Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources
In restructured electricity markets, microgrids are becoming smarter, more reliable and more economic electricity providers with respect to the incorporation of advanced smart grid technologies, distributed energy resources, efficient energy storage systems, and demand response programs (DRPs). More...
Uložené v:
| Vydané v: | Energy (Oxford) Ročník 190; s. 116441 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Elsevier Ltd
01.01.2020
Elsevier BV |
| Predmet: | |
| ISSN: | 0360-5442, 1873-6785 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In restructured electricity markets, microgrids are becoming smarter, more reliable and more economic electricity providers with respect to the incorporation of advanced smart grid technologies, distributed energy resources, efficient energy storage systems, and demand response programs (DRPs). Moreover, better bidding strategies, prepared by MG operators, boost the profits of MG market players. But, highly intermittent nature of renewable energy resources and their higher rate of outages make bidding strategies inefficient. To solve these issues, this study suggests an optimal bidding strategy considering uncertainty of renewable energy resources and DRP based on their outage probabilities. Tent chaos mapping is used to generate load scenarios and all possible renewable power output scenarios within the confidence intervals in non-repetitive and adaptive manner. Reserve and penalty costs for incorrect estimation of renewable energies are invoked to design more robust bidding. Moreover, the risk of participation in the competitive energy market is assessed using CVaR criteria. The proposed bidding model is optimized using mixed integer nonlinear programming. ‘Value of stochastic solution’ is used to investigate the efficiency of the stochastic programming in uncertainty integration into the bidding problem.
•Bidding scheme with risk management of microgrid is proposed.•Forced outage and uncertainty modeling of renewable units are furnished.•Demand response program considers load elasticity and outages of renewable units.•Reserve/penalty cost of over/under estimation of renewable outputs are considered.•Bidding profits vary with Tent chaotic mapped scenarios of uncertain parameters. |
|---|---|
| AbstractList | In restructured electricity markets, microgrids are becoming smarter, more reliable and more economic electricity providers with respect to the incorporation of advanced smart grid technologies, distributed energy resources, efficient energy storage systems, and demand response programs (DRPs). Moreover, better bidding strategies, prepared by MG operators, boost the profits of MG market players. But, highly intermittent nature of renewable energy resources and their higher rate of outages make bidding strategies inefficient. To solve these issues, this study suggests an optimal bidding strategy considering uncertainty of renewable energy resources and DRP based on their outage probabilities. Tent chaos mapping is used to generate load scenarios and all possible renewable power output scenarios within the confidence intervals in non-repetitive and adaptive manner. Reserve and penalty costs for incorrect estimation of renewable energies are invoked to design more robust bidding. Moreover, the risk of participation in the competitive energy market is assessed using CVaR criteria. The proposed bidding model is optimized using mixed integer nonlinear programming. ‘Value of stochastic solution’ is used to investigate the efficiency of the stochastic programming in uncertainty integration into the bidding problem. In restructured electricity markets, microgrids are becoming smarter, more reliable and more economic electricity providers with respect to the incorporation of advanced smart grid technologies, distributed energy resources, efficient energy storage systems, and demand response programs (DRPs). Moreover, better bidding strategies, prepared by MG operators, boost the profits of MG market players. But, highly intermittent nature of renewable energy resources and their higher rate of outages make bidding strategies