ON THE EQUATION P(f) = Q(g), WHERE P, Q ARE POLYNOMIALS AND f, g ARE ENTIRE FUNCTIONS
In 1922 Ritt described polynomial solutions of the functional equation P(f) = Q(g). In this paper we describe solutions of the equation above in the case when P, Q are polynomials while f, g are allowed to be arbitrary entire functions. In fact, we describe solutions of the more general functional e...
Uloženo v:
| Vydáno v: | American journal of mathematics Ročník 132; číslo 6; s. 1591 - 1607 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Baltimore, MD
Johns Hopkins University Press
01.12.2010
|
| Témata: | |
| ISSN: | 0002-9327, 1080-6377, 1080-6377 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In 1922 Ritt described polynomial solutions of the functional equation P(f) = Q(g). In this paper we describe solutions of the equation above in the case when P, Q are polynomials while f, g are allowed to be arbitrary entire functions. In fact, we describe solutions of the more general functional equation s = P(f) = Q(g), where s, f, g are entire functions and P, Q are arbitrary rational functions. As an application we solve the problem of description of "strong uniqueness polynomials" for entire functions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0002-9327 1080-6377 1080-6377 |
| DOI: | 10.1353/ajm.2010.a404142 |