ON THE EQUATION P(f) = Q(g), WHERE P, Q ARE POLYNOMIALS AND f, g ARE ENTIRE FUNCTIONS
In 1922 Ritt described polynomial solutions of the functional equation P(f) = Q(g). In this paper we describe solutions of the equation above in the case when P, Q are polynomials while f, g are allowed to be arbitrary entire functions. In fact, we describe solutions of the more general functional e...
Uložené v:
| Vydané v: | American journal of mathematics Ročník 132; číslo 6; s. 1591 - 1607 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Baltimore, MD
Johns Hopkins University Press
01.12.2010
|
| Predmet: | |
| ISSN: | 0002-9327, 1080-6377, 1080-6377 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In 1922 Ritt described polynomial solutions of the functional equation P(f) = Q(g). In this paper we describe solutions of the equation above in the case when P, Q are polynomials while f, g are allowed to be arbitrary entire functions. In fact, we describe solutions of the more general functional equation s = P(f) = Q(g), where s, f, g are entire functions and P, Q are arbitrary rational functions. As an application we solve the problem of description of "strong uniqueness polynomials" for entire functions. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0002-9327 1080-6377 1080-6377 |
| DOI: | 10.1353/ajm.2010.a404142 |