Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms

Predicting next-day heat load curves is essential to guarantee sufficient heat supply and optimal operation of district heat systems (DHSs). Existing studies have mainly investigated one-step ahead forecasting methods, which can predict a single value at a future time step. To predict heat load curv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy (Oxford) Ročník 188; s. 116085
Hlavní autoři: Xue, Puning, Jiang, Yi, Zhou, Zhigang, Chen, Xin, Fang, Xiumu, Liu, Jing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.12.2019
Elsevier BV
Témata:
ISSN:0360-5442, 1873-6785
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Predicting next-day heat load curves is essential to guarantee sufficient heat supply and optimal operation of district heat systems (DHSs). Existing studies have mainly investigated one-step ahead forecasting methods, which can predict a single value at a future time step. To predict heat load curves, multi-step ahead forecasting methods are needed. This study proposes a machine learning-based framework for multi-step ahead DHS heat load forecasting. Specifically, support vector regression, deep neural network, and extreme gradient boosting (XGBoost) are respectively used as the base learner to develop forecasting models. Two multi-step ahead forecasting methods, i.e. direct strategy and recursive strategy, adopt the learnt models to generate predictions. A DHS in China is used as the case study to comprehensively assess the performance of these two forecasting strategies. Recursive strategy using the XGBoost-based forecasting model can achieve the most accurate and stable predictions with a value of 10.52% for the coefficient of variation of root mean square error. Furthermore, the modeling process of recursive strategy is much more convenient than that of direct strategy. The research shows that the recursive strategy is a better solution to multi-step ahead forecasting than the direct strategy with respect to accuracy, prediction stability, and modeling process. •A framework for multi-step ahead heat load forecasting is proposed.•Direct and recursive strategies are used to predict daily heat load curves.•Applicability of direct and recursive strategies is assessed from three aspects.•Recursive strategy slightly outperforms direct strategy in accuracy and stability.•Modeling process of recursive strategy is simpler than that of direct strategy.
AbstractList Predicting next-day heat load curves is essential to guarantee sufficient heat supply and optimal operation of district heat systems (DHSs). Existing studies have mainly investigated one-step ahead forecasting methods, which can predict a single value at a future time step. To predict heat load curves, multi-step ahead forecasting methods are needed. This study proposes a machine learning-based framework for multi-step ahead DHS heat load forecasting. Specifically, support vector regression, deep neural network, and extreme gradient boosting (XGBoost) are respectively used as the base learner to develop forecasting models. Two multi-step ahead forecasting methods, i.e. direct strategy and recursive strategy, adopt the learnt models to generate predictions. A DHS in China is used as the case study to comprehensively assess the performance of these two forecasting strategies. Recursive strategy using the XGBoost-based forecasting model can achieve the most accurate and stable predictions with a value of 10.52% for the coefficient of variation of root mean square error. Furthermore, the modeling process of recursive strategy is much more convenient than that of direct strategy. The research shows that the recursive strategy is a better solution to multi-step ahead forecasting than the direct strategy with respect to accuracy, prediction stability, and modeling process.
Predicting next-day heat load curves is essential to guarantee sufficient heat supply and optimal operation of district heat systems (DHSs). Existing studies have mainly investigated one-step ahead forecasting methods, which can predict a single value at a future time step. To predict heat load curves, multi-step ahead forecasting methods are needed. This study proposes a machine learning-based framework for multi-step ahead DHS heat load forecasting. Specifically, support vector regression, deep neural network, and extreme gradient boosting (XGBoost) are respectively used as the base learner to develop forecasting models. Two multi-step ahead forecasting methods, i.e. direct strategy and recursive strategy, adopt the learnt models to generate predictions. A DHS in China is used as the case study to comprehensively assess the performance of these two forecasting strategies. Recursive strategy using the XGBoost-based forecasting model can achieve the most accurate and stable predictions with a value of 10.52% for the coefficient of variation of root mean square error. Furthermore, the modeling process of recursive strategy is much more convenient than that of direct strategy. The research shows that the recursive strategy is a better solution to multi-step ahead forecasting than the direct strategy with respect to accuracy, prediction stability, and modeling process. •A framework for multi-step ahead heat load forecasting is proposed.•Direct and recursive strategies are used to predict daily heat load curves.•Applicability of direct and recursive strategies is assessed from three aspects.•Recursive strategy slightly outperforms direct strategy in accuracy and stability.•Modeling process of recursive strategy is simpler than that of direct strategy.
ArticleNumber 116085
Author Fang, Xiumu
Zhou, Zhigang
Chen, Xin
Jiang, Yi
Xue, Puning
Liu, Jing
Author_xml – sequence: 1
  givenname: Puning
  surname: Xue
  fullname: Xue, Puning
  organization: School of Architecture, Harbin Institute of Technology, Harbin, 150000, China
– sequence: 2
  givenname: Yi
  surname: Jiang
  fullname: Jiang, Yi
  email: 350121075@qq.com
  organization: Heilongjiang Provincial Computing Center, Harbin, 150026, China
– sequence: 3
  givenname: Zhigang
  surname: Zhou
  fullname: Zhou, Zhigang
  organization: School of Architecture, Harbin Institute of Technology, Harbin, 150000, China
– sequence: 4
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
  organization: School of Architecture, Harbin Institute of Technology, Harbin, 150000, China
– sequence: 5
  givenname: Xiumu
  surname: Fang
  fullname: Fang, Xiumu
  organization: School of Architecture, Harbin Institute of Technology, Harbin, 150000, China
– sequence: 6
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  email: liujinghit0@163.com
  organization: School of Architecture, Harbin Institute of Technology, Harbin, 150000, China
BookMark eNqFkcFO3DAURS1EJQbKH7CIxKabDHbsxAkLJISAIoG6adfWw3me8SixB9tBmr-vQ7piUVaWr899ejo-JcfOOyTkgtE1o6y52q3RYdgc1hVl3Zqxhrb1EVmxVvKykW19TFaUN7SshahOyGmMO0pp3XbdimxepiHZMibcF7BF6AvjA2qIybpN4U2Rs1QMPj9YV_Q2pmB1-khnIB5yc4zFFOfbCHprHRYDQnBzAMPGB5u2Y_xOvhkYIp7_O8_In4f733c_y-dfj093t8-l5o1MpaRmXlJWhqMWlHaSv_aGAWPQi1oaMI1mr0K2Pe8rLQUDI00rAJuqqWoAfkZ-LHP3wb9NGJMabdQ4DODQT1FVnNeMt0LIjF5-Qnd-Ci5vl6mK07prPyixUDr4GAMatQ92hHBQjKrZvtqpxb6a7avFfq5df6ppm7Iz71IAO3xVvlnKmE29WwwqaotOY2_z3yTVe_v_AX8BzPal7w
CitedBy_id crossref_primary_10_1016_j_est_2021_102351
crossref_primary_10_1016_j_enbuild_2020_110521
crossref_primary_10_1007_s12667_020_00405_9
crossref_primary_10_1016_j_apenergy_2024_124164
crossref_primary_10_1016_j_applthermaleng_2025_126817
crossref_primary_10_3390_smartcities7010010
crossref_primary_10_1016_j_tsep_2023_102005
crossref_primary_10_1016_j_energy_2023_128248
crossref_primary_10_1134_S0040601522060088
crossref_primary_10_3390_info12020050
crossref_primary_10_1016_j_apenergy_2024_124209
crossref_primary_10_1016_j_energy_2022_124967
crossref_primary_10_1109_TII_2025_3534419
crossref_primary_10_3390_en14102752
crossref_primary_10_1016_j_applthermaleng_2025_128292
crossref_primary_10_1016_j_physa_2023_128798
crossref_primary_10_1134_S0040601524040013
crossref_primary_10_1038_s41598_023_34146_3
crossref_primary_10_3390_buildings12101701
crossref_primary_10_1016_j_energy_2023_128124
crossref_primary_10_1016_j_enbuild_2020_110658
crossref_primary_10_1016_j_cities_2023_104299
crossref_primary_10_1038_s41598_022_13030_6
crossref_primary_10_1016_j_psep_2024_05_043
crossref_primary_10_1016_j_ijepes_2025_111065
crossref_primary_10_1016_j_energy_2022_124179
crossref_primary_10_1016_j_asoc_2022_108754
crossref_primary_10_1134_S0040601523090045
crossref_primary_10_1016_j_energy_2024_132456
crossref_primary_10_1002_ceat_202300524
crossref_primary_10_1109_ACCESS_2020_3010782
crossref_primary_10_3390_en18133557
crossref_primary_10_1016_j_energy_2020_117454
crossref_primary_10_1016_j_jobe_2023_107464
crossref_primary_10_1061__ASCE_CO_1943_7862_0002406
crossref_primary_10_1016_j_bspc_2025_108536
crossref_primary_10_1109_JIOT_2022_3153453
crossref_primary_10_1016_j_enconman_2021_113860
crossref_primary_10_3390_en15030958
crossref_primary_10_1016_j_enbuild_2021_111191
crossref_primary_10_3390_en16176376
crossref_primary_10_1016_j_apenergy_2024_122645
crossref_primary_10_1016_j_apenergy_2023_121753
crossref_primary_10_1016_j_energy_2021_121632
crossref_primary_10_1016_j_applthermaleng_2023_120372
crossref_primary_10_1016_j_energy_2023_126608
crossref_primary_10_1016_j_optlastec_2024_111170
crossref_primary_10_1016_j_energy_2024_133535
crossref_primary_10_1016_j_energy_2022_124919
crossref_primary_10_1016_j_enbenv_2024_02_005
crossref_primary_10_1016_j_jclepro_2024_141228
crossref_primary_10_1016_j_energy_2025_134641
crossref_primary_10_1061_JMENEA_MEENG_5492
crossref_primary_10_1088_1742_6596_1926_1_012053
crossref_primary_10_3390_en17071662
crossref_primary_10_1016_j_dsp_2022_103567
crossref_primary_10_1080_08839514_2025_2452675
crossref_primary_10_1016_j_enbuild_2024_114430
crossref_primary_10_1016_j_energy_2022_123666
crossref_primary_10_1016_j_apenergy_2024_123688
crossref_primary_10_3390_en14185831
crossref_primary_10_7717_peerj_cs_1487
crossref_primary_10_1016_j_applthermaleng_2024_122620
crossref_primary_10_1007_s00607_023_01164_y
crossref_primary_10_1109_TIM_2025_3588929
crossref_primary_10_1016_j_energy_2021_122318
crossref_primary_10_1109_ACCESS_2020_3017516
crossref_primary_10_1016_j_energy_2023_129023
crossref_primary_10_3390_app11177886
crossref_primary_10_1016_j_energy_2024_130895
crossref_primary_10_3390_pr12112438
crossref_primary_10_3389_fenrg_2023_1296037
crossref_primary_10_1016_j_engappai_2025_110268
crossref_primary_10_3390_en14113162
crossref_primary_10_3390_en18010008
crossref_primary_10_1016_j_enbuild_2021_111375
crossref_primary_10_1016_j_ijepes_2024_110445
crossref_primary_10_1016_j_eswa_2023_121355
crossref_primary_10_3390_en14030608
crossref_primary_10_1016_j_ijepes_2022_108073
crossref_primary_10_1016_j_energy_2020_117283
crossref_primary_10_1016_j_energy_2022_123834
crossref_primary_10_1016_j_enbuild_2020_110161
crossref_primary_10_1016_j_egyr_2022_10_425
crossref_primary_10_1016_j_energy_2023_129010
crossref_primary_10_1109_ACCESS_2020_3007163
crossref_primary_10_1016_j_eneco_2020_104827
crossref_primary_10_1016_j_seta_2024_104135
crossref_primary_10_1016_j_enconman_2022_116163
crossref_primary_10_1016_j_energy_2020_117687
crossref_primary_10_1016_j_energy_2023_126661
crossref_primary_10_1007_s00202_025_02995_y
crossref_primary_10_1016_j_energy_2021_122061
crossref_primary_10_1088_1742_6596_1926_1_012070
crossref_primary_10_1016_j_energy_2023_126932
crossref_primary_10_3390_en16104065
crossref_primary_10_1016_j_ins_2024_121268
crossref_primary_10_1016_j_energy_2023_129524
crossref_primary_10_2478_amns_2025_0071
crossref_primary_10_1016_j_jobe_2022_105028
crossref_primary_10_1002_dug2_12098
crossref_primary_10_1016_j_enbuild_2022_112593
crossref_primary_10_1016_j_enbuild_2021_111710
crossref_primary_10_1016_j_oceaneng_2022_112258
crossref_primary_10_1016_j_engappai_2023_107115
crossref_primary_10_1016_j_knosys_2022_109440
crossref_primary_10_1016_j_egyr_2021_08_140
crossref_primary_10_1016_j_apenergy_2025_125273
crossref_primary_10_3389_fenrg_2024_1408119
crossref_primary_10_1016_j_eneco_2022_106411
crossref_primary_10_1002_nag_3654
crossref_primary_10_1016_j_apenergy_2023_121710
crossref_primary_10_1080_13467581_2023_2294871
crossref_primary_10_1002_nag_3419
crossref_primary_10_1177_01436244241274924
crossref_primary_10_1007_s11269_025_04332_1
crossref_primary_10_1016_j_energy_2024_131690
crossref_primary_10_3390_electronics13193885
crossref_primary_10_1016_j_energy_2021_121834
crossref_primary_10_1016_j_enbuild_2020_110673
crossref_primary_10_1088_1361_6501_ad817a
crossref_primary_10_1016_j_apenergy_2021_117957
crossref_primary_10_1016_j_jobe_2022_105330
crossref_primary_10_1049_gtd2_13023
crossref_primary_10_1016_j_energy_2020_118872
crossref_primary_10_1016_j_energy_2020_118477
crossref_primary_10_1016_j_energy_2020_117949
crossref_primary_10_1016_j_energy_2024_130347
crossref_primary_10_1016_j_energy_2022_123350
crossref_primary_10_1016_j_autcon_2021_103896
crossref_primary_10_1016_j_eswa_2022_116772
crossref_primary_10_1016_j_egyai_2025_100498
crossref_primary_10_1016_j_egyr_2023_05_034
crossref_primary_10_1016_j_energy_2022_123225
crossref_primary_10_1016_j_ins_2024_121126
crossref_primary_10_3390_environments12040131
crossref_primary_10_3390_en15145245
Cites_doi 10.1016/j.autcon.2014.12.006
10.1016/j.enbuild.2016.09.068
10.1016/j.enbuild.2015.02.052
10.1016/j.energy.2015.04.109
10.1016/j.apenergy.2019.02.052
10.1016/j.egypro.2017.03.704
10.1016/j.energy.2017.04.045
10.1016/j.enbuild.2015.07.006
10.1023/A:1017181826899
10.1016/j.enbuild.2017.12.042
10.1016/j.energy.2013.05.055
10.1016/j.energy.2015.01.079
10.1016/j.energy.2017.12.108
10.1016/j.rser.2015.04.020
10.1016/j.enbuild.2008.05.008
10.1016/j.energy.2013.08.017
10.1016/j.energy.2016.07.105
10.1016/j.enbuild.2016.04.021
10.1016/j.energy.2018.05.111
10.1016/j.energy.2014.02.089
10.1016/j.egypro.2017.03.884
10.1016/j.apenergy.2010.09.020
10.1016/j.apenergy.2014.09.022
10.1016/j.energy.2018.09.065
10.3390/en12101948
10.1016/j.apenergy.2016.06.133
10.1016/j.apenergy.2017.08.035
10.1016/S0306-2619(02)00078-8
10.1016/j.enbuild.2015.06.074
10.1016/j.eswa.2008.02.042
10.1016/j.egypro.2017.05.068
10.1504/IJWMC.2013.057579
10.1080/10789669.2007.10390952
10.1016/j.apenergy.2011.04.020
10.1016/j.apenergy.2017.02.066
10.1016/j.energy.2018.03.179
10.1016/j.energy.2009.11.023
10.1016/j.egypro.2018.08.169
10.1016/j.eswa.2012.01.039
10.1016/j.apenergy.2018.06.064
10.1016/j.scs.2019.101533
10.1016/j.energy.2015.11.079
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Dec 1, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 1, 2019
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2019.116085
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2019_116085
S0360544219317803
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-70f544272f3ec400973bdf1a11ad457faf6c1b478d3d2c741af7f84ae62625aa3
ISICitedReferencesCount 154
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000505271100092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Thu Oct 02 06:05:29 EDT 2025
Wed Aug 13 10:35:53 EDT 2025
Tue Nov 18 21:51:49 EST 2025
Sat Nov 29 01:40:54 EST 2025
Sat Jan 04 15:43:05 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-step ahead forecasting
Machine learning algorithms
Heat load forecasting
District heating
Recursive strategy
Direct strategy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-70f544272f3ec400973bdf1a11ad457faf6c1b478d3d2c741af7f84ae62625aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2323059847
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2335138447
proquest_journals_2323059847
crossref_primary_10_1016_j_energy_2019_116085
crossref_citationtrail_10_1016_j_energy_2019_116085
elsevier_sciencedirect_doi_10_1016_j_energy_2019_116085
PublicationCentury 2000
PublicationDate 2019-12-01
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Goodfellow, Bengio, Courville (bib53) 2016
Fang, Lahdelma (bib20) 2016; 179
Kato, Sakawa, Ishimaru, Ushiro, Shibano (bib37) 2008
Hamzaçebi, Akay, Kutay (bib43) 2009
Persson, Werner (bib11) 2011; 88
Shamshirband, Petković, Enayatifar, Hanan Abdullah, Marković, Lee (bib34) 2015; 48
Géron (bib50) 2017
Rahman, Smith (bib36) 2018; 228
Sandberg, Wallin, Li, Azaza (bib31) 2017; 105
Guo, Hendel (bib4) 2018; 145
Grosswindhager, Voigt, Kozek (bib21) 2011
Fan, Sun, Zhao, Song, Wang (bib57) 2019; 240
Gu, Wang, Qi, Min, Sundén (bib27) 2018; 152
Lund, Werner, Wiltshire, Svendsen, Thorsen, Hvelplund (bib12) 2014; 68
Johansson, Bergkvist, Geysen, Somer, Lavesson, Vanhoudt (bib30) 2017
Saloux, Candanedo (bib23) 2018; 149
Zhou (bib51) 2016
ASHRAE (bib55) 2002
Fan, Xiao, Yan (bib46) 2015
Dahl, Brun, Andresen (bib40) 2017; 193
Xie, Li, Ma, Sun, Wallin, Si (bib32) 2017; 105
Bishop (bib18) 2006
Arvastson (bib45) 2001
Jovanović, Sretenović, Živković (bib35) 2015; 94
Gadd, Werner (bib14) 2014; 136
Izadyar, Ong, Shamshirband, Ghadamian, Tong (bib29) 2015; 104
Liao, Ertesvåg, Zhao (bib2) 2013; 57
Werner (bib10) 2017; 137
Sajjadi, Shamshirband, Alizamir, Yee, Mansor, Manaf (bib28) 2016; 122
Bourdeau, Zhai, Nefzaoui, Guo, Chatellier (bib38) 2019; 48
Protić, Shamshirband, Anisi, Petković, Mitić, Raos (bib22) 2015; 82
Goumba, Chiche, Guo, Colombert, Bonneau (bib3) 2017; vol. 1814
Lund, Duic, Østergaard, Mathiesen (bib13) 2016; 110
Petković, Protić, Shamshirband, Akib, Raos, Marković (bib33) 2015; 104
Frederiksen, Werner (bib1) 2013
Lund, Möller, Mathiesen, Dyrelund (bib9) 2010; 35
Suryanarayana, Lago, Geysen, Aleksiejuk, Johansson (bib25) 2018; 157
Zou, Fang, Wang, Ni (bib44) 2018
Han, Kamber, Pei (bib52) 2012
Ben, Bontempi, Atiya, Sorjamaa (bib42) 2012; 39
Rezaie, Rosen (bib8) 2012; 93
Xue, Zhou, Fang, Chen, Liu, Liu (bib48) 2017; 205
Guo, Goumba, Wang (bib6) 2019; 12
Alkan, Keçebas, Yamankaradeniz (bib7) 2013; 60
Dotzauer (bib19) 2002; 73
Kabacoff (bib49) 2015
Wojdyga (bib39) 2008
Idowu, Saguna, Åhlund, Schelén (bib16) 2016; 133
Geysen, De Somer, Johansson, Brage, Vanhoudt (bib15) 2018; 162
Al-Shammari, Keivani, Shamshirband, Mostafaeipour, Yee, Petković (bib26) 2016; 95
Chen, Guestrin (bib54) 2016; 16
Hastie, Tibshirani, Friedman (bib47) 2009
Reddy, Maor, Panjapornpon (bib56) 2007; 13
Protić, Shamshirband, Petković, Abbasi, Mat Kiah, Unar (bib24) 2015; 87
Kohavi, Provost (bib17) 1998; 30
Wang, Tian (bib41) 2013; 6
Guo, Pascal (bib5) 2018; 164
Chen (10.1016/j.energy.2019.116085_bib54) 2016; 16
Dahl (10.1016/j.energy.2019.116085_bib40) 2017; 193
Dotzauer (10.1016/j.energy.2019.116085_bib19) 2002; 73
Guo (10.1016/j.energy.2019.116085_bib6) 2019; 12
Suryanarayana (10.1016/j.energy.2019.116085_bib25) 2018; 157
Liao (10.1016/j.energy.2019.116085_bib2) 2013; 57
Grosswindhager (10.1016/j.energy.2019.116085_bib21) 2011
Sajjadi (10.1016/j.energy.2019.116085_bib28) 2016; 122
Géron (10.1016/j.energy.2019.116085_bib50) 2017
Goodfellow (10.1016/j.energy.2019.116085_bib53) 2016
Werner (10.1016/j.energy.2019.116085_bib10) 2017; 137
Saloux (10.1016/j.energy.2019.116085_bib23) 2018; 149
Protić (10.1016/j.energy.2019.116085_bib22) 2015; 82
Izadyar (10.1016/j.energy.2019.116085_bib29) 2015; 104
Bourdeau (10.1016/j.energy.2019.116085_bib38) 2019; 48
Petković (10.1016/j.energy.2019.116085_bib33) 2015; 104
Ben (10.1016/j.energy.2019.116085_bib42) 2012; 39
Idowu (10.1016/j.energy.2019.116085_bib16) 2016; 133
Frederiksen (10.1016/j.energy.2019.116085_bib1) 2013
Alkan (10.1016/j.energy.2019.116085_bib7) 2013; 60
Shamshirband (10.1016/j.energy.2019.116085_bib34) 2015; 48
Arvastson (10.1016/j.energy.2019.116085_bib45) 2001
Guo (10.1016/j.energy.2019.116085_bib5) 2018; 164
Lund (10.1016/j.energy.2019.116085_bib12) 2014; 68
Goumba (10.1016/j.energy.2019.116085_bib3) 2017; vol. 1814
Gu (10.1016/j.energy.2019.116085_bib27) 2018; 152
Rezaie (10.1016/j.energy.2019.116085_bib8) 2012; 93
Han (10.1016/j.energy.2019.116085_bib52)
Xie (10.1016/j.energy.2019.116085_bib32) 2017; 105
Persson (10.1016/j.energy.2019.116085_bib11) 2011; 88
Wang (10.1016/j.energy.2019.116085_bib41) 2013; 6
Sandberg (10.1016/j.energy.2019.116085_bib31) 2017; 105
Wojdyga (10.1016/j.energy.2019.116085_bib39) 2008
Al-Shammari (10.1016/j.energy.2019.116085_bib26) 2016; 95
Lund (10.1016/j.energy.2019.116085_bib9) 2010; 35
Guo (10.1016/j.energy.2019.116085_bib4) 2018; 145
Hamzaçebi (10.1016/j.energy.2019.116085_bib43) 2009
ASHRAE (10.1016/j.energy.2019.116085_bib55) 2002
Kato (10.1016/j.energy.2019.116085_bib37) 2008
Reddy (10.1016/j.energy.2019.116085_bib56) 2007; 13
Fang (10.1016/j.energy.2019.116085_bib20) 2016; 179
Jovanović (10.1016/j.energy.2019.116085_bib35) 2015; 94
Rahman (10.1016/j.energy.2019.116085_bib36) 2018; 228
Zou (10.1016/j.energy.2019.116085_bib44) 2018
Fan (10.1016/j.energy.2019.116085_bib46) 2015
Johansson (10.1016/j.energy.2019.116085_bib30) 2017
Xue (10.1016/j.energy.2019.116085_bib48) 2017; 205
Zhou (10.1016/j.energy.2019.116085_bib51) 2016
Gadd (10.1016/j.energy.2019.116085_bib14) 2014; 136
Bishop (10.1016/j.energy.2019.116085_bib18) 2006
Fan (10.1016/j.energy.2019.116085_bib57) 2019; 240
Geysen (10.1016/j.energy.2019.116085_bib15) 2018; 162
Lund (10.1016/j.energy.2019.116085_bib13) 2016; 110
Protić (10.1016/j.energy.2019.116085_bib24) 2015; 87
Hastie (10.1016/j.energy.2019.116085_bib47) 2009
Kohavi (10.1016/j.energy.2019.116085_bib17) 1998; 30
Kabacoff (10.1016/j.energy.2019.116085_bib49) 2015
References_xml – volume: 205
  start-page: 926
  year: 2017
  end-page: 940
  ident: bib48
  article-title: Fault detection and operation optimization in district heating substations based on data mining techniques
  publication-title: Appl Energy
– year: 2006
  ident: bib18
  article-title: Patterns recognition and machine learning
– volume: 95
  start-page: 266
  year: 2016
  end-page: 273
  ident: bib26
  article-title: Prediction of heat load in district heating systems by support vector machine with firefly searching algorithm
  publication-title: Energy
– year: 2001
  ident: bib45
  article-title: Stochastic modelling and operational optimization in district heating systems. PhD thesis, Mathematical Statistics
– volume: 145
  start-page: 79
  year: 2018
  end-page: 87
  ident: bib4
  article-title: Urban water networks as an alternative source for district heating and emergency heat-wave cooling
  publication-title: Energy
– volume: 105
  start-page: 2965
  year: 2017
  end-page: 2970
  ident: bib32
  article-title: Analysis of key factors in heat demand prediction with neural networks
  publication-title: Energy Procedia
– volume: 105
  start-page: 3784
  year: 2017
  end-page: 3790
  ident: bib31
  article-title: An analyze of long-term hourly district heat demand forecasting of a commercial building using neural networks
  publication-title: Energy Procedia
– volume: 193
  start-page: 455
  year: 2017
  end-page: 465
  ident: bib40
  article-title: Using ensemble weather predictions in district heating operation and load forecasting
  publication-title: Appl Energy
– year: 2012
  ident: bib52
  article-title: Data mining: concepts and techniques
– volume: 73
  start-page: 277
  year: 2002
  end-page: 284
  ident: bib19
  article-title: Simple model for prediction of loads in district heating systems
  publication-title: Appl Energy
– year: 2017
  ident: bib30
  article-title: Operational demand forecasting in district heating systems using ensembles of online machine learning algorithms
  publication-title: Energy Procedia
– volume: 240
  start-page: 35
  year: 2019
  end-page: 45
  ident: bib57
  article-title: Deep learning-based feature engineering methods for improved building energy prediction
  publication-title: Appl Energy
– volume: 82
  start-page: 697
  year: 2015
  end-page: 704
  ident: bib22
  article-title: Appraisal of soft computing methods for short term consumers' heat load prediction in district heating systems
  publication-title: Energy
– volume: 35
  start-page: 1381
  year: 2010
  end-page: 1390
  ident: bib9
  article-title: The role of district heating in future renewable energy systems
  publication-title: Energy
– volume: 94
  start-page: 189
  year: 2015
  end-page: 199
  ident: bib35
  article-title: Ensemble of various neural networks for prediction of heating energy consumption
  publication-title: Energy Build
– volume: 157
  start-page: 141
  year: 2018
  end-page: 149
  ident: bib25
  article-title: Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods
  publication-title: Energy
– year: 2008
  ident: bib37
  article-title: Heat load prediction through recurrent neural network in district heating and cooling systems
  publication-title: IEEE Int Conf Syst Man Cybern
– year: 2009
  ident: bib43
  article-title: Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting
  publication-title: Expert Syst Appl
– volume: 133
  start-page: 478
  year: 2016
  end-page: 488
  ident: bib16
  article-title: Applied machine learning: forecasting heat load in district heating system
  publication-title: Energy Build
– volume: 152
  start-page: 709
  year: 2018
  end-page: 718
  ident: bib27
  article-title: Medium-term heat load prediction for an existing residential building based on a wireless on-off control system
  publication-title: Energy
– volume: 149
  start-page: 59
  year: 2018
  end-page: 68
  ident: bib23
  article-title: Forecasting district heating demand using machine learning algorithms
  publication-title: Energy Procedia
– volume: 6
  start-page: 608
  year: 2013
  end-page: 614
  ident: bib41
  article-title: Application of wavelet neural network on thermal load forecasting
  publication-title: Int J Wirel Mob Comput
– volume: 136
  start-page: 59
  year: 2014
  end-page: 67
  ident: bib14
  article-title: Achieving low return temperatures from district heating substations
  publication-title: Appl Energy
– year: 2015
  ident: bib49
  article-title: R in action: data analysis and graphics with R
– year: 2013
  ident: bib1
  article-title: District heating and cooling
– volume: 228
  start-page: 108
  year: 2018
  end-page: 121
  ident: bib36
  article-title: Predicting heating demand and sizing a stratified thermal storage tank using deep learning algorithms
  publication-title: Appl Energy
– volume: 48
  start-page: 760
  year: 2015
  end-page: 767
  ident: bib34
  article-title: Heat load prediction in district heating systems with adaptive neuro-fuzzy method
  publication-title: Renew Sustain Energy Rev
– volume: 137
  start-page: 617
  year: 2017
  end-page: 631
  ident: bib10
  article-title: International review of district heating and cooling
  publication-title: Energy
– volume: 162
  start-page: 144
  year: 2018
  end-page: 153
  ident: bib15
  article-title: Operational thermal load forecasting in district heating networks using machine learning and expert advice
  publication-title: Energy Build
– volume: vol. 1814
  year: 2017
  ident: bib3
  article-title: Recov'Heat: an estimation tool of urban waste heat recovery potential in sustainable cities
  publication-title: AIP Conference Proceedings
– year: 2015
  ident: bib46
  article-title: A framework for knowledge discovery in massive building automation data and its application in building diagnostics
  publication-title: Autom ConStruct
– volume: 104
  start-page: 208
  year: 2015
  end-page: 214
  ident: bib29
  article-title: Intelligent forecasting of residential heating demand for the district heating system based on the monthly overall natural gas consumption
  publication-title: Energy Build
– volume: 104
  start-page: 264
  year: 2015
  end-page: 274
  ident: bib33
  article-title: Evaluation of the most influential parameters of heat load in district heating systems
  publication-title: Energy Build
– volume: 164
  start-page: 794
  year: 2018
  end-page: 802
  ident: bib5
  article-title: Air source heat pump for domestic hot water supply: performance comparison between individual and building scale installations
  publication-title: Energy
– volume: 122
  start-page: 222
  year: 2016
  end-page: 227
  ident: bib28
  article-title: Extreme learning machine for prediction of heat load in district heating systems
  publication-title: Energy Build
– year: 2016
  ident: bib53
  article-title: Deep learning
– volume: 30
  start-page: 271
  year: 1998
  end-page: 274
  ident: bib17
  article-title: Glossary of terms: special issue on applications of machine learning and the knowledge discovery process
  publication-title: Mach Learn
– volume: 39
  start-page: 7067
  year: 2012
  end-page: 7083
  ident: bib42
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Syst Appl
– year: 2008
  ident: bib39
  article-title: An influence of weather conditions on heat demand in district heating systems
  publication-title: Energy Build
– start-page: 1
  year: 2011
  end-page: 8
  ident: bib21
  article-title: Online short-term forecast of system heat load in district heating networks
  publication-title: Proc 31st Int Symp Forecast
– volume: 68
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib12
  article-title: 4th Generation District Heating (4GDH). Integrating smart thermal grids into future sustainable energy systems
  publication-title: Energy
– volume: 87
  start-page: 343
  year: 2015
  end-page: 351
  ident: bib24
  article-title: Forecasting of consumers' heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm
  publication-title: Energy
– volume: 48
  start-page: 101533
  year: 2019
  ident: bib38
  article-title: Modeling and forecasting building energy consumption: a review of data-driven techniques
  publication-title: Sustain Cities Soc
– volume: 57
  start-page: 671
  year: 2013
  end-page: 681
  ident: bib2
  article-title: Energetic and exergetic ef fi ciencies of coal- fi red CHP (combined heat and power) plants used in district heating systems of China
  publication-title: Energy
– volume: 110
  start-page: 1
  year: 2016
  end-page: 4
  ident: bib13
  article-title: Smart energy systems and 4th generation district heating
  publication-title: Energy
– year: 2009
  ident: bib47
  article-title: The elements of statistical learning: data mining, inference, and prediction
– volume: 60
  start-page: 426
  year: 2013
  end-page: 434
  ident: bib7
  article-title: Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method
  publication-title: Energy
– volume: 13
  start-page: 221
  year: 2007
  end-page: 241
  ident: bib56
  article-title: Calibrating detailed building energy simulation programs with measured data-Part II: application to three case study office buildings (RP-1051)
  publication-title: HVAC R Res
– year: 2018
  ident: bib44
  article-title: Heating engineering (District heating)
– year: 2002
  ident: bib55
  article-title: Guideline 14-2002. Atlanta, GA: measurement of energy and demand savings
– volume: 93
  start-page: 2
  year: 2012
  end-page: 10
  ident: bib8
  article-title: District heating and cooling: review of technology and potential enhancements
  publication-title: Appl Energy
– volume: 88
  start-page: 568
  year: 2011
  end-page: 576
  ident: bib11
  article-title: Heat distribution and the future competitiveness of district heating
  publication-title: Appl Energy
– volume: 12
  start-page: 1948
  year: 2019
  ident: bib6
  article-title: Comparison of direct and indirect active thermal energy storage strategies for large-scale solar heating systems
  publication-title: Energies
– year: 2017
  ident: bib50
  article-title: Hands-on machine learning with scikit-learn and TensorFlow
– volume: 179
  start-page: 544
  year: 2016
  end-page: 552
  ident: bib20
  article-title: Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system
  publication-title: Appl Energy
– year: 2016
  ident: bib51
  article-title: Machine learning
– volume: 16
  year: 2016
  ident: bib54
  article-title: XGBoost: a scalable tree boosting system
  publication-title: Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. - KDD
– year: 2015
  ident: 10.1016/j.energy.2019.116085_bib46
  article-title: A framework for knowledge discovery in massive building automation data and its application in building diagnostics
  publication-title: Autom ConStruct
  doi: 10.1016/j.autcon.2014.12.006
– volume: 133
  start-page: 478
  year: 2016
  ident: 10.1016/j.energy.2019.116085_bib16
  article-title: Applied machine learning: forecasting heat load in district heating system
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.09.068
– year: 2015
  ident: 10.1016/j.energy.2019.116085_bib49
– volume: 94
  start-page: 189
  year: 2015
  ident: 10.1016/j.energy.2019.116085_bib35
  article-title: Ensemble of various neural networks for prediction of heating energy consumption
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.02.052
– volume: 87
  start-page: 343
  year: 2015
  ident: 10.1016/j.energy.2019.116085_bib24
  article-title: Forecasting of consumers' heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2015.04.109
– volume: 240
  start-page: 35
  year: 2019
  ident: 10.1016/j.energy.2019.116085_bib57
  article-title: Deep learning-based feature engineering methods for improved building energy prediction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.02.052
– year: 2006
  ident: 10.1016/j.energy.2019.116085_bib18
– ident: 10.1016/j.energy.2019.116085_bib52
– volume: 105
  start-page: 2965
  year: 2017
  ident: 10.1016/j.energy.2019.116085_bib32
  article-title: Analysis of key factors in heat demand prediction with neural networks
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.704
– volume: 137
  start-page: 617
  year: 2017
  ident: 10.1016/j.energy.2019.116085_bib10
  article-title: International review of district heating and cooling
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.045
– volume: 104
  start-page: 208
  year: 2015
  ident: 10.1016/j.energy.2019.116085_bib29
  article-title: Intelligent forecasting of residential heating demand for the district heating system based on the monthly overall natural gas consumption
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.07.006
– volume: 30
  start-page: 271
  year: 1998
  ident: 10.1016/j.energy.2019.116085_bib17
  article-title: Glossary of terms: special issue on applications of machine learning and the knowledge discovery process
  publication-title: Mach Learn
  doi: 10.1023/A:1017181826899
– volume: 162
  start-page: 144
  year: 2018
  ident: 10.1016/j.energy.2019.116085_bib15
  article-title: Operational thermal load forecasting in district heating networks using machine learning and expert advice
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.12.042
– volume: 57
  start-page: 671
  year: 2013
  ident: 10.1016/j.energy.2019.116085_bib2
  article-title: Energetic and exergetic ef fi ciencies of coal- fi red CHP (combined heat and power) plants used in district heating systems of China
  publication-title: Energy
  doi: 10.1016/j.energy.2013.05.055
– volume: vol. 1814
  year: 2017
  ident: 10.1016/j.energy.2019.116085_bib3
  article-title: Recov'Heat: an estimation tool of urban waste heat recovery potential in sustainable cities
– volume: 82
  start-page: 697
  year: 2015
  ident: 10.1016/j.energy.2019.116085_bib22
  article-title: Appraisal of soft computing methods for short term consumers' heat load prediction in district heating systems
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.079
– volume: 145
  start-page: 79
  year: 2018
  ident: 10.1016/j.energy.2019.116085_bib4
  article-title: Urban water networks as an alternative source for district heating and emergency heat-wave cooling
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.108
– volume: 16
  year: 2016
  ident: 10.1016/j.energy.2019.116085_bib54
  article-title: XGBoost: a scalable tree boosting system
– volume: 48
  start-page: 760
  year: 2015
  ident: 10.1016/j.energy.2019.116085_bib34
  article-title: Heat load prediction in district heating systems with adaptive neuro-fuzzy method
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.04.020
– year: 2008
  ident: 10.1016/j.energy.2019.116085_bib39
  article-title: An influence of weather conditions on heat demand in district heating systems
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2008.05.008
– year: 2008
  ident: 10.1016/j.energy.2019.116085_bib37
  article-title: Heat load prediction through recurrent neural network in district heating and cooling systems
  publication-title: IEEE Int Conf Syst Man Cybern
– year: 2017
  ident: 10.1016/j.energy.2019.116085_bib50
– volume: 60
  start-page: 426
  year: 2013
  ident: 10.1016/j.energy.2019.116085_bib7
  article-title: Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method
  publication-title: Energy
  doi: 10.1016/j.energy.2013.08.017
– volume: 110
  start-page: 1
  year: 2016
  ident: 10.1016/j.energy.2019.116085_bib13
  article-title: Smart energy systems and 4th generation district heating
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.105
– volume: 122
  start-page: 222
  year: 2016
  ident: 10.1016/j.energy.2019.116085_bib28
  article-title: Extreme learning machine for prediction of heat load in district heating systems
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.04.021
– volume: 157
  start-page: 141
  year: 2018
  ident: 10.1016/j.energy.2019.116085_bib25
  article-title: Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods
  publication-title: Energy
  doi: 10.1016/j.energy.2018.05.111
– volume: 68
  start-page: 1
  year: 2014
  ident: 10.1016/j.energy.2019.116085_bib12
  article-title: 4th Generation District Heating (4GDH). Integrating smart thermal grids into future sustainable energy systems
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.089
– year: 2016
  ident: 10.1016/j.energy.2019.116085_bib53
– volume: 105
  start-page: 3784
  year: 2017
  ident: 10.1016/j.energy.2019.116085_bib31
  article-title: An analyze of long-term hourly district heat demand forecasting of a commercial building using neural networks
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.884
– volume: 88
  start-page: 568
  year: 2011
  ident: 10.1016/j.energy.2019.116085_bib11
  article-title: Heat distribution and the future competitiveness of district heating
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.09.020
– volume: 136
  start-page: 59
  year: 2014
  ident: 10.1016/j.energy.2019.116085_bib14
  article-title: Achieving low return temperatures from district heating substations
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.09.022
– volume: 164
  start-page: 794
  year: 2018
  ident: 10.1016/j.energy.2019.116085_bib5
  article-title: Air source heat pump for domestic hot water supply: performance comparison between individual and building scale installations
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.065
– volume: 12
  start-page: 1948
  year: 2019
  ident: 10.1016/j.energy.2019.116085_bib6
  article-title: Comparison of direct and indirect active thermal energy storage strategies for large-scale solar heating systems
  publication-title: Energies
  doi: 10.3390/en12101948
– year: 2016
  ident: 10.1016/j.energy.2019.116085_bib51
– volume: 179
  start-page: 544
  year: 2016
  ident: 10.1016/j.energy.2019.116085_bib20
  article-title: Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.133
– volume: 205
  start-page: 926
  year: 2017
  ident: 10.1016/j.energy.2019.116085_bib48
  article-title: Fault detection and operation optimization in district heating substations based on data mining techniques
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.08.035
– volume: 73
  start-page: 277
  year: 2002
  ident: 10.1016/j.energy.2019.116085_bib19
  article-title: Simple model for prediction of loads in district heating systems
  publication-title: Appl Energy
  doi: 10.1016/S0306-2619(02)00078-8
– volume: 104
  start-page: 264
  year: 2015
  ident: 10.1016/j.energy.2019.116085_bib33
  article-title: Evaluation of the most influential parameters of heat load in district heating systems
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.06.074
– year: 2009
  ident: 10.1016/j.energy.2019.116085_bib43
  article-title: Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.02.042
– year: 2009
  ident: 10.1016/j.energy.2019.116085_bib47
– year: 2017
  ident: 10.1016/j.energy.2019.116085_bib30
  article-title: Operational demand forecasting in district heating systems using ensembles of online machine learning algorithms
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.05.068
– volume: 6
  start-page: 608
  year: 2013
  ident: 10.1016/j.energy.2019.116085_bib41
  article-title: Application of wavelet neural network on thermal load forecasting
  publication-title: Int J Wirel Mob Comput
  doi: 10.1504/IJWMC.2013.057579
– volume: 13
  start-page: 221
  year: 2007
  ident: 10.1016/j.energy.2019.116085_bib56
  article-title: Calibrating detailed building energy simulation programs with measured data-Part II: application to three case study office buildings (RP-1051)
  publication-title: HVAC R Res
  doi: 10.1080/10789669.2007.10390952
– volume: 93
  start-page: 2
  year: 2012
  ident: 10.1016/j.energy.2019.116085_bib8
  article-title: District heating and cooling: review of technology and potential enhancements
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.04.020
– year: 2018
  ident: 10.1016/j.energy.2019.116085_bib44
– start-page: 1
  year: 2011
  ident: 10.1016/j.energy.2019.116085_bib21
  article-title: Online short-term forecast of system heat load in district heating networks
– volume: 193
  start-page: 455
  year: 2017
  ident: 10.1016/j.energy.2019.116085_bib40
  article-title: Using ensemble weather predictions in district heating operation and load forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.02.066
– volume: 152
  start-page: 709
  year: 2018
  ident: 10.1016/j.energy.2019.116085_bib27
  article-title: Medium-term heat load prediction for an existing residential building based on a wireless on-off control system
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.179
– volume: 35
  start-page: 1381
  year: 2010
  ident: 10.1016/j.energy.2019.116085_bib9
  article-title: The role of district heating in future renewable energy systems
  publication-title: Energy
  doi: 10.1016/j.energy.2009.11.023
– year: 2001
  ident: 10.1016/j.energy.2019.116085_bib45
– volume: 149
  start-page: 59
  year: 2018
  ident: 10.1016/j.energy.2019.116085_bib23
  article-title: Forecasting district heating demand using machine learning algorithms
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2018.08.169
– volume: 39
  start-page: 7067
  year: 2012
  ident: 10.1016/j.energy.2019.116085_bib42
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.01.039
– year: 2002
  ident: 10.1016/j.energy.2019.116085_bib55
– volume: 228
  start-page: 108
  year: 2018
  ident: 10.1016/j.energy.2019.116085_bib36
  article-title: Predicting heating demand and sizing a stratified thermal storage tank using deep learning algorithms
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.06.064
– volume: 48
  start-page: 101533
  year: 2019
  ident: 10.1016/j.energy.2019.116085_bib38
  article-title: Modeling and forecasting building energy consumption: a review of data-driven techniques
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2019.101533
– year: 2013
  ident: 10.1016/j.energy.2019.116085_bib1
– volume: 95
  start-page: 266
  year: 2016
  ident: 10.1016/j.energy.2019.116085_bib26
  article-title: Prediction of heat load in district heating systems by support vector machine with firefly searching algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2015.11.079
SSID ssj0005899
Score 2.6234903
Snippet Predicting next-day heat load curves is essential to guarantee sufficient heat supply and optimal operation of district heat systems (DHSs). Existing studies...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116085
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Bluegrass music
case studies
China
Coefficient of variation
Direct strategy
District heating
Forecasting
heat
Heat load forecasting
Heating systems
Learning algorithms
Machine learning
Machine learning algorithms
Mathematical models
Model accuracy
Modelling
Multi-step ahead forecasting
Neural networks
Performance assessment
prediction
Predictions
Recursive functions
Recursive methods
Recursive strategy
regression analysis
Strategy
Support vector machines
Title Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms
URI https://dx.doi.org/10.1016/j.energy.2019.116085
https://www.proquest.com/docview/2323059847
https://www.proquest.com/docview/2335138447
Volume 188
WOSCitedRecordID wos000505271100092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKhgQvCAYThYGMxFuVqU6cOH6cpiJAaOJhoPIUuYndZSpJ1SRT_3zOv5LSCcYeeIkix7Gc3Jfz-fLdHULv80QAVhRov0SXMJOaBKBzEcYiUUSERAlTee77F3Zxkc7n_OtotPWxMDcrVlXpdsvX_1XU0AbC1qGz9xB3Pyg0wDkIHY4gdjj-k-BNSG0AwltPBGjaQhMJZS4az2_W2neyqkVhiLA6b26Zt6bVuBZsBvNJZ3wIPw3VUvraEsuJWC3rTdleuRzn3qVvAwh15tKtJcv37oV5Z6PIusqvkZquUzov9Y9ycFzXnflRclUuxdDz3AWPzF2CcOefIHyH6-HjsqZBTOmezk13tCYhydQW7rml0K1v4fpUmgfRVDx-OnT_PX_23rrWsw09ke06s6NkepTMjvIAHYYs5qAPD88-zeafB3pQamqP9rP3YZeGG3h7Nn8ya_YWeGO1XD5FT9x2A59ZmDxDI1kdoUc-Gr05QsezIdIROjpV3zxHywFH2OAI7-AI1wprxGCNI1xW2OMIOxxhhyNscIQdjrDHER5w9AJ9-zC7PP8YuKocQR4lrA3YVOn3wUIVyZyadE-LAr5rQkRBY6aESnKyoCwtoiLMwWAViqmUCglb5zAWIjpGB1VdyZcIK9gtE80uCIuUgtZYgHnKJaeh5AvFKRmjyL_ULHcp63XllFX2N5GOUdDftbYpW-7oz7y8Mmd2WnMyAxDeceeJF2_mNECTwRYF1lAOVt8Yvesvg9LWf-JEJetO94liEqWUslf3nOxr9Hj4yE7QQbvp5Bv0ML9py2bz1oH4F735vLs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-step+ahead+forecasting+of+heat+load+in+district+heating+systems+using+machine+learning+algorithms&rft.jtitle=Energy+%28Oxford%29&rft.au=Xue%2C+Puning&rft.au=Jiang%2C+Yi&rft.au=Zhou%2C+Zhigang&rft.au=Chen%2C+Xin&rft.date=2019-12-01&rft.issn=0360-5442&rft.volume=188&rft.spage=116085&rft_id=info:doi/10.1016%2Fj.energy.2019.116085&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2019_116085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon