Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources

In restructured electricity markets, microgrids are becoming smarter, more reliable and more economic electricity providers with respect to the incorporation of advanced smart grid technologies, distributed energy resources, efficient energy storage systems, and demand response programs (DRPs). More...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy (Oxford) Ročník 190; s. 116441
Hlavní autori: Das, Saborni, Basu, Mousumi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 01.01.2020
Elsevier BV
Predmet:
ISSN:0360-5442, 1873-6785
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In restructured electricity markets, microgrids are becoming smarter, more reliable and more economic electricity providers with respect to the incorporation of advanced smart grid technologies, distributed energy resources, efficient energy storage systems, and demand response programs (DRPs). Moreover, better bidding strategies, prepared by MG operators, boost the profits of MG market players. But, highly intermittent nature of renewable energy resources and their higher rate of outages make bidding strategies inefficient. To solve these issues, this study suggests an optimal bidding strategy considering uncertainty of renewable energy resources and DRP based on their outage probabilities. Tent chaos mapping is used to generate load scenarios and all possible renewable power output scenarios within the confidence intervals in non-repetitive and adaptive manner. Reserve and penalty costs for incorrect estimation of renewable energies are invoked to design more robust bidding. Moreover, the risk of participation in the competitive energy market is assessed using CVaR criteria. The proposed bidding model is optimized using mixed integer nonlinear programming. ‘Value of stochastic solution’ is used to investigate the efficiency of the stochastic programming in uncertainty integration into the bidding problem. •Bidding scheme with risk management of microgrid is proposed.•Forced outage and uncertainty modeling of renewable units are furnished.•Demand response program considers load elasticity and outages of renewable units.•Reserve/penalty cost of over/under estimation of renewable outputs are considered.•Bidding profits vary with Tent chaotic mapped scenarios of uncertain parameters.
AbstractList In restructured electricity markets, microgrids are becoming smarter, more reliable and more economic electricity providers with respect to the incorporation of advanced smart grid technologies, distributed energy resources, efficient energy storage systems, and demand response programs (DRPs). Moreover, better bidding strategies, prepared by MG operators, boost the profits of MG market players. But, highly intermittent nature of renewable energy resources and their higher rate of outages make bidding strategies inefficient. To solve these issues, this study suggests an optimal bidding strategy considering uncertainty of renewable energy resources and DRP based on their outage probabilities. Tent chaos mapping is used to generate load scenarios and all possible renewable power output scenarios within the confidence intervals in non-repetitive and adaptive manner. Reserve and penalty costs for incorrect estimation of renewable energies are invoked to design more robust bidding. Moreover, the risk of participation in the competitive energy market is assessed using CVaR criteria. The proposed bidding model is optimized using mixed integer nonlinear programming. ‘Value of stochastic solution’ is used to investigate the efficiency of the stochastic programming in uncertainty integration into the bidding problem.
In restructured electricity markets, microgrids are becoming smarter, more reliable and more economic electricity providers with respect to the incorporation of advanced smart grid technologies, distributed energy resources, efficient energy storage systems, and demand response programs (DRPs). Moreover, better bidding strategies, prepared by MG operators, boost the profits of MG market players. But, highly intermittent nature of renewable energy resources and their higher rate of outages make bidding strategies inefficient. To solve these issues, this study suggests an optimal bidding strategy considering uncertainty of renewable energy resources and DRP based on their outage probabilities. Tent chaos mapping is used to generate load scenarios and all possible renewable power output scenarios within the confidence intervals in non-repetitive and adaptive manner. Reserve and penalty costs for incorrect estimation of renewable energies are invoked to design more robust bidding. Moreover, the risk of participation in the competitive energy market is assessed using CVaR criteria. The proposed bidding model is optimized using mixed integer nonlinear programming. ‘Value of stochastic solution’ is used to investigate the efficiency of the stochastic programming in uncertainty integration into the bidding problem. •Bidding scheme with risk management of microgrid is proposed.•Forced outage and uncertainty modeling of renewable units are furnished.•Demand response program considers load elasticity and outages of renewable units.•Reserve/penalty cost of over/under estimation of renewable outputs are considered.•Bidding profits vary with Tent chaotic mapped scenarios of uncertain parameters.
ArticleNumber 116441
Author Basu, Mousumi
Das, Saborni
Author_xml – sequence: 1
  givenname: Saborni
  surname: Das
  fullname: Das, Saborni
  email: dassaborni@gmail.com
– sequence: 2
  givenname: Mousumi
  surname: Basu
  fullname: Basu, Mousumi
  email: mousumibasu@yahoo.com
BookMark eNqFkc1u3CAUhVGVSJ0kfYMukLrpxlMwPx53UalKf6VI2bRrhOHiMLJhCrjRvEUeuVjuKot2BYjvHJ177hW6CDEAQq8p2VNC5bvjHgKk8bxvCe33lErO6Qu0o4eONbI7iAu0I0ySRnDevkRXOR8JIeLQ9zv09EmfG_0A2uJ4Kn7WEx68tT6MOJekC4xnHB2evUlxTN7iR18esIVZB4sT5FMMGfBp_dQzNvXlLaRVvgQDqWgfioeMVzwuRY_1Xv1SDfyohwnwlny1iksykG_QpdNThld_z2v088vnH7ffmrv7r99vP941hsmuNFI7RmXHDNGd7kAD74wUxDFJ20E7Z_lAhGG6BedEbzshqehlzzgZqHFg2TV6u_nW7L8WyEXNPhuYJh0gLlm1jAnaspZ1FX3zDD3WrKGmqxQ_tKQXLa8U36jaVM4JnDql2mc6K0rUuiZ1VNuwal2T2tZUZe-fyYwvuvgYav1--p_4wyaG2tRvD0ll46EWb30CU5SN_t8GfwCDiLZd
CitedBy_id crossref_primary_10_1016_j_energy_2021_120529
crossref_primary_10_1177_01423312221079962
crossref_primary_10_1016_j_energy_2023_129661
crossref_primary_10_1016_j_est_2020_102111
crossref_primary_10_1016_j_scs_2020_102675
crossref_primary_10_1016_j_energy_2020_118765
crossref_primary_10_1016_j_est_2022_104056
crossref_primary_10_1049_rpg2_12368
crossref_primary_10_1016_j_est_2022_104373
crossref_primary_10_1016_j_energy_2023_127883
crossref_primary_10_1016_j_renene_2023_05_017
crossref_primary_10_1016_j_est_2025_116125
crossref_primary_10_1016_j_apenergy_2022_120195
crossref_primary_10_1049_rpg2_12806
crossref_primary_10_1016_j_ijhydene_2024_03_073
crossref_primary_10_1016_j_energy_2022_123793
crossref_primary_10_1016_j_energy_2022_126549
crossref_primary_10_1016_j_energy_2021_121416
crossref_primary_10_1016_j_energy_2022_125616
crossref_primary_10_1016_j_rser_2022_112095
crossref_primary_10_1007_s12053_025_10336_y
crossref_primary_10_1016_j_apenergy_2022_118528
crossref_primary_10_1016_j_est_2022_105432
crossref_primary_10_1016_j_ijhydene_2024_08_415
crossref_primary_10_1016_j_esr_2024_101554
crossref_primary_10_1080_23080477_2023_2244262
crossref_primary_10_1016_j_energy_2023_129576
crossref_primary_10_1016_j_scs_2023_104421
crossref_primary_10_1109_TIA_2022_3178386
crossref_primary_10_1016_j_apenergy_2022_120125
crossref_primary_10_1016_j_jclepro_2024_141482
crossref_primary_10_1016_j_seta_2022_102675
crossref_primary_10_1016_j_energy_2024_132987
crossref_primary_10_3390_electronics11040554
crossref_primary_10_1016_j_energy_2020_117926
crossref_primary_10_1016_j_segan_2023_101247
crossref_primary_10_1049_gtd2_12958
crossref_primary_10_1016_j_energy_2022_125624
crossref_primary_10_1016_j_ejor_2023_11_041
crossref_primary_10_1016_j_energy_2021_120030
crossref_primary_10_3390_en18112690
crossref_primary_10_1007_s42835_025_02257_8
crossref_primary_10_1016_j_energy_2021_120476
crossref_primary_10_1016_j_energy_2021_120237
crossref_primary_10_1016_j_energy_2022_124657
crossref_primary_10_1016_j_energy_2021_120911
crossref_primary_10_1016_j_energy_2022_123923
crossref_primary_10_3390_f12101357
crossref_primary_10_1057_s41287_021_00492_z
crossref_primary_10_1016_j_scs_2021_102852
crossref_primary_10_1016_j_apenergy_2022_118611
crossref_primary_10_1016_j_renene_2023_119590
crossref_primary_10_1016_j_ijepes_2020_105941
crossref_primary_10_3390_data6070076
crossref_primary_10_3390_su13126577
crossref_primary_10_1016_j_renene_2024_121159
crossref_primary_10_3390_math10010071
crossref_primary_10_1007_s12273_020_0687_1
crossref_primary_10_1016_j_renene_2020_09_016
crossref_primary_10_3390_app11020763
crossref_primary_10_1016_j_energy_2023_126725
crossref_primary_10_1016_j_ijepes_2021_107080
crossref_primary_10_3390_en15051932
crossref_primary_10_1016_j_energy_2021_121475
crossref_primary_10_3390_electronics12204327
crossref_primary_10_1016_j_apenergy_2023_121511
crossref_primary_10_1016_j_renene_2021_04_037
crossref_primary_10_1016_j_energy_2021_122844
crossref_primary_10_1016_j_energy_2021_122962
crossref_primary_10_1109_TIA_2022_3200348
crossref_primary_10_1016_j_epsr_2022_108059
crossref_primary_10_1016_j_apenergy_2020_115992
crossref_primary_10_1016_j_epsr_2023_110016
crossref_primary_10_1016_j_egyr_2023_12_012
crossref_primary_10_1016_j_energy_2020_117024
crossref_primary_10_3390_en13184879
crossref_primary_10_3390_en15207784
crossref_primary_10_1016_j_renene_2024_121883
crossref_primary_10_1016_j_epsr_2024_110312
crossref_primary_10_1109_ACCESS_2022_3186519
crossref_primary_10_1016_j_ijhydene_2021_07_074
crossref_primary_10_1016_j_apenergy_2023_122133
crossref_primary_10_1016_j_egyr_2021_07_021
crossref_primary_10_3390_electronics11081251
crossref_primary_10_3390_su151411012
crossref_primary_10_1007_s11356_023_31055_w
Cites_doi 10.1109/JSYST.2014.2325967
10.1049/iet-rpg.2017.0076
10.1109/TSTE.2018.2854868
10.1109/TSTE.2013.2281811
10.1016/j.ijepes.2015.11.087
10.1016/j.energy.2013.10.011
10.1016/j.compeleceng.2013.12.013
10.1016/S0167-6105(99)00122-1
10.1016/j.energy.2018.12.173
10.1016/j.apenergy.2018.09.015
10.1016/j.renene.2018.07.106
10.1109/TKDE.2018.2837026
10.1016/j.ijepes.2014.01.033
10.1016/j.apenergy.2017.07.047
10.1016/j.apenergy.2012.02.027
10.1109/TII.2018.2850533
10.1016/j.apenergy.2009.05.041
10.1016/j.energy.2016.02.166
10.1038/261459a0
10.1007/s10107-002-0331-0
10.1109/TII.2016.2522641
10.1016/j.renene.2009.03.020
10.1109/TSG.2014.2313612
10.1109/JIOT.2017.2764879
10.1016/j.enconman.2014.07.068
10.1016/j.energy.2016.05.024
10.1109/TSG.2015.2476669
10.1109/MPE.2013.2258276
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Jan 1, 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 1, 2020
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2019.116441
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2019_116441
S036054421932136X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-6af31673c0a7a7eae47c650f3612baffd4b05c3a2eff59d75615969340b1cfed3
ISICitedReferencesCount 98
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508752200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 02:37:27 EDT 2025
Wed Aug 13 09:30:31 EDT 2025
Tue Nov 18 22:39:53 EST 2025
Sat Nov 29 07:20:43 EST 2025
Fri Feb 23 02:47:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Value of stochastic solution
Uncertainty
Demand response program
Renewable integrated microgrid
Forced outage probability
Risk management
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-6af31673c0a7a7eae47c650f3612baffd4b05c3a2eff59d75615969340b1cfed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2348209524
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2335123237
proquest_journals_2348209524
crossref_primary_10_1016_j_energy_2019_116441
crossref_citationtrail_10_1016_j_energy_2019_116441
elsevier_sciencedirect_doi_10_1016_j_energy_2019_116441
PublicationCentury 2000
PublicationDate 2020-01-01
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Dupačová, Gröwe-Kuska, Römisch (bib21) 2003; 95
Zhao, Pan, Yao, Ju, Li (bib14) 2018
Dehnavi, Abdi (bib33) 2016; 109
Kaviani, Riahy, Kouhsari (bib5) 2009; 34
Shi, Luo, Tu (bib11) 2014; 59
Hajibandeh, Shafie-Khah, Talari, Dehghan, Amjady, Mariano (bib31) 2019; 10
Javed, Arshad, Wallin, Vassileva, Dahlquist (bib29) 2012; 96
Faqiry, Das (bib17) 2018
Li (bib26) 2014
Fazlalipour, Ehsan, Mohammadi-Ivatloo (bib15) 2019; 171
(bib36) 2018-11-02
Mehdizadeh, Taghizadegan (bib10) 2017; 11
Liu, Xu, Tomsovic (bib13) 2016; 7
May (bib25) 1976; 261
(bib37) 2018-11-02
Ferruzzi, Cervone, Delle Monache, Graditi, Jacobone (bib8) 2016; 106
Pei, Du, Deng, Sheng, Xiao, Qu (bib18) 2016; 12
Wang, Li (bib32) 2013; 63
Reddy, Bijwe, Abhyankar (bib27) 2015; 9
Shayeghi, Sobhani (bib7) 2014; 87
Wang, Zhong, Tang, Rajagopal, Xia, Kang, Wang (bib9) 2017; 205
Zhang, Li, Zeng, Zang (bib20) 2014; 5
Rezaei, Ahmadi, Khazali, Aghaei (bib19) 2019; 15
(bib38) 2018
Zheng, Jenkins, Kornbluth, Kendall, Træholt (bib2) 2018; 230
Dupačová, Gröwe-Kuska, Römisch (bib22) 2003; 95
Smith, Ton (bib1) 2013; 11
Salkuti (bib4) 2019; 131
Xiao, Gao, Li, Ma, Su, Feng, Zhang (bib30) 2019; 31
Lim, Kim (bib6) 2014; 40
(bib34) 27-Apr-2010
Seguro, Lambert (bib28) 2000; 85
Fazlalipour, Ehsan, Mohammadi-Ivatloo (bib3) 2019; 171
Gokhale, Kale (bib24) 2016; 78
Aalami, Moghaddam, Yousefi (bib35) 2010; 87
An, Yang, Yu, Yang, Fu, Zhao (bib16) 2017; 4
Nguyen, Le (bib12) 2014; 5
Schuster (bib23) 1988
Lim (10.1016/j.energy.2019.116441_bib6) 2014; 40
Aalami (10.1016/j.energy.2019.116441_bib35) 2010; 87
Reddy (10.1016/j.energy.2019.116441_bib27) 2015; 9
Faqiry (10.1016/j.energy.2019.116441_bib17) 2018
Zhao (10.1016/j.energy.2019.116441_bib14) 2018
Gokhale (10.1016/j.energy.2019.116441_bib24) 2016; 78
Javed (10.1016/j.energy.2019.116441_bib29) 2012; 96
(10.1016/j.energy.2019.116441_bib37) 2018
(10.1016/j.energy.2019.116441_bib34) 2010
Dupačová (10.1016/j.energy.2019.116441_bib21) 2003; 95
Xiao (10.1016/j.energy.2019.116441_bib30) 2019; 31
Salkuti (10.1016/j.energy.2019.116441_bib4) 2019; 131
Kaviani (10.1016/j.energy.2019.116441_bib5) 2009; 34
Schuster (10.1016/j.energy.2019.116441_bib23) 1988
Fazlalipour (10.1016/j.energy.2019.116441_bib15) 2019; 171
May (10.1016/j.energy.2019.116441_bib25) 1976; 261
Liu (10.1016/j.energy.2019.116441_bib13) 2016; 7
Li (10.1016/j.energy.2019.116441_bib26) 2014
Zhang (10.1016/j.energy.2019.116441_bib20) 2014; 5
Wang (10.1016/j.energy.2019.116441_bib32) 2013; 63
Smith (10.1016/j.energy.2019.116441_bib1) 2013; 11
Fazlalipour (10.1016/j.energy.2019.116441_bib3) 2019; 171
Zheng (10.1016/j.energy.2019.116441_bib2) 2018; 230
Seguro (10.1016/j.energy.2019.116441_bib28) 2000; 85
(10.1016/j.energy.2019.116441_bib36) 2018
Shi (10.1016/j.energy.2019.116441_bib11) 2014; 59
Dupačová (10.1016/j.energy.2019.116441_bib22) 2003; 95
(10.1016/j.energy.2019.116441_bib38) 2018
An (10.1016/j.energy.2019.116441_bib16) 2017; 4
Pei (10.1016/j.energy.2019.116441_bib18) 2016; 12
Rezaei (10.1016/j.energy.2019.116441_bib19) 2019; 15
Wang (10.1016/j.energy.2019.116441_bib9) 2017; 205
Nguyen (10.1016/j.energy.2019.116441_bib12) 2014; 5
Dehnavi (10.1016/j.energy.2019.116441_bib33) 2016; 109
Shayeghi (10.1016/j.energy.2019.116441_bib7) 2014; 87
Ferruzzi (10.1016/j.energy.2019.116441_bib8) 2016; 106
Mehdizadeh (10.1016/j.energy.2019.116441_bib10) 2017; 11
Hajibandeh (10.1016/j.energy.2019.116441_bib31) 2019; 10
References_xml – volume: 106
  start-page: 194
  year: 2016
  end-page: 202
  ident: bib8
  article-title: Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production
  publication-title: Energy
– volume: 31
  start-page: 575
  year: 2019
  end-page: 588
  ident: bib30
  article-title: Towards confidence interval estimation in truth discovery
  publication-title: IEEE Trans Knowl Data Eng
– year: 2018-11-02
  ident: bib37
  article-title: Lazard’s levelized cost of storage analysis - version 4.0
  publication-title: Lazard
– volume: 34
  start-page: 2380
  year: 2009
  end-page: 2390
  ident: bib5
  article-title: Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages
  publication-title: Renew Energy
– volume: 95
  start-page: 493
  year: 2003
  end-page: 511
  ident: bib21
  article-title: Scenario reduction in stochastic programming
  publication-title: Mathe program
– start-page: 1
  year: 2018
  ident: bib14
  article-title: Strategic bidding of hybrid AC/DC microgrid embedded energy hubs: a two-stage chance constrained stochastic programming approach
  publication-title: IEEE Trans Sustain Energy
– volume: 78
  start-page: 336
  year: 2016
  end-page: 342
  ident: bib24
  article-title: An application of a tent map initiated Chaotic Firefly algorithm for optimal overcurrent relay coordination
  publication-title: Int J Electr Power Energy Syst
– volume: 95
  start-page: 493
  year: 2003
  end-page: 511
  ident: bib22
  article-title: Scenario reduction in stochastic programming
  publication-title: Mathe Program
– volume: 205
  start-page: 294
  year: 2017
  end-page: 303
  ident: bib9
  article-title: Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products
  publication-title: Appl Energy
– volume: 15
  start-page: 1532
  year: 2019
  end-page: 1543
  ident: bib19
  article-title: Multi-objective risk-constrained optimal bidding strategy of smart microgrids: an IGDT-based normal boundary intersection approach
  publication-title: IEEE Trans Indus Inf
– year: 27-Apr-2010
  ident: bib34
  publication-title: Annual Report, Prepared by Summit Blue Consulting, Submitted to Ameren Illinois Utilities. Power Smart Pricing 2009
– volume: 87
  start-page: 765
  year: 2014
  end-page: 777
  ident: bib7
  article-title: Integrated offering strategy for profit enhancement of distributed resources and demand response in microgrids considering system uncertainties
  publication-title: Energy Convers Manag
– volume: 109
  start-page: 1086
  year: 2016
  end-page: 1094
  ident: bib33
  article-title: Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem
  publication-title: Energy
– volume: 87
  start-page: 243
  year: 2010
  end-page: 250
  ident: bib35
  article-title: Demand response modeling considering Interruptible/Curtailable loads and capacity market programs
  publication-title: Appl Energy
– volume: 40
  start-page: 1439
  year: 2014
  end-page: 1446
  ident: bib6
  article-title: Strategic bidding using reinforcement learning for load shedding in microgrids
  publication-title: Comput Electr Eng
– volume: 7
  start-page: 227
  year: 2016
  end-page: 237
  ident: bib13
  article-title: Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization
  publication-title: IEEE Trans Smart Grid
– volume: 11
  start-page: 22
  year: 2013
  end-page: 27
  ident: bib1
  article-title: Key connections: the U.S. department of energy? Microgrid initiative
  publication-title: IEEE Power Energy Mag
– volume: 171
  start-page: 689
  year: 2019
  end-page: 700
  ident: bib15
  article-title: Risk-aware stochastic bidding strategy of renewable micro-grids in day-ahead and real-time markets
  publication-title: Energy
– volume: 63
  start-page: 233
  year: 2013
  end-page: 244
  ident: bib32
  article-title: Time-of-use based electricity demand response for sustainable manufacturing systems
  publication-title: Energy
– volume: 96
  start-page: 150
  year: 2012
  end-page: 160
  ident: bib29
  article-title: Forecasting for demand response in smart grids: an analysis on use of anthropologic and structural data and short term multiple loads forecasting
  publication-title: Appl Energy
– volume: 171
  start-page: 689
  year: 2019
  end-page: 700
  ident: bib3
  article-title: Risk-aware stochastic bidding strategy of renewable micro-grids in day-ahead and real-time markets
  publication-title: Energy
– volume: 230
  start-page: 836
  year: 2018
  end-page: 844
  ident: bib2
  article-title: Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty
  publication-title: Appl Energy
– volume: 11
  start-page: 1446
  year: 2017
  end-page: 1455
  ident: bib10
  article-title: Robust optimisation approach for bidding strategy of renewable generation-based microgrid under demand side management
  publication-title: IET Renew Power Gener
– start-page: 1
  year: 2018
  end-page: 14
  ident: bib17
  article-title: Double auction with hidden user information: application to energy transaction in microgrid
  publication-title: IEEE Trans. Syst. Man Cybern. : Systems
– year: 2014
  ident: bib26
  article-title: Risk assessment of power systems: models, methods, and applications
– volume: 10
  start-page: 918
  year: 2019
  end-page: 930
  ident: bib31
  article-title: Demand response-based operation model in electricity markets with high wind power penetration
  publication-title: IEEE Trans Sustain Energy
– year: 2018-11-02
  ident: bib36
  article-title: Lazard’s levelized cost of energy analysis - version 12.0
  publication-title: Lazard
– year: 2018
  ident: bib38
  publication-title: Bara bazar monthly weather forecast
– volume: 5
  start-page: 1608
  year: 2014
  end-page: 1620
  ident: bib12
  article-title: Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics
  publication-title: IEEE Trans Smart Grid
– volume: 4
  start-page: 2260
  year: 2017
  end-page: 2274
  ident: bib16
  article-title: Sto2auc: a stochastic optimal bidding strategy for microgrids
  publication-title: IEEE Internet of Things J
– volume: 12
  start-page: 587
  year: 2016
  end-page: 596
  ident: bib18
  article-title: Optimal bidding strategy and intramarket mechanism of microgrid aggregator in real-time balancing market
  publication-title: IEEE Trans Indus Inff
– volume: 131
  start-page: 956
  year: 2019
  end-page: 965
  ident: bib4
  article-title: Day-ahead thermal and renewable power generation scheduling considering uncertainty
  publication-title: Renew Energy
– year: 1988
  ident: bib23
  article-title: Deterministic chaos: an introduction
– volume: 9
  start-page: 1440
  year: 2015
  end-page: 1451
  ident: bib27
  article-title: Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period
  publication-title: IEEE Syst J
– volume: 261
  start-page: 459
  year: 1976
  ident: bib25
  article-title: Simple mathematical models with very complicated dynamics
  publication-title: Nature
– volume: 85
  start-page: 75
  year: 2000
  end-page: 84
  ident: bib28
  article-title: Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis
  publication-title: J Wind Eng Ind Aerodyn
– volume: 59
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib11
  article-title: Bidding strategy of microgrid with consideration of uncertainty for participating in power market
  publication-title: Int J Electr Power Energy Syst
– volume: 5
  start-page: 282
  year: 2014
  end-page: 292
  ident: bib20
  article-title: Optimal microgrid control and power-flow study with different bidding policies by using powerworld simulator
  publication-title: IEEE Trans Sustain Energy
– volume: 9
  start-page: 1440
  issue: 4
  year: 2015
  ident: 10.1016/j.energy.2019.116441_bib27
  article-title: Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2014.2325967
– volume: 11
  start-page: 1446
  issue: 11
  year: 2017
  ident: 10.1016/j.energy.2019.116441_bib10
  article-title: Robust optimisation approach for bidding strategy of renewable generation-based microgrid under demand side management
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2017.0076
– volume: 10
  start-page: 918
  year: 2019
  ident: 10.1016/j.energy.2019.116441_bib31
  article-title: Demand response-based operation model in electricity markets with high wind power penetration
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2018.2854868
– volume: 5
  start-page: 282
  issue: 1
  year: 2014
  ident: 10.1016/j.energy.2019.116441_bib20
  article-title: Optimal microgrid control and power-flow study with different bidding policies by using powerworld simulator
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2013.2281811
– year: 2014
  ident: 10.1016/j.energy.2019.116441_bib26
– volume: 78
  start-page: 336
  year: 2016
  ident: 10.1016/j.energy.2019.116441_bib24
  article-title: An application of a tent map initiated Chaotic Firefly algorithm for optimal overcurrent relay coordination
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2015.11.087
– volume: 63
  start-page: 233
  year: 2013
  ident: 10.1016/j.energy.2019.116441_bib32
  article-title: Time-of-use based electricity demand response for sustainable manufacturing systems
  publication-title: Energy
  doi: 10.1016/j.energy.2013.10.011
– volume: 40
  start-page: 1439
  issue: 5
  year: 2014
  ident: 10.1016/j.energy.2019.116441_bib6
  article-title: Strategic bidding using reinforcement learning for load shedding in microgrids
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2013.12.013
– volume: 85
  start-page: 75
  issue: 1
  year: 2000
  ident: 10.1016/j.energy.2019.116441_bib28
  article-title: Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/S0167-6105(99)00122-1
– volume: 171
  start-page: 689
  year: 2019
  ident: 10.1016/j.energy.2019.116441_bib15
  article-title: Risk-aware stochastic bidding strategy of renewable micro-grids in day-ahead and real-time markets
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.173
– volume: 230
  start-page: 836
  year: 2018
  ident: 10.1016/j.energy.2019.116441_bib2
  article-title: Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.09.015
– year: 2010
  ident: 10.1016/j.energy.2019.116441_bib34
  publication-title: Annual Report, Prepared by Summit Blue Consulting, Submitted to Ameren Illinois Utilities. Power Smart Pricing 2009
– year: 2018
  ident: 10.1016/j.energy.2019.116441_bib37
  article-title: Lazard’s levelized cost of storage analysis - version 4.0
  publication-title: Lazard
– volume: 131
  start-page: 956
  year: 2019
  ident: 10.1016/j.energy.2019.116441_bib4
  article-title: Day-ahead thermal and renewable power generation scheduling considering uncertainty
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.07.106
– volume: 31
  start-page: 575
  issue: 3
  year: 2019
  ident: 10.1016/j.energy.2019.116441_bib30
  article-title: Towards confidence interval estimation in truth discovery
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2837026
– volume: 59
  start-page: 1
  year: 2014
  ident: 10.1016/j.energy.2019.116441_bib11
  article-title: Bidding strategy of microgrid with consideration of uncertainty for participating in power market
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.01.033
– volume: 205
  start-page: 294
  year: 2017
  ident: 10.1016/j.energy.2019.116441_bib9
  article-title: Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.07.047
– year: 1988
  ident: 10.1016/j.energy.2019.116441_bib23
– volume: 96
  start-page: 150
  year: 2012
  ident: 10.1016/j.energy.2019.116441_bib29
  article-title: Forecasting for demand response in smart grids: an analysis on use of anthropologic and structural data and short term multiple loads forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.02.027
– start-page: 1
  year: 2018
  ident: 10.1016/j.energy.2019.116441_bib14
  article-title: Strategic bidding of hybrid AC/DC microgrid embedded energy hubs: a two-stage chance constrained stochastic programming approach
  publication-title: IEEE Trans Sustain Energy
– volume: 15
  start-page: 1532
  issue: 3
  year: 2019
  ident: 10.1016/j.energy.2019.116441_bib19
  article-title: Multi-objective risk-constrained optimal bidding strategy of smart microgrids: an IGDT-based normal boundary intersection approach
  publication-title: IEEE Trans Indus Inf
  doi: 10.1109/TII.2018.2850533
– volume: 87
  start-page: 243
  issue: 1
  year: 2010
  ident: 10.1016/j.energy.2019.116441_bib35
  article-title: Demand response modeling considering Interruptible/Curtailable loads and capacity market programs
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.05.041
– volume: 106
  start-page: 194
  year: 2016
  ident: 10.1016/j.energy.2019.116441_bib8
  article-title: Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.166
– start-page: 1
  issue: 99
  year: 2018
  ident: 10.1016/j.energy.2019.116441_bib17
  article-title: Double auction with hidden user information: application to energy transaction in microgrid
  publication-title: IEEE Trans. Syst. Man Cybern. : Systems
– volume: 261
  start-page: 459
  issue: 5560
  year: 1976
  ident: 10.1016/j.energy.2019.116441_bib25
  article-title: Simple mathematical models with very complicated dynamics
  publication-title: Nature
  doi: 10.1038/261459a0
– volume: 95
  start-page: 493
  issue: 3
  year: 2003
  ident: 10.1016/j.energy.2019.116441_bib22
  article-title: Scenario reduction in stochastic programming
  publication-title: Mathe Program
  doi: 10.1007/s10107-002-0331-0
– volume: 12
  start-page: 587
  issue: 2
  year: 2016
  ident: 10.1016/j.energy.2019.116441_bib18
  article-title: Optimal bidding strategy and intramarket mechanism of microgrid aggregator in real-time balancing market
  publication-title: IEEE Trans Indus Inff
  doi: 10.1109/TII.2016.2522641
– volume: 34
  start-page: 2380
  issue: 11
  year: 2009
  ident: 10.1016/j.energy.2019.116441_bib5
  article-title: Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2009.03.020
– volume: 5
  start-page: 1608
  issue: 4
  year: 2014
  ident: 10.1016/j.energy.2019.116441_bib12
  article-title: Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2014.2313612
– volume: 95
  start-page: 493
  issue: 3
  year: 2003
  ident: 10.1016/j.energy.2019.116441_bib21
  article-title: Scenario reduction in stochastic programming
  publication-title: Mathe program
  doi: 10.1007/s10107-002-0331-0
– volume: 4
  start-page: 2260
  issue: 6
  year: 2017
  ident: 10.1016/j.energy.2019.116441_bib16
  article-title: Sto2auc: a stochastic optimal bidding strategy for microgrids
  publication-title: IEEE Internet of Things J
  doi: 10.1109/JIOT.2017.2764879
– volume: 87
  start-page: 765
  year: 2014
  ident: 10.1016/j.energy.2019.116441_bib7
  article-title: Integrated offering strategy for profit enhancement of distributed resources and demand response in microgrids considering system uncertainties
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.07.068
– volume: 171
  start-page: 689
  year: 2019
  ident: 10.1016/j.energy.2019.116441_bib3
  article-title: Risk-aware stochastic bidding strategy of renewable micro-grids in day-ahead and real-time markets
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.173
– volume: 109
  start-page: 1086
  year: 2016
  ident: 10.1016/j.energy.2019.116441_bib33
  article-title: Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.024
– volume: 7
  start-page: 227
  issue: 1
  year: 2016
  ident: 10.1016/j.energy.2019.116441_bib13
  article-title: Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2476669
– volume: 11
  start-page: 22
  issue: 4
  year: 2013
  ident: 10.1016/j.energy.2019.116441_bib1
  article-title: Key connections: the U.S. department of energy? Microgrid initiative
  publication-title: IEEE Power Energy Mag
  doi: 10.1109/MPE.2013.2258276
– year: 2018
  ident: 10.1016/j.energy.2019.116441_bib36
  article-title: Lazard’s levelized cost of energy analysis - version 12.0
  publication-title: Lazard
– year: 2018
  ident: 10.1016/j.energy.2019.116441_bib38
SSID ssj0005899
Score 2.579047
Snippet In restructured electricity markets, microgrids are becoming smarter, more reliable and more economic electricity providers with respect to the incorporation...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116441
SubjectTerms Alternative energy sources
confidence interval
Confidence intervals
Demand response program
Distributed generation
Electric power grids
electrical equipment
Electricity
energy
Energy industry
Energy management
Energy resources
Energy sources
Energy storage
Forced outage probability
Mapping
markets
Mixed integer
Nonlinear programming
Outages
profits and margins
Renewable energy
renewable energy sources
Renewable integrated microgrid
Renewable resources
risk
Risk management
Smart grid
Smart grid technology
Storage systems
Uncertainty
Value of stochastic solution
Title Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources
URI https://dx.doi.org/10.1016/j.energy.2019.116441
https://www.proquest.com/docview/2348209524
https://www.proquest.com/docview/2335123237
Volume 190
WOSCitedRecordID wos000508752200030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFgkuCAoVWwoyEjeUKontdXKs6CLgUCFRpL1Fju1Uqdqk2uyWReqP4Cczjh_ZLY_SA5doldiWN_NlPB5_M4PQm0SxrKRERomQNKIkzaOMxTLSUlGVyZwJpvpiE_z4OJvN8s-j0bWPhbk6502TrVb55X8VNdwDYZvQ2TuIOwwKN-A3CB2uIHa4_pPgj8T3SICKVW9bUAcXIIKyVsq6Dfq8EPZM3RDxTue1I58rfdETzS1jVnvaliGl9_U8TXdYAS1_wORg7Q8d2uVCnNqstSYz5rc-DEvbaMK5OxfoNnz_9plJcbqyrPrghziykWVfDCibenCwdsveZ9su4R3W6z6KNF7zUfjYrDhilG7qXVsn1GnOJDGW2W-VuvUvnB3Y-Rs6Xn4wNN_MoX1jbQuMQ09mOyvsKIUZpbCj3EPbKWc5qPXtw4_T2aeBIpT19UfD7H3oZc8P_HU2fzJtbizyveVy8hg9clsOfGih8gSNdLODHviI9G4H7U6HaEdo6NR99xT9CFjCDkvYYQl7LOG2wgFL2GAJWyxhjyXssITXsIQ3sIRNc4clM17AErb_HgcsPUNf309P3n2IXAmPSJIJX0QTUZlUC0TGgguuhaZcwp6gImBYl6KqFC1jJolIdVWxXHGw5lk-yQmNy0RWWpFdtNW0jX6OcEqYzFMmM5WltMyYyMpUx7riGmxmMRFjRPzbL6TLb2_KrJwXf5P9GEWh16XN73JLe-4FWzgb1dqeBaD1lp77HgeFUxddkZrcUrDLSekYvQ6PQcObYzvRaPi4oA1hZuND-N4dJ_sCPRy-xn20tZgv9Ut0X14t6m7-yqH9J32J0nQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Day-ahead+optimal+bidding+strategy+of+microgrid+with+demand+response+program+considering+uncertainties+and+outages+of+renewable+energy+resources&rft.jtitle=Energy+%28Oxford%29&rft.au=Das%2C+Saborni&rft.au=Basu%2C+Mousumi&rft.date=2020-01-01&rft.issn=0360-5442&rft.volume=190&rft.spage=116441&rft_id=info:doi/10.1016%2Fj.energy.2019.116441&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2019_116441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon