Two-agent scheduling with rejection on a single machine

In this paper, we consider the two-agent scheduling problem with rejection on a single machine. In the problem we have two agents A and B with job families JA and JB, respectively. A job in JA or JB is either accepted and processed on the machine, or rejected with a certain rejection penalty having...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematical modelling Ročník 39; číslo 3-4; s. 1183 - 1193
Hlavní autoři: Feng, Qi, Fan, Baoqiang, Li, Shisheng, Shang, Weiping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.02.2015
Témata:
ISSN:0307-904X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider the two-agent scheduling problem with rejection on a single machine. In the problem we have two agents A and B with job families JA and JB, respectively. A job in JA or JB is either accepted and processed on the machine, or rejected with a certain rejection penalty having to be paid. The objective is to minimize the sum of the given objective function fA of the accepted jobs and total rejection penalty of the rejected jobs of the first agent A, given that the second agent B only accepts schedules such that the sum of the given objective function fB of the accepted jobs and total rejection penalty of the rejected jobs of the agent B does not exceed a fixed value Q (Q is a positive integer), where fA and fB are non-decreasing functions on the completion times of their respective jobs. We show that, for all pairs (fA,fB)∈CmaxA,CmaxB,LmaxA,LmaxB,∑CjA,CmaxB,∑CjA,LmaxB,∑CjA,∑wjBUjB, the problems are NP-hard. When (fA,fB)=CmaxA,LmaxB, we provide a pseudo-polynomial-time algorithm. Moreover, when (fA,fB)=CmaxA,LmaxB and all B-jobs are accepted, we give a 2-approximation algorithm and an fully polynomial-time approximation scheme. Finally, for (fA,fB)∈∑CjA,LmaxB,∑CjA,∑wjBUjBK, we present pseudo-polynomial-time algorithms, respectively.
ISSN:0307-904X
DOI:10.1016/j.apm.2014.07.024