Application of deep reinforcement learning in stock trading strategies and stock forecasting

The role of the stock market across the overall financial market is indispensable. The way to acquire practical trading signals in the transaction process to maximize the benefits is a problem that has been studied for a long time. This paper put forward a theory of deep reinforcement learning in th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computing Ročník 102; číslo 6; s. 1305 - 1322
Hlavní autori: Li, Yuming, Ni, Pin, Chang, Victor
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Vienna Springer Vienna 01.06.2020
Springer Nature B.V
Predmet:
ISSN:0010-485X, 1436-5057
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The role of the stock market across the overall financial market is indispensable. The way to acquire practical trading signals in the transaction process to maximize the benefits is a problem that has been studied for a long time. This paper put forward a theory of deep reinforcement learning in the stock trading decisions and stock price prediction, the reliability and availability of the model are proved by experimental data, and the model is compared with the traditional model to prove its advantages. From the point of view of stock market forecasting and intelligent decision-making mechanism, this paper proves the feasibility of deep reinforcement learning in financial markets and the credibility and advantages of strategic decision-making.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0010-485X
1436-5057
DOI:10.1007/s00607-019-00773-w