ON THE EQUATION P(f) = Q(g), WHERE P, Q ARE POLYNOMIALS AND f, g ARE ENTIRE FUNCTIONS

In 1922 Ritt described polynomial solutions of the functional equation P(f) = Q(g). In this paper we describe solutions of the equation above in the case when P, Q are polynomials while f, g are allowed to be arbitrary entire functions. In fact, we describe solutions of the more general functional e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:American journal of mathematics Ročník 132; číslo 6; s. 1591 - 1607
Hlavní autor: Pakovich, F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Baltimore, MD Johns Hopkins University Press 01.12.2010
Témata:
ISSN:0002-9327, 1080-6377, 1080-6377
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In 1922 Ritt described polynomial solutions of the functional equation P(f) = Q(g). In this paper we describe solutions of the equation above in the case when P, Q are polynomials while f, g are allowed to be arbitrary entire functions. In fact, we describe solutions of the more general functional equation s = P(f) = Q(g), where s, f, g are entire functions and P, Q are arbitrary rational functions. As an application we solve the problem of description of "strong uniqueness polynomials" for entire functions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2010.a404142