inefficient. To solve these issues, this study suggests an optimal bidding strategy considering uncertainty of renewable energy resources and DRP based on their outage probabilities. Tent chaos mapping is used to generate load scenarios and all possible renewable power output scenarios within the confidence intervals in non-repetitive and adaptive manner. Reserve and penalty costs for incorrect estimation of renewable energies are invoked to design more robust bidding. Moreover, the risk of participation in the competitive energy market is assessed using CVaR criteria. The proposed bidding model is optimized using mixed integer nonlinear programming. ‘Value of stochastic solution’ is used to investigate the efficiency of the stochastic programming in uncertainty integration into the bidding problem. •Bidding scheme with risk management of microgrid is proposed.•Forced outage and uncertainty modeling of renewable units are furnished.•Demand response program considers load elasticity and outages of renewable units.•Reserve/penalty cost of over/under estimation of renewable outputs are considered.•Bidding profits vary with Tent chaotic mapped scenarios of uncertain parameters. |
| ArticleNumber | 116441 |
| Author | Basu, Mousumi Das, Saborni |
| Author_xml | – sequence: 1 givenname: Saborni surname: Das fullname: Das, Saborni email: dassaborni@gmail.com – sequence: 2 givenname: Mousumi surname: Basu fullname: Basu, Mousumi email: mousumibasu@yahoo.com |
| BookMark | eNqFkc1u3CAUhVGVSJ0kfYMukLrpxlMwPx53UalKf6VI2bRrhOHiMLJhCrjRvEUeuVjuKot2BYjvHJ177hW6CDEAQq8p2VNC5bvjHgKk8bxvCe33lErO6Qu0o4eONbI7iAu0I0ySRnDevkRXOR8JIeLQ9zv09EmfG_0A2uJ4Kn7WEx68tT6MOJekC4xnHB2evUlxTN7iR18esIVZB4sT5FMMGfBp_dQzNvXlLaRVvgQDqWgfioeMVzwuRY_1Xv1SDfyohwnwlny1iksykG_QpdNThld_z2v088vnH7ffmrv7r99vP941hsmuNFI7RmXHDNGd7kAD74wUxDFJ20E7Z_lAhGG6BedEbzshqehlzzgZqHFg2TV6u_nW7L8WyEXNPhuYJh0gLlm1jAnaspZ1FX3zDD3WrKGmqxQ_tKQXLa8U36jaVM4JnDql2mc6K0rUuiZ1VNuwal2T2tZUZe-fyYwvuvgYav1--p_4wyaG2tRvD0ll46EWb30CU5SN_t8GfwCDiLZd |
| CitedBy_id | crossref_primary_10_1016_j_energy_2021_120529 crossref_primary_10_1177_01423312221079962 crossref_primary_10_1016_j_energy_2023_129661 crossref_primary_10_1016_j_est_2020_102111 crossref_primary_10_1016_j_scs_2020_102675 crossref_primary_10_1016_j_energy_2020_118765 crossref_primary_10_1016_j_est_2022_104056 crossref_primary_10_1049_rpg2_12368 crossref_primary_10_1016_j_est_2022_104373 crossref_primary_10_1016_j_energy_2023_127883 crossref_primary_10_1016_j_renene_2023_05_017 crossref_primary_10_1016_j_est_2025_116125 crossref_primary_10_1016_j_apenergy_2022_120195 crossref_primary_10_1049_rpg2_12806 crossref_primary_10_1016_j_ijhydene_2024_03_073 crossref_primary_10_1016_j_energy_2022_123793 crossref_primary_10_1016_j_energy_2022_126549 crossref_primary_10_1016_j_energy_2021_121416 crossref_primary_10_1016_j_energy_2022_125616 crossref_primary_10_1016_j_rser_2022_112095 crossref_primary_10_1007_s12053_025_10336_y crossref_primary_10_1016_j_apenergy_2022_118528 crossref_primary_10_1016_j_est_2022_105432 crossref_primary_10_1016_j_ijhydene_2024_08_415 crossref_primary_10_1016_j_esr_2024_101554 crossref_primary_10_1080_23080477_2023_2244262 crossref_primary_10_1016_j_energy_2023_129576 crossref_primary_10_1016_j_scs_2023_104421 crossref_primary_10_1109_TIA_2022_3178386 crossref_primary_10_1016_j_apenergy_2022_120125 crossref_primary_10_1016_j_jclepro_2024_141482 crossref_primary_10_1016_j_seta_2022_102675 crossref_primary_10_1016_j_energy_2024_132987 crossref_primary_10_3390_electronics11040554 crossref_primary_10_1016_j_energy_2020_117926 crossref_primary_10_1016_j_segan_2023_101247 crossref_primary_10_1049_gtd2_12958 crossref_primary_10_1016_j_energy_2022_125624 crossref_primary_10_1016_j_ejor_2023_11_041 crossref_primary_10_1016_j_energy_2021_120030 crossref_primary_10_3390_en18112690 crossref_primary_10_1007_s42835_025_02257_8 crossref_primary_10_1016_j_energy_2021_120476 crossref_primary_10_1016_j_energy_2021_120237 crossref_primary_10_1016_j_energy_2022_124657 crossref_primary_10_1016_j_energy_2021_120911 crossref_primary_10_1016_j_energy_2022_123923 crossref_primary_10_3390_f12101357 crossref_primary_10_1057_s41287_021_00492_z crossref_primary_10_1016_j_scs_2021_102852 crossref_primary_10_1016_j_apenergy_2022_118611 crossref_primary_10_1016_j_renene_2023_119590 crossref_primary_10_1016_j_ijepes_2020_105941 crossref_primary_10_3390_data6070076 crossref_primary_10_3390_su13126577 crossref_primary_10_1016_j_renene_2024_121159 crossref_primary_10_3390_math10010071 crossref_primary_10_1007_s12273_020_0687_1 crossref_primary_10_1016_j_renene_2020_09_016 crossref_primary_10_3390_app11020763 crossref_primary_10_1016_j_energy_2023_126725 crossref_primary_10_1016_j_ijepes_2021_107080 crossref_primary_10_3390_en15051932 crossref_primary_10_1016_j_energy_2021_121475 crossref_primary_10_3390_electronics12204327 crossref_primary_10_1016_j_apenergy_2023_121511 crossref_primary_10_1016_j_renene_2021_04_037 crossref_primary_10_1016_j_energy_2021_122844 crossref_primary_10_1016_j_energy_2021_122962 crossref_primary_10_1109_TIA_2022_3200348 crossref_primary_10_1016_j_epsr_2022_108059 crossref_primary_10_1016_j_apenergy_2020_115992 crossref_primary_10_1016_j_epsr_2023_110016 crossref_primary_10_1016_j_egyr_2023_12_012 crossref_primary_10_1016_j_energy_2020_117024 crossref_primary_10_3390_en13184879 crossref_primary_10_3390_en15207784 crossref_primary_10_1016_j_renene_2024_121883 crossref_primary_10_1016_j_epsr_2024_110312 crossref_primary_10_1109_ACCESS_2022_3186519 crossref_primary_10_1016_j_ijhydene_2021_07_074 crossref_primary_10_1016_j_apenergy_2023_122133 crossref_primary_10_1016_j_egyr_2021_07_021 crossref_primary_10_3390_electronics11081251 crossref_primary_10_3390_su151411012 crossref_primary_10_1007_s11356_023_31055_w |
| Cites_doi | 10.1109/JSYST.2014.2325967 10.1049/iet-rpg.2017.0076 10.1109/TSTE.2018.2854868 10.1109/TSTE.2013.2281811 10.1016/j.ijepes.2015.11.087 10.1016/j.energy.2013.10.011 10.1016/j.compeleceng.2013.12.013 10.1016/S0167-6105(99)00122-1 10.1016/j.energy.2018.12.173 10.1016/j.apenergy.2018.09.015 10.1016/j.renene.2018.07.106 10.1109/TKDE.2018.2837026 10.1016/j.ijepes.2014.01.033 10.1016/j.apenergy.2017.07.047 10.1016/j.apenergy.2012.02.027 10.1109/TII.2018.2850533 10.1016/j.apenergy.2009.05.041 10.1016/j.energy.2016.02.166 10.1038/261459a0 10.1007/s10107-002-0331-0 10.1109/TII.2016.2522641 10.1016/j.renene.2009.03.020 10.1109/TSG.2014.2313612 10.1109/JIOT.2017.2764879 10.1016/j.enconman.2014.07.068 10.1016/j.energy.2016.05.024 10.1109/TSG.2015.2476669 10.1109/MPE.2013.2258276 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Jan 1, 2020 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Jan 1, 2020 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2019.116441 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | 10_1016_j_energy_2019_116441 S036054421932136X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-6af31673c0a7a7eae47c650f3612baffd4b05c3a2eff59d75615969340b1cfed3 |
| ISICitedReferencesCount | 98 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508752200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 02:37:27 EDT 2025 Wed Aug 13 09:30:31 EDT 2025 Tue Nov 18 22:39:53 EST 2025 Sat Nov 29 07:20:43 EST 2025 Fri Feb 23 02:47:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Value of stochastic solution Uncertainty Demand response program Renewable integrated microgrid Forced outage probability Risk management |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-6af31673c0a7a7eae47c650f3612baffd4b05c3a2eff59d75615969340b1cfed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2348209524 |
| PQPubID | 2045484 |
| ParticipantIDs | proquest_miscellaneous_2335123237 proquest_journals_2348209524 crossref_primary_10_1016_j_energy_2019_116441 crossref_citationtrail_10_1016_j_energy_2019_116441 elsevier_sciencedirect_doi_10_1016_j_energy_2019_116441 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 2020-01-00 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Dupačová, Gröwe-Kuska, Römisch (bib21) 2003; 95 Zhao, Pan, Yao, Ju, Li (bib14) 2018 Dehnavi, Abdi (bib33) 2016; 109 Kaviani, Riahy, Kouhsari (bib5) 2009; 34 Shi, Luo, Tu (bib11) 2014; 59 Hajibandeh, Shafie-Khah, Talari, Dehghan, Amjady, Mariano (bib31) 2019; 10 Javed, Arshad, Wallin, Vassileva, Dahlquist (bib29) 2012; 96 Faqiry, Das (bib17) 2018 Li (bib26) 2014 Fazlalipour, Ehsan, Mohammadi-Ivatloo (bib15) 2019; 171 (bib36) 2018-11-02 Mehdizadeh, Taghizadegan (bib10) 2017; 11 Liu, Xu, Tomsovic (bib13) 2016; 7 May (bib25) 1976; 261 (bib37) 2018-11-02 Ferruzzi, Cervone, Delle Monache, Graditi, Jacobone (bib8) 2016; 106 Pei, Du, Deng, Sheng, Xiao, Qu (bib18) 2016; 12 Wang, Li (bib32) 2013; 63 Reddy, Bijwe, Abhyankar (bib27) 2015; 9 Shayeghi, Sobhani (bib7) 2014; 87 Wang, Zhong, Tang, Rajagopal, Xia, Kang, Wang (bib9) 2017; 205 Zhang, Li, Zeng, Zang (bib20) 2014; 5 Rezaei, Ahmadi, Khazali, Aghaei (bib19) 2019; 15 (bib38) 2018 Zheng, Jenkins, Kornbluth, Kendall, Træholt (bib2) 2018; 230 Dupačová, Gröwe-Kuska, Römisch (bib22) 2003; 95 Smith, Ton (bib1) 2013; 11 Salkuti (bib4) 2019; 131 Xiao, Gao, Li, Ma, Su, Feng, Zhang (bib30) 2019; 31 Lim, Kim (bib6) 2014; 40 (bib34) 27-Apr-2010 Seguro, Lambert (bib28) 2000; 85 Fazlalipour, Ehsan, Mohammadi-Ivatloo (bib3) 2019; 171 Gokhale, Kale (bib24) 2016; 78 Aalami, Moghaddam, Yousefi (bib35) 2010; 87 An, Yang, Yu, Yang, Fu, Zhao (bib16) 2017; 4 Nguyen, Le (bib12) 2014; 5 Schuster (bib23) 1988 Lim (10.1016/j.energy.2019.116441_bib6) 2014; 40 Aalami (10.1016/j.energy.2019.116441_bib35) 2010; 87 Reddy (10.1016/j.energy.2019.116441_bib27) 2015; 9 Faqiry (10.1016/j.energy.2019.116441_bib17) 2018 Zhao (10.1016/j.energy.2019.116441_bib14) 2018 Gokhale (10.1016/j.energy.2019.116441_bib24) 2016; 78 Javed (10.1016/j.energy.2019.116441_bib29) 2012; 96 (10.1016/j.energy.2019.116441_bib37) 2018 (10.1016/j.energy.2019.116441_bib34) 2010 Dupačová (10.1016/j.energy.2019.116441_bib21) 2003; 95 Xiao (10.1016/j.energy.2019.116441_bib30) 2019; 31 Salkuti (10.1016/j.energy.2019.116441_bib4) 2019; 131 Kaviani (10.1016/j.energy.2019.116441_bib5) 2009; 34 Schuster (10.1016/j.energy.2019.116441_bib23) 1988 Fazlalipour (10.1016/j.energy.2019.116441_bib15) 2019; 171 May (10.1016/j.energy.2019.116441_bib25) 1976; 261 Liu (10.1016/j.energy.2019.116441_bib13) 2016; 7 Li (10.1016/j.energy.2019.116441_bib26) 2014 Zhang (10.1016/j.energy.2019.116441_bib20) 2014; 5 Wang (10.1016/j.energy.2019.116441_bib32) 2013; 63 Smith (10.1016/j.energy.2019.116441_bib1) 2013; 11 Fazlalipour (10.1016/j.energy.2019.116441_bib3) 2019; 171 Zheng (10.1016/j.energy.2019.116441_bib2) 2018; 230 Seguro (10.1016/j.energy.2019.116441_bib28) 2000; 85 (10.1016/j.energy.2019.116441_bib36) 2018 Shi (10.1016/j.energy.2019.116441_bib11) 2014; 59 Dupačová (10.1016/j.energy.2019.116441_bib22) 2003; 95 (10.1016/j.energy.2019.116441_bib38) 2018 An (10.1016/j.energy.2019.116441_bib16) 2017; 4 Pei (10.1016/j.energy.2019.116441_bib18) 2016; 12 Rezaei (10.1016/j.energy.2019.116441_bib19) 2019; 15 Wang (10.1016/j.energy.2019.116441_bib9) 2017; 205 Nguyen (10.1016/j.energy.2019.116441_bib12) 2014; 5 Dehnavi (10.1016/j.energy.2019.116441_bib33) 2016; 109 Shayeghi (10.1016/j.energy.2019.116441_bib7) 2014; 87 Ferruzzi (10.1016/j.energy.2019.116441_bib8) 2016; 106 Mehdizadeh (10.1016/j.energy.2019.116441_bib10) 2017; 11 Hajibandeh (10.1016/j.energy.2019.116441_bib31) 2019; 10 |
| References_xml | – volume: 106 start-page: 194 year: 2016 end-page: 202 ident: bib8 article-title: Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production publication-title: Energy – volume: 31 start-page: 575 year: 2019 end-page: 588 ident: bib30 article-title: Towards confidence interval estimation in truth discovery publication-title: IEEE Trans Knowl Data Eng – year: 2018-11-02 ident: bib37 article-title: Lazard’s levelized cost of storage analysis - version 4.0 publication-title: Lazard – volume: 34 start-page: 2380 year: 2009 end-page: 2390 ident: bib5 article-title: Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages publication-title: Renew Energy – volume: 95 start-page: 493 year: 2003 end-page: 511 ident: bib21 article-title: Scenario reduction in stochastic programming publication-title: Mathe program – start-page: 1 year: 2018 ident: bib14 article-title: Strategic bidding of hybrid AC/DC microgrid embedded energy hubs: a two-stage chance constrained stochastic programming approach publication-title: IEEE Trans Sustain Energy – volume: 78 start-page: 336 year: 2016 end-page: 342 ident: bib24 article-title: An application of a tent map initiated Chaotic Firefly algorithm for optimal overcurrent relay coordination publication-title: Int J Electr Power Energy Syst – volume: 95 start-page: 493 year: 2003 end-page: 511 ident: bib22 article-title: Scenario reduction in stochastic programming publication-title: Mathe Program – volume: 205 start-page: 294 year: 2017 end-page: 303 ident: bib9 article-title: Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products publication-title: Appl Energy – volume: 15 start-page: 1532 year: 2019 end-page: 1543 ident: bib19 article-title: Multi-objective risk-constrained optimal bidding strategy of smart microgrids: an IGDT-based normal boundary intersection approach publication-title: IEEE Trans Indus Inf – year: 27-Apr-2010 ident: bib34 publication-title: Annual Report, Prepared by Summit Blue Consulting, Submitted to Ameren Illinois Utilities. Power Smart Pricing 2009 – volume: 87 start-page: 765 year: 2014 end-page: 777 ident: bib7 article-title: Integrated offering strategy for profit enhancement of distributed resources and demand response in microgrids considering system uncertainties publication-title: Energy Convers Manag – volume: 109 start-page: 1086 year: 2016 end-page: 1094 ident: bib33 article-title: Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem publication-title: Energy – volume: 87 start-page: 243 year: 2010 end-page: 250 ident: bib35 article-title: Demand response modeling considering Interruptible/Curtailable loads and capacity market programs publication-title: Appl Energy – volume: 40 start-page: 1439 year: 2014 end-page: 1446 ident: bib6 article-title: Strategic bidding using reinforcement learning for load shedding in microgrids publication-title: Comput Electr Eng – volume: 7 start-page: 227 year: 2016 end-page: 237 ident: bib13 article-title: Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization publication-title: IEEE Trans Smart Grid – volume: 11 start-page: 22 year: 2013 end-page: 27 ident: bib1 article-title: Key connections: the U.S. department of energy? Microgrid initiative publication-title: IEEE Power Energy Mag – volume: 171 start-page: 689 year: 2019 end-page: 700 ident: bib15 article-title: Risk-aware stochastic bidding strategy of renewable micro-grids in day-ahead and real-time markets publication-title: Energy – volume: 63 start-page: 233 year: 2013 end-page: 244 ident: bib32 article-title: Time-of-use based electricity demand response for sustainable manufacturing systems publication-title: Energy – volume: 96 start-page: 150 year: 2012 end-page: 160 ident: bib29 article-title: Forecasting for demand response in smart grids: an analysis on use of anthropologic and structural data and short term multiple loads forecasting publication-title: Appl Energy – volume: 171 start-page: 689 year: 2019 end-page: 700 ident: bib3 article-title: Risk-aware stochastic bidding strategy of renewable micro-grids in day-ahead and real-time markets publication-title: Energy – volume: 230 start-page: 836 year: 2018 end-page: 844 ident: bib2 article-title: Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty publication-title: Appl Energy – volume: 11 start-page: 1446 year: 2017 end-page: 1455 ident: bib10 article-title: Robust optimisation approach for bidding strategy of renewable generation-based microgrid under demand side management publication-title: IET Renew Power Gener – start-page: 1 year: 2018 end-page: 14 ident: bib17 article-title: Double auction with hidden user information: application to energy transaction in microgrid publication-title: IEEE Trans. Syst. Man Cybern. : Systems – year: 2014 ident: bib26 article-title: Risk assessment of power systems: models, methods, and applications – volume: 10 start-page: 918 year: 2019 end-page: 930 ident: bib31 article-title: Demand response-based operation model in electricity markets with high wind power penetration publication-title: IEEE Trans Sustain Energy – year: 2018-11-02 ident: bib36 article-title: Lazard’s levelized cost of energy analysis - version 12.0 publication-title: Lazard – year: 2018 ident: bib38 publication-title: Bara bazar monthly weather forecast – volume: 5 start-page: 1608 year: 2014 end-page: 1620 ident: bib12 article-title: Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics publication-title: IEEE Trans Smart Grid – volume: 4 start-page: 2260 year: 2017 end-page: 2274 ident: bib16 article-title: Sto2auc: a stochastic optimal bidding strategy for microgrids publication-title: IEEE Internet of Things J – volume: 12 start-page: 587 year: 2016 end-page: 596 ident: bib18 article-title: Optimal bidding strategy and intramarket mechanism of microgrid aggregator in real-time balancing market publication-title: IEEE Trans Indus Inff – volume: 131 start-page: 956 year: 2019 end-page: 965 ident: bib4 article-title: Day-ahead thermal and renewable power generation scheduling considering uncertainty publication-title: Renew Energy – year: 1988 ident: bib23 article-title: Deterministic chaos: an introduction – volume: 9 start-page: 1440 year: 2015 end-page: 1451 ident: bib27 article-title: Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period publication-title: IEEE Syst J – volume: 261 start-page: 459 year: 1976 ident: bib25 article-title: Simple mathematical models with very complicated dynamics publication-title: Nature – volume: 85 start-page: 75 year: 2000 end-page: 84 ident: bib28 article-title: Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis publication-title: J Wind Eng Ind Aerodyn – volume: 59 start-page: 1 year: 2014 end-page: 13 ident: bib11 article-title: Bidding strategy of microgrid with consideration of uncertainty for participating in power market publication-title: Int J Electr Power Energy Syst – volume: 5 start-page: 282 year: 2014 end-page: 292 ident: bib20 article-title: Optimal microgrid control and power-flow study with different bidding policies by using powerworld simulator publication-title: IEEE Trans Sustain Energy – volume: 9 start-page: 1440 issue: 4 year: 2015 ident: 10.1016/j.energy.2019.116441_bib27 article-title: Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period publication-title: IEEE Syst J doi: 10.1109/JSYST.2014.2325967 – volume: 11 start-page: 1446 issue: 11 year: 2017 ident: 10.1016/j.energy.2019.116441_bib10 article-title: Robust optimisation approach for bidding strategy of renewable generation-based microgrid under demand side management publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2017.0076 – volume: 10 start-page: 918 year: 2019 ident: 10.1016/j.energy.2019.116441_bib31 article-title: Demand response-based operation model in electricity markets with high wind power penetration publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2018.2854868 – volume: 5 start-page: 282 issue: 1 year: 2014 ident: 10.1016/j.energy.2019.116441_bib20 article-title: Optimal microgrid control and power-flow study with different bidding policies by using powerworld simulator publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2013.2281811 – year: 2014 ident: 10.1016/j.energy.2019.116441_bib26 – volume: 78 start-page: 336 year: 2016 ident: 10.1016/j.energy.2019.116441_bib24 article-title: An application of a tent map initiated Chaotic Firefly algorithm for optimal overcurrent relay coordination publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2015.11.087 – volume: 63 start-page: 233 year: 2013 ident: 10.1016/j.energy.2019.116441_bib32 article-title: Time-of-use based electricity demand response for sustainable manufacturing systems publication-title: Energy doi: 10.1016/j.energy.2013.10.011 – volume: 40 start-page: 1439 issue: 5 year: 2014 ident: 10.1016/j.energy.2019.116441_bib6 article-title: Strategic bidding using reinforcement learning for load shedding in microgrids publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2013.12.013 – volume: 85 start-page: 75 issue: 1 year: 2000 ident: 10.1016/j.energy.2019.116441_bib28 article-title: Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/S0167-6105(99)00122-1 – volume: 171 start-page: 689 year: 2019 ident: 10.1016/j.energy.2019.116441_bib15 article-title: Risk-aware stochastic bidding strategy of renewable micro-grids in day-ahead and real-time markets publication-title: Energy doi: 10.1016/j.energy.2018.12.173 – volume: 230 start-page: 836 year: 2018 ident: 10.1016/j.energy.2019.116441_bib2 article-title: Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.09.015 – year: 2010 ident: 10.1016/j.energy.2019.116441_bib34 publication-title: Annual Report, Prepared by Summit Blue Consulting, Submitted to Ameren Illinois Utilities. Power Smart Pricing 2009 – year: 2018 ident: 10.1016/j.energy.2019.116441_bib37 article-title: Lazard’s levelized cost of storage analysis - version 4.0 publication-title: Lazard – volume: 131 start-page: 956 year: 2019 ident: 10.1016/j.energy.2019.116441_bib4 article-title: Day-ahead thermal and renewable power generation scheduling considering uncertainty publication-title: Renew Energy doi: 10.1016/j.renene.2018.07.106 – volume: 31 start-page: 575 issue: 3 year: 2019 ident: 10.1016/j.energy.2019.116441_bib30 article-title: Towards confidence interval estimation in truth discovery publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2837026 – volume: 59 start-page: 1 year: 2014 ident: 10.1016/j.energy.2019.116441_bib11 article-title: Bidding strategy of microgrid with consideration of uncertainty for participating in power market publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.01.033 – volume: 205 start-page: 294 year: 2017 ident: 10.1016/j.energy.2019.116441_bib9 article-title: Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.07.047 – year: 1988 ident: 10.1016/j.energy.2019.116441_bib23 – volume: 96 start-page: 150 year: 2012 ident: 10.1016/j.energy.2019.116441_bib29 article-title: Forecasting for demand response in smart grids: an analysis on use of anthropologic and structural data and short term multiple loads forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.02.027 – start-page: 1 year: 2018 ident: 10.1016/j.energy.2019.116441_bib14 article-title: Strategic bidding of hybrid AC/DC microgrid embedded energy hubs: a two-stage chance constrained stochastic programming approach publication-title: IEEE Trans Sustain Energy – volume: 15 start-page: 1532 issue: 3 year: 2019 ident: 10.1016/j.energy.2019.116441_bib19 article-title: Multi-objective risk-constrained optimal bidding strategy of smart microgrids: an IGDT-based normal boundary intersection approach publication-title: IEEE Trans Indus Inf doi: 10.1109/TII.2018.2850533 – volume: 87 start-page: 243 issue: 1 year: 2010 ident: 10.1016/j.energy.2019.116441_bib35 article-title: Demand response modeling considering Interruptible/Curtailable loads and capacity market programs publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.05.041 – volume: 106 start-page: 194 year: 2016 ident: 10.1016/j.energy.2019.116441_bib8 article-title: Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production publication-title: Energy doi: 10.1016/j.energy.2016.02.166 – start-page: 1 issue: 99 year: 2018 ident: 10.1016/j.energy.2019.116441_bib17 article-title: Double auction with hidden user information: application to energy transaction in microgrid publication-title: IEEE Trans. Syst. Man Cybern. : Systems – volume: 261 start-page: 459 issue: 5560 year: 1976 ident: 10.1016/j.energy.2019.116441_bib25 article-title: Simple mathematical models with very complicated dynamics publication-title: Nature doi: 10.1038/261459a0 – volume: 95 start-page: 493 issue: 3 year: 2003 ident: 10.1016/j.energy.2019.116441_bib22 article-title: Scenario reduction in stochastic programming publication-title: Mathe Program doi: 10.1007/s10107-002-0331-0 – volume: 12 start-page: 587 issue: 2 year: 2016 ident: 10.1016/j.energy.2019.116441_bib18 article-title: Optimal bidding strategy and intramarket mechanism of microgrid aggregator in real-time balancing market publication-title: IEEE Trans Indus Inff doi: 10.1109/TII.2016.2522641 – volume: 34 start-page: 2380 issue: 11 year: 2009 ident: 10.1016/j.energy.2019.116441_bib5 article-title: Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages publication-title: Renew Energy doi: 10.1016/j.renene.2009.03.020 – volume: 5 start-page: 1608 issue: 4 year: 2014 ident: 10.1016/j.energy.2019.116441_bib12 article-title: Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2014.2313612 – volume: 95 start-page: 493 issue: 3 year: 2003 ident: 10.1016/j.energy.2019.116441_bib21 article-title: Scenario reduction in stochastic programming publication-title: Mathe program doi: 10.1007/s10107-002-0331-0 – volume: 4 start-page: 2260 issue: 6 year: 2017 ident: 10.1016/j.energy.2019.116441_bib16 article-title: Sto2auc: a stochastic optimal bidding strategy for microgrids publication-title: IEEE Internet of Things J doi: 10.1109/JIOT.2017.2764879 – volume: 87 start-page: 765 year: 2014 ident: 10.1016/j.energy.2019.116441_bib7 article-title: Integrated offering strategy for profit enhancement of distributed resources and demand response in microgrids considering system uncertainties publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.07.068 – volume: 171 start-page: 689 year: 2019 ident: 10.1016/j.energy.2019.116441_bib3 article-title: Risk-aware stochastic bidding strategy of renewable micro-grids in day-ahead and real-time markets publication-title: Energy doi: 10.1016/j.energy.2018.12.173 – volume: 109 start-page: 1086 year: 2016 ident: 10.1016/j.energy.2019.116441_bib33 article-title: Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem publication-title: Energy doi: 10.1016/j.energy.2016.05.024 – volume: 7 start-page: 227 issue: 1 year: 2016 ident: 10.1016/j.energy.2019.116441_bib13 article-title: Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2015.2476669 – volume: 11 start-page: 22 issue: 4 year: 2013 ident: 10.1016/j.energy.2019.116441_bib1 article-title: Key connections: the U.S. department of energy? Microgrid initiative publication-title: IEEE Power Energy Mag doi: 10.1109/MPE.2013.2258276 – year: 2018 ident: 10.1016/j.energy.2019.116441_bib36 article-title: Lazard’s levelized cost of energy analysis - version 12.0 publication-title: Lazard – year: 2018 ident: 10.1016/j.energy.2019.116441_bib38 |
| SSID | ssj0005899 |
| Score | 2.579047 |
| Snippet | In restructured electricity markets, microgrids are becoming smarter, more reliable and more economic electricity providers with respect to the incorporation... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 116441 |
| SubjectTerms | Alternative energy sources confidence interval Confidence intervals Demand response program Distributed generation Electric power grids electrical equipment Electricity energy Energy industry Energy management Energy resources Energy sources Energy storage Forced outage probability Mapping markets Mixed integer Nonlinear programming Outages profits and margins Renewable energy renewable energy sources Renewable integrated microgrid Renewable resources risk Risk management Smart grid Smart grid technology Storage systems Uncertainty Value of stochastic solution |
| Title | Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources |
| URI | https://dx.doi.org/10.1016/j.energy.2019.116441 https://www.proquest.com/docview/2348209524 https://www.proquest.com/docview/2335123237 |
| Volume | 190 |
| WOSCitedRecordID | wos000508752200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFgkuCAoVWwoyEjeUKontdXKs6CLgUCFRpL1Fju1Uqdqk2uyWReqP4Cczjh_ZLY_SA5doldiWN_NlPB5_M4PQm0SxrKRERomQNKIkzaOMxTLSUlGVyZwJpvpiE_z4OJvN8s-j0bWPhbk6502TrVb55X8VNdwDYZvQ2TuIOwwKN-A3CB2uIHa4_pPgj8T3SICKVW9bUAcXIIKyVsq6Dfq8EPZM3RDxTue1I58rfdETzS1jVnvaliGl9_U8TXdYAS1_wORg7Q8d2uVCnNqstSYz5rc-DEvbaMK5OxfoNnz_9plJcbqyrPrghziykWVfDCibenCwdsveZ9su4R3W6z6KNF7zUfjYrDhilG7qXVsn1GnOJDGW2W-VuvUvnB3Y-Rs6Xn4wNN_MoX1jbQuMQ09mOyvsKIUZpbCj3EPbKWc5qPXtw4_T2aeBIpT19UfD7H3oZc8P_HU2fzJtbizyveVy8hg9clsOfGih8gSNdLODHviI9G4H7U6HaEdo6NR99xT9CFjCDkvYYQl7LOG2wgFL2GAJWyxhjyXssITXsIQ3sIRNc4clM17AErb_HgcsPUNf309P3n2IXAmPSJIJX0QTUZlUC0TGgguuhaZcwp6gImBYl6KqFC1jJolIdVWxXHGw5lk-yQmNy0RWWpFdtNW0jX6OcEqYzFMmM5WltMyYyMpUx7riGmxmMRFjRPzbL6TLb2_KrJwXf5P9GEWh16XN73JLe-4FWzgb1dqeBaD1lp77HgeFUxddkZrcUrDLSekYvQ6PQcObYzvRaPi4oA1hZuND-N4dJ_sCPRy-xn20tZgv9Ut0X14t6m7-yqH9J32J0nQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Day-ahead+optimal+bidding+strategy+of+microgrid+with+demand+response+program+considering+uncertainties+and+outages+of+renewable+energy+resources&rft.jtitle=Energy+%28Oxford%29&rft.au=Das%2C+Saborni&rft.au=Basu%2C+Mousumi&rft.date=2020-01-01&rft.issn=0360-5442&rft.volume=190&rft.spage=116441&rft_id=info:doi/10.1016%2Fj.energy.2019.116441&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2019_116441 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |