A Decentralized Multi-objective Optimization Algorithm

During the past few decades, multi-agent optimization problems have drawn increased attention from the research community. When multiple objective functions are present among agents, many works optimize the sum of these objective functions. However, this formulation implies a decision regarding the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of optimization theory and applications Ročník 189; číslo 2; s. 458 - 485
Hlavní autori: Blondin, Maude J., Hale, Matthew
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.05.2021
Springer Nature B.V
Predmet:
ISSN:0022-3239, 1573-2878
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract During the past few decades, multi-agent optimization problems have drawn increased attention from the research community. When multiple objective functions are present among agents, many works optimize the sum of these objective functions. However, this formulation implies a decision regarding the relative importance of each objective: optimizing the sum is a special case of a multi-objective problem in which all objectives are prioritized equally. To enable more general prioritizations, we present a distributed optimization algorithm that explores Pareto optimal solutions for non-homogeneously weighted sums of objective functions. This exploration is performed through a new rule based on agents’ priorities that generates edge weights in agents’ communication graph. These weights determine how agents update their decision variables with information received from other agents in the network. Agents initially disagree on the priorities of objective functions, though they are driven to agree upon them as they optimize. As a result, agents still reach a common solution. The network-level weight matrix is (non-doubly) stochastic, contrasting with many works on the subject in which the network-level weight matrix is doubly-stochastic. New theoretical analyses are therefore developed to ensure convergence of the proposed algorithm. This paper provides a gradient-based optimization algorithm, proof of convergence to solutions, and convergence rates of the proposed algorithm. It is shown that agents’ initial priorities influence the convergence rate of the proposed algorithm and that these initial choices affect its long-run behavior. Numerical results performed with different numbers of agents illustrate the performance and effectiveness of the proposed algorithm.
AbstractList During the past few decades, multi-agent optimization problems have drawn increased attention from the research community. When multiple objective functions are present among agents, many works optimize the sum of these objective functions. However, this formulation implies a decision regarding the relative importance of each objective: optimizing the sum is a special case of a multi-objective problem in which all objectives are prioritized equally. To enable more general prioritizations, we present a distributed optimization algorithm that explores Pareto optimal solutions for non-homogeneously weighted sums of objective functions. This exploration is performed through a new rule based on agents’ priorities that generates edge weights in agents’ communication graph. These weights determine how agents update their decision variables with information received from other agents in the network. Agents initially disagree on the priorities of objective functions, though they are driven to agree upon them as they optimize. As a result, agents still reach a common solution. The network-level weight matrix is (non-doubly) stochastic, contrasting with many works on the subject in which the network-level weight matrix is doubly-stochastic. New theoretical analyses are therefore developed to ensure convergence of the proposed algorithm. This paper provides a gradient-based optimization algorithm, proof of convergence to solutions, and convergence rates of the proposed algorithm. It is shown that agents’ initial priorities influence the convergence rate of the proposed algorithm and that these initial choices affect its long-run behavior. Numerical results performed with different numbers of agents illustrate the performance and effectiveness of the proposed algorithm.
Author Blondin, Maude J.
Hale, Matthew
Author_xml – sequence: 1
  givenname: Maude J.
  orcidid: 0000-0001-7844-8874
  surname: Blondin
  fullname: Blondin, Maude J.
  email: maude.josee.blondin@usherbrooke.ca
  organization: Université de Sherbrooke
– sequence: 2
  givenname: Matthew
  surname: Hale
  fullname: Hale, Matthew
  organization: University of Florida
BookMark eNp9kD1PwzAQhi0EEm3hDzBFYjac7SS2x6p8SkVdYLYcxymu0qTYLhL59ZgGCYmh0y3vc_feM0WnXd9ZhK4I3BAAfhsIyIJjoAQDETng4QRNSMEZpoKLUzQBoBQzyuQ5moawAQApeD5B5Ty7s8Z20evWDbbOXvZtdLivNtZE92mz1S66rRt0dH2Xzdt17118316gs0a3wV7-zhl6e7h_XTzh5erxeTFfYsNKHnGpWSkLIwmrJRe6qfOSV03NtZSF5HlVW13WghmqG8KrnNuGQi6EplYy1mjDZuh63Lvz_cfehqg2_d536aSiRfqGMAI0pcSYMr4PwdtGGRcPjdNbrlUE1I8lNVpSyZI6WFJDQuk_dOfdVvuv4xAboZDC3dr6v1ZHqG9Zknyt
CitedBy_id crossref_primary_10_1007_s10957_023_02173_9
crossref_primary_10_1109_ACCESS_2023_3341295
Cites_doi 10.1016/j.automatica.2014.10.022
10.1109/TIE.2016.2636810
10.1137/110837462
10.1109/TAC.2015.2416927
10.1007/s10957-010-9737-7
10.1109/EnergyTech.2013.6645336
10.1007/978-3-662-08883-8
10.1016/j.jpdc.2006.08.010
10.1137/S1052623499362111
10.1109/Allerton.2012.6483403
10.1016/j.automatica.2012.05.025
10.23919/ECC.2018.8550343
10.1109/ALLERTON.2010.5706956
10.23919/ACC45564.2020.9148017
10.1016/j.pisc.2015.11.022
10.1109/TAC.2008.2009515
10.1109/JAS.2014.7004621
10.1109/JPROC.2006.887293
10.1109/TAC.2010.2041686
10.1007/s10107-011-0467-x
10.1109/TAC.2011.2161027
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s10957-021-01840-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2878
EndPage 485
ExternalDocumentID 10_1007_s10957_021_01840_z
GrantInformation_xml – fundername: FRQNT
  grantid: B3X
– fundername: AFOSR
  grantid: FA9550-19-1-0169
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PKN
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
YLTOR
YQT
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZCG
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8FD
8FK
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c367t-6a3695c913d978afd467bfd7a995974bdea6d83c2af17b47ef20488a2e933fac3
IEDL.DBID M2P
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000627664300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3239
IngestDate Wed Nov 05 04:09:58 EST 2025
Tue Nov 18 22:23:48 EST 2025
Sat Nov 29 06:02:31 EST 2025
Fri Feb 21 02:48:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Pareto front
Distributed optimization
Multi-objective optimization
Multi-agent systems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-6a3695c913d978afd467bfd7a995974bdea6d83c2af17b47ef20488a2e933fac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7844-8874
PQID 2523913102
PQPubID 48247
PageCount 28
ParticipantIDs proquest_journals_2523913102
crossref_citationtrail_10_1007_s10957_021_01840_z
crossref_primary_10_1007_s10957_021_01840_z
springer_journals_10_1007_s10957_021_01840_z
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of optimization theory and applications
PublicationTitleAbbrev J Optim Theory Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Nedić, A., Ozdaglar, A., Parrilo, P.: Constrained consensus. arXiv preprint arXiv:0802.3922 (2008)
Bianchi, P., Fort, G., Hachem, P., Jakubowicz, J.: Performance analysis of a distributed Robbins-Monro algorithm for sensor networks. In: European Signal Processing Conference, pp. 1030–1034 (2011)
Blondel, V.D., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: Convergence in multiagent coordination, consensus, and flocking. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 2996–3000 (2005)
Khim, S.: The Frobenius–Perron theorem. Doctoral Dissertation, PhD thesis, The University of Chicago (2007)
Blondin, M. J., Hale, M.: An algorithm for multi-objective multi-agent optimization. In: American control conference (ACC), pp. 1489–1494. Denver, CO (2020). https://doi.org/10.23919/ACC45564.2020.9148017
ZhangYLouYHongYAn approximate gradient algorithm for constrained distributed convex optimizationIEEE/CAA J. Autom. Sinica20141616710.1109/JAS.2014.7004621
NedicABertsekasDPIncremental subgradient methods for nondifferentiable optimizationSIAM J. Optim.2001121109138187058810.1137/S1052623499362111
Byungchul, K., Lavrova, O.: Optimal power flow and energy-sharing among multi-agent smart buildings in the smart grid. In: IEEE Energytech, pp. 1–5 (2013)
Filotheou, A., Nikou, A., Dimarogonas, D.V.: Decentralized control of uncertain multi-agent systems with connectivity maintenance and collision avoidance. In: European Control Conference, pp. 8–13 (2018)
ColletteYSiarryPMultiobjective Optimization: Principles and Case Studies2004BerlinSpringer10.1007/978-3-662-08883-8
DuchiJCAgarwalAWainwrightMJDual averaging for distributed optimization: convergence analysis and network scalingIEEE Trans. Autom. Control2011573592606293281810.1109/TAC.2011.2161027
OhKKParkMCAhnHSA survey of multi-agent formation controlAutomatica20155342440331861810.1016/j.automatica.2014.10.022
Olfati-SaberRFaxJAMurrayRMConsensus and cooperation in networked multi-agent systemsProc. IEEE.200795121523310.1109/JPROC.2006.887293
NedićAOzdaglarAParriloPConstrained consensus and optimization in multi-agent networksIEEE Trans. Autom. Control2010554922938265443210.1109/TAC.2010.2041686
LiuQWangJA second-order multi-agent network for bound-constrained distributed optimizationIEEE Trans. Autom. Control2015601233103325343270010.1109/TAC.2015.2416927
NedićAOzdaglarADistributed subgradient methods for multi-agent optimizationIEEE Trans. Autom. Control20095414861247807010.1109/TAC.2008.2009515
LobelIOzdaglarAFeijerDDistributed multi-agent optimization with state-dependent communicationMath. Program.20111292255284283788210.1007/s10107-011-0467-x
OlshevskyATsitsiklisJNConvergence speed in distributed consensus and averagingSIAM Rev.2011534747772286126510.1137/110837462
TouriBNedicAOn backward product of stochastic matricesAutomatica201848814771488295039710.1016/j.automatica.2012.05.025
WangXSuHWangXChenGAn overview of coordinated control for multi-agent systems subject to input saturationPerspect. Sci.201671333910.1016/j.pisc.2015.11.022
XiaoLBoydSKimSJDistributed average consensus with least-mean-square deviationJ. Parallel Distrib. Comput.2007671334610.1016/j.jpdc.2006.08.010
QinJMaQShiYWangLRecent advances in consensus of multi-agent systems: a brief surveyIEEE Trans. Ind. Electron.20166464972498310.1109/TIE.2016.2636810
Agarwal, A., Duchi, J.C.: Distributed delayed stochastic optimization. In: Advances in Neural Information Processing Systems, pp. 873–881 (2011)
NedićAOzdaglarAPalomarDEldarYCooperative distributed multi-agentConvex Optimization in Signal Processing and Communications2010CambridgeCambridge University Press3403861241.90100
Tsianos, K.I., Lawlor, S., Rabbat, M.G.: Consensus-based distributed optimization: practical issues and applications in large-scale machine learning. In: Annual Allerton IEEE Conference on Communication, Control, and Computing, pp. 1543–1550 (2012)
RamSSNedićAVeeravalliVVDistributed stochastic subgradient projection algorithms for convex optimizationJ. Optim. Theory Appl.20101473516545273399210.1007/s10957-010-9737-7
MiettinenKMNonlinear Multiobjective Optimiation1999New YorkKluwer Academic Publishers
Wang, J., Elia, N.: Control approach to distributed optimization. In: Annual Allerton Conference on Communication, Control, and Computing, pp. 557–561 (2010)
A Nedić (1840_CR14) 2009; 54
1840_CR2
1840_CR1
Y Zhang (1840_CR28) 2014; 1
1840_CR5
1840_CR4
1840_CR3
1840_CR9
1840_CR8
I Lobel (1840_CR11) 2011; 129
1840_CR16
JC Duchi (1840_CR7) 2011; 57
Y Collette (1840_CR6) 2004
J Qin (1840_CR21) 2016; 64
KM Miettinen (1840_CR12) 1999
A Nedic (1840_CR13) 2001; 12
A Olshevsky (1840_CR20) 2011; 53
L Xiao (1840_CR27) 2007; 67
X Wang (1840_CR26) 2016; 7
R Olfati-Saber (1840_CR19) 2007; 95
KK Oh (1840_CR18) 2015; 53
1840_CR25
1840_CR24
A Nedić (1840_CR17) 2010; 55
SS Ram (1840_CR22) 2010; 147
A Nedić (1840_CR15) 2010
B Touri (1840_CR23) 2018; 48
Q Liu (1840_CR10) 2015; 60
References_xml – reference: Byungchul, K., Lavrova, O.: Optimal power flow and energy-sharing among multi-agent smart buildings in the smart grid. In: IEEE Energytech, pp. 1–5 (2013)
– reference: OlshevskyATsitsiklisJNConvergence speed in distributed consensus and averagingSIAM Rev.2011534747772286126510.1137/110837462
– reference: NedićAOzdaglarAParriloPConstrained consensus and optimization in multi-agent networksIEEE Trans. Autom. Control2010554922938265443210.1109/TAC.2010.2041686
– reference: LobelIOzdaglarAFeijerDDistributed multi-agent optimization with state-dependent communicationMath. Program.20111292255284283788210.1007/s10107-011-0467-x
– reference: Agarwal, A., Duchi, J.C.: Distributed delayed stochastic optimization. In: Advances in Neural Information Processing Systems, pp. 873–881 (2011)
– reference: XiaoLBoydSKimSJDistributed average consensus with least-mean-square deviationJ. Parallel Distrib. Comput.2007671334610.1016/j.jpdc.2006.08.010
– reference: Nedić, A., Ozdaglar, A., Parrilo, P.: Constrained consensus. arXiv preprint arXiv:0802.3922 (2008)
– reference: DuchiJCAgarwalAWainwrightMJDual averaging for distributed optimization: convergence analysis and network scalingIEEE Trans. Autom. Control2011573592606293281810.1109/TAC.2011.2161027
– reference: NedićAOzdaglarAPalomarDEldarYCooperative distributed multi-agentConvex Optimization in Signal Processing and Communications2010CambridgeCambridge University Press3403861241.90100
– reference: Khim, S.: The Frobenius–Perron theorem. Doctoral Dissertation, PhD thesis, The University of Chicago (2007)
– reference: Wang, J., Elia, N.: Control approach to distributed optimization. In: Annual Allerton Conference on Communication, Control, and Computing, pp. 557–561 (2010)
– reference: WangXSuHWangXChenGAn overview of coordinated control for multi-agent systems subject to input saturationPerspect. Sci.201671333910.1016/j.pisc.2015.11.022
– reference: Blondin, M. J., Hale, M.: An algorithm for multi-objective multi-agent optimization. In: American control conference (ACC), pp. 1489–1494. Denver, CO (2020). https://doi.org/10.23919/ACC45564.2020.9148017
– reference: NedicABertsekasDPIncremental subgradient methods for nondifferentiable optimizationSIAM J. Optim.2001121109138187058810.1137/S1052623499362111
– reference: Olfati-SaberRFaxJAMurrayRMConsensus and cooperation in networked multi-agent systemsProc. IEEE.200795121523310.1109/JPROC.2006.887293
– reference: LiuQWangJA second-order multi-agent network for bound-constrained distributed optimizationIEEE Trans. Autom. Control2015601233103325343270010.1109/TAC.2015.2416927
– reference: RamSSNedićAVeeravalliVVDistributed stochastic subgradient projection algorithms for convex optimizationJ. Optim. Theory Appl.20101473516545273399210.1007/s10957-010-9737-7
– reference: Blondel, V.D., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: Convergence in multiagent coordination, consensus, and flocking. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 2996–3000 (2005)
– reference: QinJMaQShiYWangLRecent advances in consensus of multi-agent systems: a brief surveyIEEE Trans. Ind. Electron.20166464972498310.1109/TIE.2016.2636810
– reference: Filotheou, A., Nikou, A., Dimarogonas, D.V.: Decentralized control of uncertain multi-agent systems with connectivity maintenance and collision avoidance. In: European Control Conference, pp. 8–13 (2018)
– reference: Tsianos, K.I., Lawlor, S., Rabbat, M.G.: Consensus-based distributed optimization: practical issues and applications in large-scale machine learning. In: Annual Allerton IEEE Conference on Communication, Control, and Computing, pp. 1543–1550 (2012)
– reference: TouriBNedicAOn backward product of stochastic matricesAutomatica201848814771488295039710.1016/j.automatica.2012.05.025
– reference: MiettinenKMNonlinear Multiobjective Optimiation1999New YorkKluwer Academic Publishers
– reference: Bianchi, P., Fort, G., Hachem, P., Jakubowicz, J.: Performance analysis of a distributed Robbins-Monro algorithm for sensor networks. In: European Signal Processing Conference, pp. 1030–1034 (2011)
– reference: ZhangYLouYHongYAn approximate gradient algorithm for constrained distributed convex optimizationIEEE/CAA J. Autom. Sinica20141616710.1109/JAS.2014.7004621
– reference: ColletteYSiarryPMultiobjective Optimization: Principles and Case Studies2004BerlinSpringer10.1007/978-3-662-08883-8
– reference: OhKKParkMCAhnHSA survey of multi-agent formation controlAutomatica20155342440331861810.1016/j.automatica.2014.10.022
– reference: NedićAOzdaglarADistributed subgradient methods for multi-agent optimizationIEEE Trans. Autom. Control20095414861247807010.1109/TAC.2008.2009515
– volume: 53
  start-page: 424
  year: 2015
  ident: 1840_CR18
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.10.022
– volume: 64
  start-page: 4972
  issue: 6
  year: 2016
  ident: 1840_CR21
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2636810
– volume: 53
  start-page: 747
  issue: 4
  year: 2011
  ident: 1840_CR20
  publication-title: SIAM Rev.
  doi: 10.1137/110837462
– volume-title: Nonlinear Multiobjective Optimiation
  year: 1999
  ident: 1840_CR12
– volume: 60
  start-page: 3310
  issue: 12
  year: 2015
  ident: 1840_CR10
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2015.2416927
– volume: 147
  start-page: 516
  issue: 3
  year: 2010
  ident: 1840_CR22
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9737-7
– ident: 1840_CR16
– ident: 1840_CR2
– ident: 1840_CR5
  doi: 10.1109/EnergyTech.2013.6645336
– volume-title: Multiobjective Optimization: Principles and Case Studies
  year: 2004
  ident: 1840_CR6
  doi: 10.1007/978-3-662-08883-8
– volume: 67
  start-page: 33
  issue: 1
  year: 2007
  ident: 1840_CR27
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2006.08.010
– volume: 12
  start-page: 109
  issue: 1
  year: 2001
  ident: 1840_CR13
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499362111
– ident: 1840_CR24
  doi: 10.1109/Allerton.2012.6483403
– volume: 48
  start-page: 1477
  issue: 8
  year: 2018
  ident: 1840_CR23
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.05.025
– ident: 1840_CR4
– ident: 1840_CR8
  doi: 10.23919/ECC.2018.8550343
– ident: 1840_CR25
  doi: 10.1109/ALLERTON.2010.5706956
– start-page: 340
  volume-title: Convex Optimization in Signal Processing and Communications
  year: 2010
  ident: 1840_CR15
– ident: 1840_CR3
  doi: 10.23919/ACC45564.2020.9148017
– volume: 7
  start-page: 133
  year: 2016
  ident: 1840_CR26
  publication-title: Perspect. Sci.
  doi: 10.1016/j.pisc.2015.11.022
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  ident: 1840_CR14
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2009515
– volume: 1
  start-page: 61
  year: 2014
  ident: 1840_CR28
  publication-title: IEEE/CAA J. Autom. Sinica
  doi: 10.1109/JAS.2014.7004621
– volume: 95
  start-page: 215
  issue: 1
  year: 2007
  ident: 1840_CR19
  publication-title: Proc. IEEE.
  doi: 10.1109/JPROC.2006.887293
– ident: 1840_CR1
– volume: 55
  start-page: 922
  issue: 4
  year: 2010
  ident: 1840_CR17
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2010.2041686
– ident: 1840_CR9
– volume: 129
  start-page: 255
  issue: 2
  year: 2011
  ident: 1840_CR11
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0467-x
– volume: 57
  start-page: 592
  issue: 3
  year: 2011
  ident: 1840_CR7
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2011.2161027
SSID ssj0009874
Score 2.3202493
Snippet During the past few decades, multi-agent optimization problems have drawn increased attention from the research community. When multiple objective functions...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 458
SubjectTerms Algorithms
Applications of Mathematics
Calculus of Variations and Optimal Control; Optimization
Convergence
Engineering
Mathematics
Mathematics and Statistics
Multiagent systems
Multiple objective analysis
Operations Research/Decision Theory
Optimization
Optimization algorithms
Pareto optimization
Pareto optimum
Priorities
Theory of Computation
Weight
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBN6JQUAY2sJTESWyPFVCxUBAvdYscP6CoD9QGhv567NRpCgIkGCM7lvOdcw_57juAY-X7MqORCVNlplAUCImoZgxhFfKYY534nBfNJki7TTsdduOKwsZltnt5JVlo6rliNxYTZFMKfBuWoMkiLBlzR23Dhtu7x4pql5bcyyHCIWauVOb7NT6bo8rH_HItWlib1vr_9rkBa8679JrT47AJC2qwBatznIPm6WpG1DrehqTpnSuXoNmdKOkVBblomL1MFaF3bVRK39Vqes3e03DUzZ_7O_DQurg_u0SulQISOCE5SjhOWCxYgKUJG7mWRj9mWhJu6cZIlEnFE0mxCLkOSBYRpS2hL-WhYhhrLvAu1AbDgdoDLxOYUaoMyJRGIg6pTzXVWisiqIhZUIegRDQVjmfctrvopRVDskUoNQilBULppA4ns3depywbv85ulIJK3R83TkMTUZvPM_5SHU5LwVTDP6-2_7fpB7ASFrK1OY8NqOWjN3UIy-I9745HR8VJ_ABVrdgZ
  priority: 102
  providerName: Springer Nature
Title A Decentralized Multi-objective Optimization Algorithm
URI https://link.springer.com/article/10.1007/s10957-021-01840-z
https://www.proquest.com/docview/2523913102
Volume 189
WOSCitedRecordID wos000627664300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6Vx4EeoOWhLt2iHHorFomdxPap2i6gStUuEZQWuESOHy0IdoHd9rC_vuOsQ1okuPQykhXbsTz2eMae-QbgvY1jU4kUzVRTWZIm2hDhpCTMUpUp5vJYqTrZBB8OxdmZLMKF2yS4VTYysRbUZqz9HfkeRYtJJqiM0I-3d8RnjfKvqyGFxgIsoWaTeJeuAS1a0F3RoDBTwrB5CJoJoXMy48Q7KMTeyCGzfw-mVtt89EBanzuHa_874lewGjTOqDdfIq_hhR2tw8u_cAixNHgAb51sQN6L9m1w2rycWRPVQbpkXF3NhWN0hGLmJsRvRr3rH_jT6c-bTTg9PPja_0xCegWiWc6nJFcsl5nGIRo0JZUzKDMrZ7jyEGQ8rYxVuRFMU-USXqXcOg_yKxS1kjGnNNuCxdF4ZN9AVGkmhbA43UKkOqMiFk445yzXQmcy6UDSzG2pA_a4T4FxXbaoyZ4fJfKjrPlRzjrw4aHN7Rx549na3YYJZdiFk7LlQAd2Gza2n5_ubfv53t7CCq1Xjvd77MLi9P6XfQfL-vf0cnK_Awv8-_kOLH06GBbHWPrCCdJB3PeUHtW08JSfIC2yC6THJ9_-AI5t6Xk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VggQc2BGFAjnACSwSZ3MOCFWUqghaOBSpt-B4YRFdaAuIfhTfiJ0mDSDBrQeOUZJRnDcZ-8UzbwD2hGnyiDiKpvJIIMdiHBEZBMgWmLrUlp5Jadxswq_XSbMZXOfgI62F0WmVaUyMAzXvMP2P_AgrxhRYajGCT7rPSHeN0ruraQuNkVtciPc3Rdn6x-dlhe8-xpWzxmkVJV0FELM9f4A8anuBy5QtrhgUlVyFikhyn2rlLd-JuKAeJzbDVFp-5PhCam1bQrFQ3F9SZiu7UzDtaGUxnSqIrzORX5KqPmNkq8dNinSSUr3A9ZFOiDA1qULD7xNhtrr9sSEbz3OVxf_2hpZgIVlRG6XRJ7AMOdFegfkvOovqqDYWp-2vglcyyiJJSn0YCm7ERcioEz2Ogr9xpcJoK6lPNUpPd2qQg_vWGtxMZBjrkG932mIDjIjZASFCwUuIw1xMTCKJlFL4jDA3sApgpViGLNFW1y0-nsJMFVrjHyr8wxj_cFiAg_E93ZGyyJ9XF1PQwyTK9MMM8QIcpm6Tnf7d2ubf1nZhttqoXYaX5_WLLZjDsdfqHM8i5Ae9F7ENM-x18NDv7cT-b8DtpN3pE88dP2Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0BRQgObSkgllKaAz21FomdxPYBVatuV0W0yx5AQr0Exx8tCHaBXVqxP62_ruOsQ0qlcuPQY5RkFGeeZzz2zBuAbRvHphQphqmmtCRNtCHCSUmYpSpTzOWxUlWzCd7rieNj2Z-BX3UtjE-rrG1iZajNUPs98h2KEZNMcDFCd1xIi-h3uu8vr4jvIOVPWut2GlOI7Nvbnxi-jXb3OqjrN5R2Px5--ERChwGiWc7HJFcsl5lGuQajKeUMmo3SGa48CxdPS2NVbgTTVLmElym3zvPcCkWtZMwpzVDuLDzhGGP6dMJ-9rUh_BU1AzQlDD89FOyEsj2ZceKTI2IfYJHJfafYrHT_OpytfF732f_8t57D07DSjtrTqbEMM3bwApb-4F_Eqy93pLWjFcjbUceGZNXTiTVRVZxMhuXZ1ClEB2heL0LdatQ-_4aDHH-_WIWjRxnGGswNhgO7DlGpmRTCoqqFSHVGRSyccM5ZroXOZNKCpNZroQPnum_9cV40bNEeCwVioaiwUExa8Pbuncsp48iDT2_WACiC9RkVjfZb8K6GUHP739I2Hpb2GhYQRcXnvd7-S1ikFYB96ucmzI2vb-wrmNc_xqej661qKkRw8tho-g2IJkhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Decentralized+Multi-objective+Optimization+Algorithm&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Blondin%2C+Maude+J&rft.au=Hale%2C+Matthew&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=189&rft.issue=2&rft.spage=458&rft.epage=485&rft_id=info:doi/10.1007%2Fs10957-021-01840-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon