_primary_10_1038_s41598_020_65716_4
crossref_primary_10_1063_5_0239178
crossref_primary_10_1016_j_jcp_2021_110199
crossref_primary_10_1016_j_cma_2022_114800
crossref_primary_10_1007_s42241_023_0042_y
crossref_primary_10_1016_j_compfluid_2022_105382
crossref_primary_10_1016_j_oceaneng_2023_113935
crossref_primary_10_1063_5_0146268
crossref_primary_10_1007_s10409_021_01129_4
crossref_primary_10_1016_j_apenergy_2020_115552
crossref_primary_10_1109_TAES_2022_3152706
crossref_primary_10_1016_j_cma_2024_117035
crossref_primary_10_1063_5_0224401
crossref_primary_10_1007_s42791_025_00103_6
crossref_primary_10_1063_5_0127808
crossref_primary_10_3389_fphys_2021_733444
crossref_primary_10_1016_j_compfluid_2024_106441
crossref_primary_10_1007_s12206_023_1220_0
crossref_primary_10_1088_1873_7005_abb91d
crossref_primary_10_1007_s10973_025_14140_9
crossref_primary_10_2514_1_J061972
crossref_primary_10_3390_jmse10070918
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124900
crossref_primary_10_1016_j_jcp_2025_113973
crossref_primary_10_1063_5_0276738
crossref_primary_10_1016_j_jcp_2019_109216
crossref_primary_10_1103_PhysRevFluids_8_094605
crossref_primary_10_1016_j_measurement_2023_113699
crossref_primary_10_1016_j_scs_2022_104252
crossref_primary_10_1063_5_0157897
crossref_primary_10_1088_1873_7005_acd7a0
crossref_primary_10_1017_jfm_2020_1028
crossref_primary_10_1017_jfm_2023_84
crossref_primary_10_3390_biomedicines10092157
crossref_primary_10_3390_app14020863
crossref_primary_10_1631_FITEE_2000435
crossref_primary_10_1016_j_compfluid_2025_106731
crossref_primary_10_1016_j_oceaneng_2024_119116
crossref_primary_10_3390_fluids7060197
crossref_primary_10_1007_s00162_021_00580_0
crossref_primary_10_1038_s41598_023_29525_9
crossref_primary_10_1007_s12206_022_0123_9
crossref_primary_10_1016_j_eswa_2023_120265
crossref_primary_10_1017_jfm_2023_972
crossref_primary_10_1109_ACCESS_2024_3490554
crossref_primary_10_1016_j_flowmeasinst_2024_102703
crossref_primary_10_1016_j_jcp_2025_113846
crossref_primary_10_1016_j_jsv_2021_116285
crossref_primary_10_1016_j_applthermaleng_2022_119633
crossref_primary_10_1016_j_jweia_2024_105998
crossref_primary_10_1016_j_ast_2023_108198
crossref_primary_10_1038_s42256_021_00402_2
crossref_primary_10_1063_5_0008889
crossref_primary_10_2514_1_J062091
crossref_primary_10_1108_HFF_09_2024_0656
crossref_primary_10_1080_10407782_2022_2091359
crossref_primary_10_2166_hydro_2024_373
crossref_primary_10_1007_s00348_021_03180_0
crossref_primary_10_1016_j_energy_2024_132828
crossref_primary_10_1063_5_0269372
crossref_primary_10_1007_s10652_025_10018_4
crossref_primary_10_1007_s10845_025_02641_1
crossref_primary_10_1115_1_4069140
crossref_primary_10_1063_5_0066077
crossref_primary_10_1063_5_0207978
crossref_primary_10_1016_j_engappai_2023_106340
crossref_primary_10_1016_j_ifacol_2021_11_149
crossref_primary_10_1103_fpz9_qvmy
crossref_primary_10_1016_j_icheatmasstransfer_2020_104694
crossref_primary_10_1016_j_energy_2021_122617
crossref_primary_10_1016_j_ijthermalsci_2024_109287
crossref_primary_10_1007_s00162_025_00737_1
crossref_primary_10_1038_s41598_022_07515_7
crossref_primary_10_1063_5_0275824
crossref_primary_10_3390_app12063147
crossref_primary_10_1016_j_ast_2023_108165
crossref_primary_10_1016_j_cpc_2025_109685
crossref_primary_10_1017_dce_2022_18
crossref_primary_10_1063_5_0284380
crossref_primary_10_1016_j_engappai_2023_106267
crossref_primary_10_1063_5_0217742
crossref_primary_10_1063_5_0223064
crossref_primary_10_1007_s00521_020_05461_x
crossref_primary_10_1016_j_apor_2022_103228
crossref_primary_10_1016_j_jweia_2023_105405
crossref_primary_10_1016_j_net_2025_103703
crossref_primary_10_1016_j_compfluid_2022_105738
crossref_primary_10_3390_app13126891
crossref_primary_10_1103_8flg_k6s5
crossref_primary_10_1016_j_oceaneng_2022_111716
crossref_primary_10_1007_s42405_024_00767_9
crossref_primary_10_1017_jfm_2020_948
crossref_primary_10_1017_jfm_2023_154
crossref_primary_10_3390_app122312075
crossref_primary_10_1007_s42979_021_00867_3
crossref_primary_10_1016_j_oceaneng_2023_113617
crossref_primary_10_1016_j_jcis_2022_01_037
crossref_primary_10_1017_jfm_2021_1041
crossref_primary_10_1063_5_0221611
crossref_primary_10_1029_2021MS002806
crossref_primary_10_1016_j_cma_2022_115771
crossref_primary_10_1016_j_compfluid_2023_105883
crossref_primary_10_1007_s42791_024_00066_0
crossref_primary_10_1016_j_apor_2023_103511
crossref_primary_10_1016_j_ijthermalsci_2024_109547
crossref_primary_10_1007_s10409_023_23247_x
crossref_primary_10_1016_j_ast_2024_109690
crossref_primary_10_1016_j_apor_2022_103173
crossref_primary_10_1016_j_coastaleng_2021_103902
crossref_primary_10_1108_EC_08_2023_0446
crossref_primary_10_1109_ACCESS_2020_2993562
crossref_primary_10_1007_s11661_024_07381_0
crossref_primary_10_1016_j_engappai_2025_111427
crossref_primary_10_1016_j_molliq_2022_118489
Cites_doi 10.1016/j.jfluidstructs.2009.10.006
10.1016/j.jastp.2010.06.011
10.1017/S0022112009006624
10.2514/6.2015-2460
10.1017/S0022112086002306
10.1016/j.compfluid.2007.02.002
10.1073/pnas.1523853113
10.7551/mitpress/3014.001.0001
10.1146/annurev-fluid-011212-140652
10.1038/331693a0
10.2514/1.J055595
10.1090/qam/910462
10.1017/S0022112010001217
10.1063/1.3006077
10.1017/jfm.2016.615
10.1145/2939672.2939738
10.2514/6.2015-1287
10.1017/S002211206600034X
10.1146/annurev.fl.04.010172.001525
10.1017/jfm.2013.249
10.1146/annurev-fluid-122109-160648
ContentType Journal Article
Copyright 2019 Cambridge University Press
Copyright_xml – notice: 2019 Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2019.700
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Research Library Prep
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
EndPage 254
ExternalDocumentID 10_1017_jfm_2019_700
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
AAYXX
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUFD
ABUWG
ABVKB
ABVZP
ABXAU
ABXHF
ABZCX
ACBEA
ACBMC
ACDLN
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADMLS
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEUYN
AFFHD
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKMAY
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CITATION
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WYP
ZE2
ZYDXJ
~02
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c367t-829bab470ad6f050228f5a15a4a2493875a3887b6fae79bd2aab45f2a12437153
IEDL.DBID M7S
ISICitedReferencesCount 259
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487246800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1120
IngestDate Sat Aug 23 14:42:14 EDT 2025
Sat Nov 29 04:24:22 EST 2025
Tue Nov 18 22:38:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-829bab470ad6f050228f5a15a4a2493875a3887b6fae79bd2aab45f2a12437153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2470-5411
0000-0001-7341-8289
OpenAccessLink https://doi.org/10.1017/jfm.2019.700
PQID 2353033289
PQPubID 34769
PageCount 38
ParticipantIDs proquest_journals_2353033289
crossref_primary_10_1017_jfm_2019_700
crossref_citationtrail_10_1017_jfm_2019_700
PublicationCentury 2000
PublicationDate 2019-11-25
PublicationDateYYYYMMDD 2019-11-25
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-25
  day: 25
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationYear 2019
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Srivastava (S0022112019007006_r29) 2015
Denton (S0022112019007006_r5) 2015
Krizhevsky (S0022112019007006_r10) 2012
S0022112019007006_r28
S0022112019007006_r27
Xingjian (S0022112019007006_r35) 2015
S0022112019007006_r22
Goodfellow (S0022112019007006_r7) 2014
Morton (S0022112019007006_r19) 2018
S0022112019007006_r26
S0022112019007006_r25
S0022112019007006_r24
S0022112019007006_r23
van den Oord (S0022112019007006_r21) 2016b
Tennekes (S0022112019007006_r30) 1972
van den Oord (S0022112019007006_r20) 2016
Mao (S0022112019007006_r13) 2018
S0022112019007006_r17
S0022112019007006_r38
S0022112019007006_r16
Miyanawala (S0022112019007006_r18) 2018
Wilson (S0022112019007006_r32) 2017
S0022112019007006_r33
S0022112019007006_r11
S0022112019007006_r31
S0022112019007006_r1
S0022112019007006_r2
S0022112019007006_r37
S0022112019007006_r15
S0022112019007006_r14
S0022112019007006_r36
S0022112019007006_r34
S0022112019007006_r12
S0022112019007006_r8
S0022112019007006_r9
S0022112019007006_r3
S0022112019007006_r4
S0022112019007006_r6
References_xml – start-page: 9258
  volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: S0022112019007006_r19
– ident: S0022112019007006_r11
  doi: 10.1016/j.jfluidstructs.2009.10.006
– start-page: 802
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: S0022112019007006_r35
– ident: S0022112019007006_r4
  doi: 10.1016/j.jastp.2010.06.011
– ident: S0022112019007006_r34
  doi: 10.1017/S0022112009006624
– ident: S0022112019007006_r23
– ident: S0022112019007006_r38
  doi: 10.2514/6.2015-2460
– ident: S0022112019007006_r24
  doi: 10.1017/S0022112086002306
– ident: S0022112019007006_r1
  doi: 10.1016/j.compfluid.2007.02.002
– ident: S0022112019007006_r36
  doi: 10.1073/pnas.1523853113
– volume-title: A First Course in Turbulence
  year: 1972
  ident: S0022112019007006_r30
  doi: 10.7551/mitpress/3014.001.0001
– ident: S0022112019007006_r16
  doi: 10.1146/annurev-fluid-011212-140652
– start-page: 4790
  volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: S0022112019007006_r20
– ident: S0022112019007006_r14
  doi: 10.1038/331693a0
– start-page: 1747
  volume-title: Proceedings of the 33rd International Conference on Machine Learning, 20–22 June
  year: 2016b
  ident: S0022112019007006_r21
– ident: S0022112019007006_r26
  doi: 10.2514/1.J055595
– ident: S0022112019007006_r27
  doi: 10.1090/qam/910462
– start-page: V002T08A003
  volume-title: ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  year: 2018
  ident: S0022112019007006_r18
– ident: S0022112019007006_r25
  doi: 10.1017/S0022112010001217
– start-page: 843
  volume-title: International Conference on Machine Learning
  year: 2015
  ident: S0022112019007006_r29
– ident: S0022112019007006_r37
  doi: 10.1063/1.3006077
– ident: S0022112019007006_r28
– ident: S0022112019007006_r12
  doi: 10.1017/jfm.2016.615
– start-page: 1486
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: S0022112019007006_r5
– start-page: 4148
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: S0022112019007006_r32
– ident: S0022112019007006_r8
  doi: 10.1145/2939672.2939738
– ident: S0022112019007006_r22
– ident: S0022112019007006_r31
  doi: 10.2514/6.2015-1287
– start-page: V002T08A005
  volume-title: ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
  year: 2018
  ident: S0022112019007006_r13
– ident: S0022112019007006_r6
  doi: 10.1017/S002211206600034X
– start-page: 1097
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: S0022112019007006_r10
– ident: S0022112019007006_r3
  doi: 10.1146/annurev.fl.04.010172.001525
– ident: S0022112019007006_r17
– ident: S0022112019007006_r2
  doi: 10.1017/jfm.2013.249
– ident: S0022112019007006_r15
– start-page: 2672
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: S0022112019007006_r7
– ident: S0022112019007006_r9
– ident: S0022112019007006_r33
  doi: 10.1146/annurev-fluid-122109-160648
SSID ssj0013097
Score 2.6698093
Snippet Unsteady flow fields over a circular cylinder are used for training and then prediction using four different deep learning networks: generative adversarial...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 217
SubjectTerms Artificial neural networks
Circular cylinders
Computer simulation
Conservation
Conservation laws
Conservation of mass
Cylinders
Datasets
Decomposition
Deep learning
Feature extraction
Fields
Laboratories
Machine learning
Momentum
Neural networks
Physics
Predictions
Reynolds number
Simulation
Training
Unsteady flow
Vortices
Title Data-driven prediction of unsteady flow over a circular cylinder using deep learning
URI https://www.proquest.com/docview/2353033289
Volume 879
WOSCitedRecordID wos000487246800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: PCBAR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSnBgKSDWygc4IUPi1HVzQqzigErFJsQlcuykAlVtSQqIv2fGdVkOcOGSQ2JFUd74eWw_vwHY1phzp9LEPNKixmtCGI6DXsStCkUqtLGZc7y5u1DNZuP-Pm75BbfSyypHnOiI2vYMrZHvi0gi20Y4PzjoP3OqGkW7q76ExjhMkkuCcNK9669dhCBWI7dwzCsCL3wny-innI6hh_GeorNt34ekn4zshpmz-f9-4ALM-QSTHQ4jYhHGsm4F5n2yyXxXLisw-82JsALTTglqyiW4OdEDzW1BLMj6Be3jEHasl7OXrguJd5Z3em-MtJ9MM_NYOCkrM-8dsl4sGEnp28xmWZ_5mhTtZbg9O705Pue-9AI3UV0NeEPEqU5rKtC2ngeSTHJyqUOpawhpHOEkR0dIT2k915mKUys0tpa50CEZHCKLrsBEt9fNVoEJayKLSYiIMVvIMJcPrVYmDfIG3VFyDXZHfz8x3pecymN0kqEATSWIVUJYJYjVGux8tu4P_Th-abc5QinxvbJMviBa__vxBszQi-jMoZCbMDEoXrItmDKvg8eyqMLk0WmzdVXFYBOX7tqqusDDa0s-fACeBN2-
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB0hFgEHlgJixwc4IUPiJHVzQAixCESpkCiIW3BsB4GqtiQF1J_iG5lJE5YD3DhwTawoiV_ePMczbwA2FWruONAh95TwuS-E5hj0PG6kK2KhtLG5481NXTYatdvb8HII3spaGEqrLDkxJ2rT0fSPfFd4AbKth-uD_e4Tp65RtLtattAYwOLc9l9xyZbtnR3h_G4JcXLcPDzlRVcBrr2q7PGaCGMV-9JRppo4Afm_JIFyA-Xj3YYe6nfl4ZcXVxNlZRgboXB0kAjlknefS10ikPJHfGL_PFXw6nPXwgll6U6OOsYpEu3JovoxobJ3N9yRVEv3NQR-jwB5WDuZ_m8vZAamCgHNDgaIn4Uh267AdCGmWUFVWQUmvzgtVmAsz3TV2Rw0j1RPcZMSy7NuSvtUhE3WSdhzO4d8nyWtziuj3FammH5I81RdpvstspZMGZUK3DNjbZcVPTfu5-H6T555AYbbnbZdBCaM9gyKLBGiGrK4VnGNkjp2khodkcESbJezHenCd53af7SiQYKdjBAbEWEjQmwswdbH6O7Ab-SHcaslKqKCdbLoExLLv5_egPHT5kU9qp81zldggi5K9ZUiWIXhXvps12BUv_QesnQ9BziDu78G0DsVOjSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+prediction+of+unsteady+flow+over+a+circular+cylinder+using+deep+learning&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Lee%2C+Sangseung&rft.au=You%2C+Donghyun&rft.date=2019-11-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=879&rft.spage=217&rft.epage=254&rft_id=info:doi/10.1017%2Fjfm.2019.700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon