Exploration of stock index change prediction model based on the combination of principal component analysis and artificial neural network

In order to establish an accurate effective stock forecasting model, the principal component analysis (PCA) was first used to analyze the main financial index data of some listed companies and the comprehensive score of evaluation index was obtained in this study. Then, the financial indicator data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Jg. 24; H. 11; S. 7851 - 7860
Hauptverfasser: Cao, Jiasheng, Wang, Jinghan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2020
Springer Nature B.V
Schlagworte:
ISSN:1432-7643, 1433-7479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In order to establish an accurate effective stock forecasting model, the principal component analysis (PCA) was first used to analyze the main financial index data of some listed companies and the comprehensive score of evaluation index was obtained in this study. Then, the financial indicator data and the transaction indicator data were simultaneously used as the input variables of the stock price prediction research, three back propagation (BP) neural network algorithms were used for experiment, and its prediction situation was compared. Results show that the BP neural network based on Bayesian regularization algorithm has the highest prediction accuracy and can avoid over-fitting phenomenon in the training process of the model; the error between the predicted value and the actual value is small. Finally, this study constructed a stock price prediction study based on PCA and BP neural network algorithm as well as an investment stock selection strategy based on traditional stock selection analysis method. As a result, the proposed model is proved to be effective.
AbstractList In order to establish an accurate effective stock forecasting model, the principal component analysis (PCA) was first used to analyze the main financial index data of some listed companies and the comprehensive score of evaluation index was obtained in this study. Then, the financial indicator data and the transaction indicator data were simultaneously used as the input variables of the stock price prediction research, three back propagation (BP) neural network algorithms were used for experiment, and its prediction situation was compared. Results show that the BP neural network based on Bayesian regularization algorithm has the highest prediction accuracy and can avoid over-fitting phenomenon in the training process of the model; the error between the predicted value and the actual value is small. Finally, this study constructed a stock price prediction study based on PCA and BP neural network algorithm as well as an investment stock selection strategy based on traditional stock selection analysis method. As a result, the proposed model is proved to be effective.
Author Cao, Jiasheng
Wang, Jinghan
Author_xml – sequence: 1
  givenname: Jiasheng
  surname: Cao
  fullname: Cao, Jiasheng
  email: jasoncao109@163.com
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Jinghan
  surname: Wang
  fullname: Wang, Jinghan
  organization: Illinois Institute of Technology
BookMark eNp9kMFu1TAQRS1UJNrCD7CyxDowzsRxskRVoUiV2MDacuxJ6zbPDrafaD-Bv65fHqISi65mLN9jXZ8zdhJiIMbeC_goANSnDCABGhBjAziKocFX7FR0iI3q1Hiy7W2j-g7fsLOc7wBaoSSesj-XD-sSkyk-Bh5nnku099wHRw_c3ppwQ3xN5LzdArvoaOGTyeR4PZZb4jbuJh_-8WvywfrVLIeLtZYMhZtglsfsc10cN6n42VtfE4H2aRvld0z3b9nr2SyZ3v2d5-znl8sfF1fN9fev3y4-XzcWe1UapSz00A0EOEwoJindYAXJdjSjHSZpDGE7A87SGWGnTqBUswPputb2PRGesw_Hd9cUf-0pF30X96lWzLqt5mAQiKKmhmPKpphzollbX7ZflmT8ogXog3h9FK-reL2J11jR9j-0StmZ9PgyhEcoHwzeUHpu9QL1BMS9msY
CitedBy_id crossref_primary_10_1155_2020_8831893
crossref_primary_10_1051_e3sconf_202129606031
crossref_primary_10_1007_s00500_020_04939_z
crossref_primary_10_1007_s00500_022_07714_4
crossref_primary_10_3390_app112210973
crossref_primary_10_1016_j_matpr_2023_01_244
crossref_primary_10_1016_j_najef_2023_102065
crossref_primary_10_3389_fpubh_2021_675801
crossref_primary_10_1155_2021_1182557
crossref_primary_10_3390_axioms11060292
crossref_primary_10_1007_s00500_020_04977_7
crossref_primary_10_1007_s11600_023_01242_x
crossref_primary_10_3390_su12219114
crossref_primary_10_2139_ssrn_5380505
crossref_primary_10_1016_j_buildenv_2022_109643
crossref_primary_10_1016_j_asoc_2025_112978
crossref_primary_10_1007_s10258_023_00246_1
crossref_primary_10_1007_s00500_020_05327_3
crossref_primary_10_1016_j_iref_2025_104279
crossref_primary_10_1108_JHASS_08_2021_0135
crossref_primary_10_1155_2021_1026978
crossref_primary_10_3390_pr11113171
crossref_primary_10_1109_ACCESS_2023_3323198
crossref_primary_10_1007_s12197_023_09629_8
crossref_primary_10_3390_axioms10010036
crossref_primary_10_1016_j_ins_2021_11_038
crossref_primary_10_3390_ijfs11010042
crossref_primary_10_1155_2021_1275637
crossref_primary_10_1007_s11666_024_01906_0
crossref_primary_10_1002_for_3108
crossref_primary_10_1007_s00521_020_05374_9
crossref_primary_10_3390_economies9010004
crossref_primary_10_1007_s00500_020_05007_2
crossref_primary_10_1007_s00500_023_09362_8
crossref_primary_10_1016_j_asoc_2021_107760
crossref_primary_10_3390_su14158993
Cites_doi 10.1007/s11284-015-1318-7
10.1037/met0000088
10.1101/gr.204149.116
10.1073/pnas.1513062113
10.25273/research.v1i1.2448
10.1016/j.future.2013.09.025
10.1016/j.neucom.2015.06.017
10.1093/mnras/stu1541
10.1007/s40544-016-0104-z
10.1186/s12859-017-1988-y
10.3934/krm.2017005
10.1093/imanum/17.3.421
10.1016/j.cmpb.2015.10.017
10.1016/j.jocs.2015.11.011
10.1016/j.asoc.2013.07.024
10.1007/s10661-016-5253-z
10.1016/j.enbuild.2015.11.045
10.3390/s17040894
10.3390/s17122897
10.1016/j.applthermaleng.2016.10.043
10.1016/j.procs.2018.01.111
10.3846/16111699.2016.1184180
10.1016/j.jkss.2015.07.002
10.1007/s13042-014-0295-4
10.1016/j.sigpro.2016.03.001
10.1016/j.jag.2015.08.004
10.1118/1.4956927
10.1080/03610921003778183
10.5957/JSPD.32.1.140015
10.1093/mnras/stu601
10.1093/gji/ggy380
10.3847/1538-4357/aaae09
10.3390/s18041129
10.3390/ani8050066
10.1016/j.ins.2014.09.038
10.1186/s40064-016-1931-0
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-019-03918-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 7860
ExternalDocumentID 10_1007_s00500_019_03918_3
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c367t-77c06048e038b31b55d8c1e529a9c8b5aae32f03f5da1cb41357fd05d42c66ee3
IEDL.DBID K7-
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530547900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Wed Nov 05 01:47:54 EST 2025
Sat Nov 29 03:35:54 EST 2025
Tue Nov 18 21:26:58 EST 2025
Fri Feb 21 02:33:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Investment guidance
BP neural network
Bayesian regularization algorithm
Stock price forecasting
Principal component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-77c06048e038b31b55d8c1e529a9c8b5aae32f03f5da1cb41357fd05d42c66ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918081331
PQPubID 2043697
PageCount 10
ParticipantIDs proquest_journals_2918081331
crossref_citationtrail_10_1007_s00500_019_03918_3
crossref_primary_10_1007_s00500_019_03918_3
springer_journals_10_1007_s00500_019_03918_3
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Gharani, Suffoletto, Chung (CR18) 2017; 17
Lahmiri (CR21) 2016; 12
Shi, Li, Chen (CR32) 2017; 112
Hsu, Lin (CR19) 2016; 7
Gagné, Mamajek, Malo, Riedel, Rodriguez, Lafrenière (CR16) 2018; 856
Hu, Zhang, Zhang (CR20) 2016; 171
Su, Piao, Luo, Yan (CR34) 2018; 8
Verfaillie, Svetlichnyy, Imrichova (CR35) 2016; 26
Nahil, Lyhyaoui (CR28) 2018; 127
Díaz, Almenara, Santerne, Moutou, Lethuillier, Deleuil (CR12) 2018; 441
Li, Harris (CR23) 2018; 215
Chapman, Weiss, Duberstein (CR7) 2016; 21
Chen, Chen (CR10) 2015; 294
Duan, Soussen, Brie (CR13) 2016; 127
Chen, Yue, Jabbour (CR11) 2016; 43
Ray, Behera, Jacob (CR30) 2016; 31
Anish, Majhi (CR1) 2016; 45
Bao, Pu, Yi (CR3) 2018; 2018
Mahersia, Boulehmi, Hamrouni (CR26) 2016; 126
Wade, Folsom, Petit (CR36) 2018; 444
Fan, Wu, Zurada (CR15) 2016; 5
Chen, Chen (CR9) 2014; 14
Stádník, Raudeliūnienė, Davidavičienė (CR33) 2016; 17
Montano, Jombart (CR27) 2017; 18
Peiyong, Feng, Chengfang (CR29) 2018; 32
Gao, Dai, Wang (CR17) 2016; 4
Burger, Lorz, Wolfram (CR5) 2016; 10
Leite, Costa, Rocha, Batalhafilho (CR22) 2016; 113
Ausín, Gómez-Villegas, González-Pérez, Rodríguez-Bernal, Salazar, Sanz (CR2) 2011; 40
Chen (CR8) 2014; 37
Duong, Kim (CR14) 2018; 18
Li, Hu, Zhou (CR25) 2017; 17
Blaschke, Neubauer, Scherzer (CR4) 2018; 17
Li, Zhang, Luo (CR24) 2016; 44
Chae, Horesh, Hwang (CR6) 2016; 111
Xu, Huang, Lin, Wang, Liu, Yu (CR37) 2018; 1
Sergeant, Starkey, Bartz (CR31) 2016; 188
J Li (3918_CR25) 2017; 17
RF Díaz (3918_CR12) 2018; 441
C Bao (3918_CR3) 2018; 2018
Q Fan (3918_CR15) 2016; 5
D Ray (3918_CR30) 2016; 31
JH Su (3918_CR34) 2018; 8
CM Anish (3918_CR1) 2016; 45
X Li (3918_CR24) 2016; 44
D Li (3918_CR23) 2018; 215
T Chen (3918_CR11) 2016; 43
V Montano (3918_CR27) 2017; 18
L Peiyong (3918_CR29) 2018; 32
MC Ausín (3918_CR2) 2011; 40
H Mahersia (3918_CR26) 2016; 126
B Blaschke (3918_CR4) 2018; 17
S Shi (3918_CR32) 2017; 112
GA Wade (3918_CR36) 2018; 444
BP Chapman (3918_CR7) 2016; 21
YT Chae (3918_CR6) 2016; 111
MY Chen (3918_CR9) 2014; 14
S Lahmiri (3918_CR21) 2016; 12
X Gao (3918_CR17) 2016; 4
M Burger (3918_CR5) 2016; 10
P Gharani (3918_CR18) 2017; 17
J Gagné (3918_CR16) 2018; 856
A Nahil (3918_CR28) 2018; 127
A Verfaillie (3918_CR35) 2016; 26
MY Chen (3918_CR10) 2015; 294
J Duan (3918_CR13) 2016; 127
BP Duong (3918_CR14) 2018; 18
Z Xu (3918_CR37) 2018; 1
J Hu (3918_CR20) 2016; 171
MY Chen (3918_CR8) 2014; 37
YS Hsu (3918_CR19) 2016; 7
YL Leite (3918_CR22) 2016; 113
CJ Sergeant (3918_CR31) 2016; 188
B Stádník (3918_CR33) 2016; 17
References_xml – volume: 31
  start-page: 75
  issue: 1
  year: 2016
  end-page: 91
  ident: CR30
  article-title: Predicting the distribution of rubber trees ( ) through ecological niche modelling with climate, soil, topography and socioeconomic factors
  publication-title: Ecol Res
  doi: 10.1007/s11284-015-1318-7
– volume: 21
  start-page: 603
  issue: 4
  year: 2016
  end-page: 620
  ident: CR7
  article-title: Statistical learning theory for high dimensional prediction: application to criterion-keyed scale development
  publication-title: Psychol Methods
  doi: 10.1037/met0000088
– volume: 26
  start-page: 882
  issue: 7
  year: 2016
  end-page: 895
  ident: CR35
  article-title: Multiplex enhancer-reporter assays uncover unsophisticated TP53 enhancer logic
  publication-title: Genome Res
  doi: 10.1101/gr.204149.116
– volume: 113
  start-page: 1008
  issue: 4
  year: 2016
  end-page: 1010
  ident: CR22
  article-title: Neotropical forest expansion during the last glacial period challenges refuge hypothesis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1513062113
– volume: 1
  start-page: 1
  year: 2018
  end-page: 15
  ident: CR37
  article-title: Bp neural networks and random forest models to detect damage by Walker
  publication-title: J For Res
  doi: 10.25273/research.v1i1.2448
– volume: 37
  start-page: 461
  issue: 7
  year: 2014
  end-page: 467
  ident: CR8
  article-title: A high-order fuzzy time series forecasting model for internet stock trading
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2013.09.025
– volume: 171
  start-page: 63
  issue: C
  year: 2016
  end-page: 72
  ident: CR20
  article-title: A new deep neural network based on a stack of single-hidden-layer feedforward neural networks with randomly fixed hidden neurons
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.017
– volume: 444
  start-page: 1993
  issue: 3
  year: 2018
  end-page: 2004
  ident: CR36
  article-title: A search for weak or complex magnetic fields in the B3V star ι herculis
  publication-title: Mon Not R Astron Soc
  doi: 10.1093/mnras/stu1541
– volume: 4
  start-page: 105
  issue: 2
  year: 2016
  end-page: 115
  ident: CR17
  article-title: Establishing quantitative structure tribo-ability relationship model using bayesian regularization neural network
  publication-title: Friction
  doi: 10.1007/s40544-016-0104-z
– volume: 18
  start-page: 562
  issue: 1
  year: 2017
  end-page: 564
  ident: CR27
  article-title: An eigenvalue test for spatial principal component analysis
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-017-1988-y
– volume: 10
  start-page: 117
  issue: 1
  year: 2016
  end-page: 140
  ident: CR5
  article-title: Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth
  publication-title: Kinet Relat Models
  doi: 10.3934/krm.2017005
– volume: 17
  start-page: 421
  issue: 3
  year: 2018
  end-page: 436
  ident: CR4
  article-title: On convergence rates for the iteratively regularized Gauss–Newton method
  publication-title: IMA J Numer Anal
  doi: 10.1093/imanum/17.3.421
– volume: 126
  start-page: 46
  year: 2016
  end-page: 62
  ident: CR26
  article-title: Development of intelligent systems based on bayesian regularization network and neuro-fuzzy models for mass detection in mammograms
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2015.10.017
– volume: 12
  start-page: 23
  year: 2016
  end-page: 27
  ident: CR21
  article-title: Intraday stock price forecasting based on variational mode decomposition
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2015.11.011
– volume: 14
  start-page: 156
  issue: 1
  year: 2014
  end-page: 166
  ident: CR9
  article-title: Online fuzzy time series analysis based on entropy discretization and a fast Fourier transform
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.07.024
– volume: 188
  start-page: 1
  issue: 4
  year: 2016
  end-page: 15
  ident: CR31
  article-title: A practitioner’s guide for exploring water quality patterns using principal components analysis and procrustes
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-016-5253-z
– volume: 111
  start-page: 184
  year: 2016
  end-page: 194
  ident: CR6
  article-title: Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.11.045
– volume: 17
  start-page: 894
  issue: 4
  year: 2017
  ident: CR25
  article-title: Study on temperature and synthetic compensation of piezo-resistive differential pressure sensors by coupled simulated annealing and simplex optimized kernel extreme learning machine
  publication-title: Sensors
  doi: 10.3390/s17040894
– volume: 17
  start-page: 2897
  issue: 12
  year: 2017
  ident: CR18
  article-title: An artificial neural network for movement pattern analysis to estimate blood alcohol content level
  publication-title: Sensors
  doi: 10.3390/s17122897
– volume: 112
  start-page: 698
  year: 2017
  end-page: 706
  ident: CR32
  article-title: Refrigerant charge fault diagnosis in the VRF system using bayesian artificial neural network combined with Relieff filter
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.10.043
– volume: 127
  start-page: 161
  year: 2018
  end-page: 169
  ident: CR28
  article-title: Short-term stock price forecasting using kernel principal component analysis and support vector machines: the case of casablanca stock exchange
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2018.01.111
– volume: 17
  start-page: 365
  issue: 3
  year: 2016
  end-page: 380
  ident: CR33
  article-title: Fourier analysis for stock price forecasting: assumption and evidence
  publication-title: J Bus Econ Manag
  doi: 10.3846/16111699.2016.1184180
– volume: 45
  start-page: 64
  issue: 1
  year: 2016
  end-page: 76
  ident: CR1
  article-title: Hybrid nonlinear adaptive scheme for stock market prediction using feedback FLANN and factor analysis
  publication-title: J Korean Stat Soc
  doi: 10.1016/j.jkss.2015.07.002
– volume: 7
  start-page: 943
  issue: 6
  year: 2016
  end-page: 952
  ident: CR19
  article-title: An emerging hybrid mechanism for information disclosure forecasting
  publication-title: Int J Mach Learn Cybernet
  doi: 10.1007/s13042-014-0295-4
– volume: 127
  start-page: 239
  year: 2016
  end-page: 246
  ident: CR13
  article-title: Generalized lasso with under-determined regularization matrices
  publication-title: Sig Process
  doi: 10.1016/j.sigpro.2016.03.001
– volume: 44
  start-page: 104
  year: 2016
  end-page: 112
  ident: CR24
  article-title: Quantification winter wheat LAI with HJ-1CCD image features over multiple growing seasons
  publication-title: Int J Appl Earth Obs Geoinf
  doi: 10.1016/j.jag.2015.08.004
– volume: 43
  start-page: 3635
  issue: 6
  year: 2016
  ident: CR11
  article-title: SU-G-BRA-03: PCA based imaging angle optimization for 2D cine MRI based radiotherapy guidance
  publication-title: Med Phys
  doi: 10.1118/1.4956927
– volume: 40
  start-page: 2276
  issue: 13
  year: 2011
  end-page: 2291
  ident: CR2
  article-title: Bayesian analysis of multiple hypothesis testing with applications to microarray experiments
  publication-title: Commun Stat
  doi: 10.1080/03610921003778183
– volume: 32
  start-page: 50
  issue: 1
  year: 2018
  end-page: 58
  ident: CR29
  article-title: Research of the curve radius of shape formed in profile cold forming with bp neural networks approach based on experiment
  publication-title: J Ship Prod Des
  doi: 10.5957/JSPD.32.1.140015
– volume: 441
  start-page: 983
  issue: 2
  year: 2018
  end-page: 1004
  ident: CR12
  article-title: Pastis: Bayesian extrasolar planet validation—I. General framework, models, and performance
  publication-title: Monthly Not R Astron Soc
  doi: 10.1093/mnras/stu601
– volume: 215
  start-page: 1841
  issue: 3
  year: 2018
  end-page: 1864
  ident: CR23
  article-title: Full waveform inversion with nonlocal similarity and gradient domain adaptive sparsity-promoting regularization
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggy380
– volume: 856
  start-page: L21
  issue: 1
  year: 2018
  ident: CR16
  article-title: BANYAN. XI. The Banyan Σ multivariate bayesian algorithm to identify members of young associations within 150 pc
  publication-title: Astrophys J
  doi: 10.3847/1538-4357/aaae09
– volume: 18
  start-page: 1129
  issue: 4
  year: 2018
  ident: CR14
  article-title: Non-mutually exclusive deep neural network classifier for combined modes of bearing fault diagnosis
  publication-title: Sensors
  doi: 10.3390/s18041129
– volume: 8
  start-page: 66
  issue: 5
  year: 2018
  ident: CR34
  article-title: Modeling habitat suitability of migratory birds from remote sensing images using convolutional neural networks
  publication-title: Animals
  doi: 10.3390/ani8050066
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 10
  ident: CR3
  article-title: Fractional-order deep backpropagation neural network
  publication-title: Comput Intell Neurosci
– volume: 294
  start-page: 227
  issue: 2
  year: 2015
  end-page: 241
  ident: CR10
  article-title: A hybrid fuzzy time series model based on granular computing for stock price forecasting
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.09.038
– volume: 5
  start-page: 295
  issue: 1
  year: 2016
  ident: CR15
  article-title: Convergence of batch gradient learning with smoothing regularization and adaptive momentum for neural networks
  publication-title: Springerplus
  doi: 10.1186/s40064-016-1931-0
– volume: 31
  start-page: 75
  issue: 1
  year: 2016
  ident: 3918_CR30
  publication-title: Ecol Res
  doi: 10.1007/s11284-015-1318-7
– volume: 215
  start-page: 1841
  issue: 3
  year: 2018
  ident: 3918_CR23
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggy380
– volume: 7
  start-page: 943
  issue: 6
  year: 2016
  ident: 3918_CR19
  publication-title: Int J Mach Learn Cybernet
  doi: 10.1007/s13042-014-0295-4
– volume: 43
  start-page: 3635
  issue: 6
  year: 2016
  ident: 3918_CR11
  publication-title: Med Phys
  doi: 10.1118/1.4956927
– volume: 21
  start-page: 603
  issue: 4
  year: 2016
  ident: 3918_CR7
  publication-title: Psychol Methods
  doi: 10.1037/met0000088
– volume: 18
  start-page: 1129
  issue: 4
  year: 2018
  ident: 3918_CR14
  publication-title: Sensors
  doi: 10.3390/s18041129
– volume: 18
  start-page: 562
  issue: 1
  year: 2017
  ident: 3918_CR27
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-017-1988-y
– volume: 14
  start-page: 156
  issue: 1
  year: 2014
  ident: 3918_CR9
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.07.024
– volume: 5
  start-page: 295
  issue: 1
  year: 2016
  ident: 3918_CR15
  publication-title: Springerplus
  doi: 10.1186/s40064-016-1931-0
– volume: 17
  start-page: 2897
  issue: 12
  year: 2017
  ident: 3918_CR18
  publication-title: Sensors
  doi: 10.3390/s17122897
– volume: 44
  start-page: 104
  year: 2016
  ident: 3918_CR24
  publication-title: Int J Appl Earth Obs Geoinf
  doi: 10.1016/j.jag.2015.08.004
– volume: 111
  start-page: 184
  year: 2016
  ident: 3918_CR6
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.11.045
– volume: 8
  start-page: 66
  issue: 5
  year: 2018
  ident: 3918_CR34
  publication-title: Animals
  doi: 10.3390/ani8050066
– volume: 12
  start-page: 23
  year: 2016
  ident: 3918_CR21
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2015.11.011
– volume: 17
  start-page: 421
  issue: 3
  year: 2018
  ident: 3918_CR4
  publication-title: IMA J Numer Anal
  doi: 10.1093/imanum/17.3.421
– volume: 112
  start-page: 698
  year: 2017
  ident: 3918_CR32
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.10.043
– volume: 1
  start-page: 1
  year: 2018
  ident: 3918_CR37
  publication-title: J For Res
  doi: 10.25273/research.v1i1.2448
– volume: 444
  start-page: 1993
  issue: 3
  year: 2018
  ident: 3918_CR36
  publication-title: Mon Not R Astron Soc
  doi: 10.1093/mnras/stu1541
– volume: 2018
  start-page: 1
  year: 2018
  ident: 3918_CR3
  publication-title: Comput Intell Neurosci
– volume: 171
  start-page: 63
  issue: C
  year: 2016
  ident: 3918_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.017
– volume: 26
  start-page: 882
  issue: 7
  year: 2016
  ident: 3918_CR35
  publication-title: Genome Res
  doi: 10.1101/gr.204149.116
– volume: 40
  start-page: 2276
  issue: 13
  year: 2011
  ident: 3918_CR2
  publication-title: Commun Stat
  doi: 10.1080/03610921003778183
– volume: 32
  start-page: 50
  issue: 1
  year: 2018
  ident: 3918_CR29
  publication-title: J Ship Prod Des
  doi: 10.5957/JSPD.32.1.140015
– volume: 17
  start-page: 365
  issue: 3
  year: 2016
  ident: 3918_CR33
  publication-title: J Bus Econ Manag
  doi: 10.3846/16111699.2016.1184180
– volume: 127
  start-page: 239
  year: 2016
  ident: 3918_CR13
  publication-title: Sig Process
  doi: 10.1016/j.sigpro.2016.03.001
– volume: 4
  start-page: 105
  issue: 2
  year: 2016
  ident: 3918_CR17
  publication-title: Friction
  doi: 10.1007/s40544-016-0104-z
– volume: 45
  start-page: 64
  issue: 1
  year: 2016
  ident: 3918_CR1
  publication-title: J Korean Stat Soc
  doi: 10.1016/j.jkss.2015.07.002
– volume: 441
  start-page: 983
  issue: 2
  year: 2018
  ident: 3918_CR12
  publication-title: Monthly Not R Astron Soc
  doi: 10.1093/mnras/stu601
– volume: 856
  start-page: L21
  issue: 1
  year: 2018
  ident: 3918_CR16
  publication-title: Astrophys J
  doi: 10.3847/1538-4357/aaae09
– volume: 294
  start-page: 227
  issue: 2
  year: 2015
  ident: 3918_CR10
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.09.038
– volume: 113
  start-page: 1008
  issue: 4
  year: 2016
  ident: 3918_CR22
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1513062113
– volume: 126
  start-page: 46
  year: 2016
  ident: 3918_CR26
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2015.10.017
– volume: 127
  start-page: 161
  year: 2018
  ident: 3918_CR28
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2018.01.111
– volume: 10
  start-page: 117
  issue: 1
  year: 2016
  ident: 3918_CR5
  publication-title: Kinet Relat Models
  doi: 10.3934/krm.2017005
– volume: 188
  start-page: 1
  issue: 4
  year: 2016
  ident: 3918_CR31
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-016-5253-z
– volume: 37
  start-page: 461
  issue: 7
  year: 2014
  ident: 3918_CR8
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2013.09.025
– volume: 17
  start-page: 894
  issue: 4
  year: 2017
  ident: 3918_CR25
  publication-title: Sensors
  doi: 10.3390/s17040894
SSID ssj0021753
Score 2.4327457
Snippet In order to establish an accurate effective stock forecasting model, the principal component analysis (PCA) was first used to analyze the main financial index...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7851
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Back propagation networks
Computational Intelligence
Control
Economic development
Engineering
Financial management
Focus
Fourier transforms
Investment policy
Investments
Investors
Market economies
Market prices
Mathematical Logic and Foundations
Mechatronics
Methods
Neural networks
Performance evaluation
Prediction models
Principal components analysis
Regularization
Robotics
Securities markets
Small & medium sized enterprises-SME
Stock exchanges
Support vector machines
Time series
Variables
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADgwFiMFAO3KDS2jRtckQIxGlCvLRb1bwkBNqmbfAf-Nc4adoBAiQ4tVXSyEqc2I7tzwDHfaZlqVIdZSWaqw6RLuIo2NBKEdy5sURqrS82kQ8GfDgU1yEpbFZHu9cuSX9SN8luDqrEBVGJyKGa84guwwqKO-62483tQ2NmBexJVARQd0SBG1Jlvh_jszha6Jhf3KJe2ly2_0fnJmwE7ZKcVeywBUtm1IF2XbmBhI3cgfUPMITb8FYF4vk1ImNLUB9UT8TjKJIqMZhMps6h4zv42jnEST9N8BMVSIKEoYHd_D-pLvCREBewPh6hXCNlAD_BF00cu1bIFcThafqHj0bfgfvLi7vzqyiUaIgUzfI56ubKoe9w06dc0lgyprmKDUtEKRSXrCwNTWyfWqbLWEmUmCy3GhkkTVSWGUN3oTVCOvaA4NGSUptzlRocUEghGbWaKalSy2zGuxDXK1WogF_uymg8Fw3ysp_5Ame-8DNf0C6cNP9MKvSOX3v3agYowk6eFQk2odpEadyF03rBF80_j7b_t-4HsJY4U95f8PSgNZ--mENYVa_zx9n0yHP4O3S49fw
  priority: 102
  providerName: Springer Nature
Title Exploration of stock index change prediction model based on the combination of principal component analysis and artificial neural network
URI https://link.springer.com/article/10.1007/s00500-019-03918-3
https://www.proquest.com/docview/2918081331
Volume 24
WOSCitedRecordID wos000530547900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60evBifWJ9kYM3XexuNrvJSVQsglCKL8TLsptsQJS2ttX_4L92JpttUbAXL_tgk2xgJplnvgE4agtT5Do2QZKjuUqIdIFEwYZWipIUxlKxta7YRNrtyqcn1fMOt7FPq6z3RLdRm4EmH_lppEIqEsF5eDZ8D6hqFEVXfQmNRVgKoygkPr9Jg6nB5VEoUSVALRJFrz80447OEfAJpWSpgDDSZcB_CqaZtvkrQOrkTqf53xmvwarXONl5xSLrsFD2N6BZV3NgfnFvwleVjucoxQaWoVaoX5lDU2TV8WA2HFFYxzVwFXQYyUDD8BXVSIazQjN72n9YufHx15S2PuijdGO5h0DBB8OIaSv8Ckaomu7mctK34KFzdX95HfhCDYHmSTpBDV0TBo8s21wWPCyEMFKHpYhUrrQsRJ6XPLJtboXJQ12g3BSpNcgmcaSTpCz5NjT6OI8dYLjBxNymUsclDqgKVQhujdCFjq2wiWxBWFMp0x7FnIppvGVT_GVH2QwpmznKZrwFx9M-wwrDY27r_ZqcmV_P42xGyxac1Awx-_z3aLvzR9uDlYgMeOfW2YfGZPRRHsCy_py8jEeHsHRx1e3dHjquxmtPPOP19u7xG1o__t4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BRYJLKX9iC7Q-wAkiNnGc2AeEEBSBFlYcQOIW4j8Jtdrd7m5b9RH6MjwjM06yK5DgxqGnJIrtJM7nmbFn_A3ATltYXZrURlmJ01VipIskKjacpShJbiyVeh-STeTdrry7U9cz8NjshaGwykYmBkFt-4bWyA8SFVOSCM7jo8HPiLJGkXe1SaFRwaLj_v7BKdvo8OIU_-9ukpx9uzk5j-qsApHhWT5Gc9IQYYx0bS41j7UQVprYiUSVykgtytLxxLe5F7aMjUYhL3Jv8ZvSxGSZcxzbnYUPKZc5cfV38mgywatZL9EEQasVVX29SSds1SOiFQoBUxFxssuIP1eEU-v2hUM26Lmzpf-thz7Bx9qiZsfVEFiGGddbgaUmWwWrhdcq_KvCDQMSWd8ztHrNdxbYIlm1_ZkNhuS2CgVChiBGOt4yvEQzmWEv6IfepP6gclPgoyksv99D7c3KmuIFTyyjQVnxczBiDQ2HEHO_Brfv0iHrMNfD99gAhgI05T6XJnXYoNJKC-6tMNqkXvhMtiBuUFGYmqWdkoX8KCb80gFJBSKpCEgqeAv2JnUGFUfJm6W3GvgUtbwaFVPstGC_AeD09uutfX67ta-wcH5zdVlcXnQ7m7CY0GJFWMLagrnx8Jfbhnnze_wwGn4JI4nB_XsD8wkGmFhT
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD06k4nZoH37RsbZo2fRR1KMoY-MHeSps0IEpXtur_4H_tJf3YFBXEp7bkgyO59O5yd78DOO4xGUfClZYXobmqEeksjoINrZSAazdW4Cplik34gwEfjYLhXBa_iXavXJJFToNGaUrzbiZVt05807AlOqAqsDTCObfoIiy5umiQttfvHmuTq8ShRKUA9UgUvmXazPdzfBZNM33zi4vUSJ5-8_80b8B6qXWSs4JNNmEhSVvQrCo6kPKAt2BtDp5wC96LAD2zd2SsCOqJ4pkYfEVSJAyTbKIdPaaDqalDtFSUBD9RsSRIJBre9fisuNhHQnQg-zhF2klUgqLgiySajQtEC6JxNs3DRKlvw0P_8v78yipLN1iCen6OOrvQqDw86VEeUztmTHJhJ8wJokDwmEVRQh3Vo4rJyBYxSlLmK4mM4zrC85KE7kAjRTp2geAvx6XK58JNcMIgDmJGlWQiFq5iyuNtsKtdC0WJa67La7yENSKzWfkQVz40Kx_SNpzUY7IC1ePX3p2KGcLyhE9DB5tQnaLUbsNptfmz5p9n2_tb9yNYGV70w9vrwc0-rDra2jd3QB1o5JPX5ACWxVv-NJ0cGsb_ANRpAdM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+stock+index+change+prediction+model+based+on+the+combination+of+principal+component+analysis+and+artificial+neural+network&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Cao%2C+Jiasheng&rft.au=Wang%2C+Jinghan&rft.date=2020-06-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=24&rft.issue=11&rft.spage=7851&rft.epage=7860&rft_id=info:doi/10.1007%2Fs00500-019-03918-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_019_03918_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon