Combined heat and power economic emission dispatch using improved bare-bone multi-objective particle swarm optimization

An improved bare-bone multi-objective particle swarm optimization (IBBMOPSO) is proposed to solve the combined heat and power economic emission dispatch problems. To conquer the population diversity deficiency and premature convergence of bare-bone particle swarm optimization, IBBMOPSO integrates fo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy (Oxford) Ročník 244; s. 123108
Hlavní autoři: Xiong, Guojiang, Shuai, Maohang, Hu, Xiao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.04.2022
Elsevier BV
Témata:
ISSN:0360-5442, 1873-6785
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An improved bare-bone multi-objective particle swarm optimization (IBBMOPSO) is proposed to solve the combined heat and power economic emission dispatch problems. To conquer the population diversity deficiency and premature convergence of bare-bone particle swarm optimization, IBBMOPSO integrates four improved strategies, that is, (i) a non-linear adaptive particle updating strategy is presented to automatically tune the weights of the personal best position (pbest) and the global best position (gbest), and to shrink the standard deviation for generating new particles; (ii) an improved strategy by comparing the sparsity of the pbest and the target particle instead of the domination is proposed to update the pbest; (iii) an improved strategy by selecting a random Pareto optimal solution from a newly filtered subset of the external archive is designed to determine the gbest for each target particle; and (iv) a modified strategy by combining the slope and the crowding distance is presented to determine the Pareto optimal frontier. IBBMOPSO is firstly validated by nine multi-objective benchmark test functions. Then, it is then applied to three test systems and the simulation results demonstrate that IBBMOPSO can achieve higher-quality dispatching schemes with lower generating fuel cost and less pollutant gas emission compared with other algorithms. •An improved bare-bone multi-objective particle swarm optimization algorithm is proposed.•A nonlinear adaptive particle updating strategy based on exponential function is proposed.•Improved strategies to update the pbest and gbest are proposed.•The slope method and crowding distance method are combined to determine the POF.•Benchmark test functions and three CHPEED problems are used to verify the performance.
AbstractList An improved bare-bone multi-objective particle swarm optimization (IBBMOPSO) is proposed to solve the combined heat and power economic emission dispatch problems. To conquer the population diversity deficiency and premature convergence of bare-bone particle swarm optimization, IBBMOPSO integrates four improved strategies, that is, (i) a non-linear adaptive particle updating strategy is presented to automatically tune the weights of the personal best position (pbest) and the global best position (gbest), and to shrink the standard deviation for generating new particles; (ii) an improved strategy by comparing the sparsity of the pbest and the target particle instead of the domination is proposed to update the pbest; (iii) an improved strategy by selecting a random Pareto optimal solution from a newly filtered subset of the external archive is designed to determine the gbest for each target particle; and (iv) a modified strategy by combining the slope and the crowding distance is presented to determine the Pareto optimal frontier. IBBMOPSO is firstly validated by nine multi-objective benchmark test functions. Then, it is then applied to three test systems and the simulation results demonstrate that IBBMOPSO can achieve higher-quality dispatching schemes with lower generating fuel cost and less pollutant gas emission compared with other algorithms.
An improved bare-bone multi-objective particle swarm optimization (IBBMOPSO) is proposed to solve the combined heat and power economic emission dispatch problems. To conquer the population diversity deficiency and premature convergence of bare-bone particle swarm optimization, IBBMOPSO integrates four improved strategies, that is, (i) a non-linear adaptive particle updating strategy is presented to automatically tune the weights of the personal best position (pbest) and the global best position (gbest), and to shrink the standard deviation for generating new particles; (ii) an improved strategy by comparing the sparsity of the pbest and the target particle instead of the domination is proposed to update the pbest; (iii) an improved strategy by selecting a random Pareto optimal solution from a newly filtered subset of the external archive is designed to determine the gbest for each target particle; and (iv) a modified strategy by combining the slope and the crowding distance is presented to determine the Pareto optimal frontier. IBBMOPSO is firstly validated by nine multi-objective benchmark test functions. Then, it is then applied to three test systems and the simulation results demonstrate that IBBMOPSO can achieve higher-quality dispatching schemes with lower generating fuel cost and less pollutant gas emission compared with other algorithms. •An improved bare-bone multi-objective particle swarm optimization algorithm is proposed.•A nonlinear adaptive particle updating strategy based on exponential function is proposed.•Improved strategies to update the pbest and gbest are proposed.•The slope method and crowding distance method are combined to determine the POF.•Benchmark test functions and three CHPEED problems are used to verify the performance.
ArticleNumber 123108
Author Xiong, Guojiang
Shuai, Maohang
Hu, Xiao
Author_xml – sequence: 1
  givenname: Guojiang
  orcidid: 0000-0002-8913-7315
  surname: Xiong
  fullname: Xiong, Guojiang
  email: gjxiongee@foxmail.com
– sequence: 2
  givenname: Maohang
  surname: Shuai
  fullname: Shuai, Maohang
– sequence: 3
  givenname: Xiao
  orcidid: 0000-0001-5251-8651
  surname: Hu
  fullname: Hu, Xiao
BookMark eNqFUctu1DAUtVArMW35AxaW2LDJYDsvhwUSGpWHVIlNu7Zs56a9UWIH25lR-Xo8hFUXsLqbc849jyty4bwDQt5ytueMNx_GPTgIj897wYTYc1FyJl-RHZdtWTStrC_IjpUNK-qqEq_JVYwjY6yWXbcjp4OfDTro6RPoRLXr6eJPEChY7_yMlsKMMaJ3tMe46GSf6BrRPVKcl-CPmWh0gMJkR3Rep4SFNyPYhEegiw4J7QQ0nnSYqV8SzvhLp6x2Qy4HPUV48_dek4cvt_eHb8Xdj6_fD5_vCls2bSoazXnDO2MGa3k3WAH1ILWoayM7WUqjjeyZ6ZpqaFstc762NQwktJ3hsue6vCbvN91s9ucKMakcx8I0aQd-jUo0-U_FBeMZ-u4FdPRrcNldRlWiq3JnZ9THDWWDjzHAoCymP5FS0DgpztR5EzWqbRN13kRtm2Ry9YK8BJx1eP4f7dNGg9zUESGoaBGchR5Drlr1Hv8t8Bsgeqxr
CitedBy_id crossref_primary_10_1016_j_apenergy_2022_119969
crossref_primary_10_1007_s00500_022_07297_0
crossref_primary_10_3390_electronics13204086
crossref_primary_10_1007_s10489_023_05180_5
crossref_primary_10_1016_j_egyr_2022_06_054
crossref_primary_10_3390_en15228693
crossref_primary_10_1016_j_apenergy_2023_121890
crossref_primary_10_1016_j_ins_2022_07_148
crossref_primary_10_1177_01445987241235419
crossref_primary_10_1016_j_energy_2023_128901
crossref_primary_10_3390_su14063173
crossref_primary_10_1016_j_asoc_2023_111106
crossref_primary_10_1016_j_eswa_2025_127375
crossref_primary_10_1016_j_asoc_2024_111703
crossref_primary_10_1016_j_energy_2023_129811
crossref_primary_10_1016_j_energy_2025_137893
crossref_primary_10_1016_j_ijepes_2023_109586
crossref_primary_10_1016_j_swevo_2025_101896
crossref_primary_10_3390_a17070313
crossref_primary_10_3390_electronics13081437
crossref_primary_10_3390_fractalfract8060350
crossref_primary_10_1016_j_cep_2023_109561
crossref_primary_10_1016_j_renene_2023_04_003
crossref_primary_10_1088_1361_6501_ac8367
crossref_primary_10_1155_2023_3788453
crossref_primary_10_3390_electronics12122742
crossref_primary_10_1016_j_rser_2025_115540
crossref_primary_10_1016_j_energy_2023_127792
crossref_primary_10_3390_en15249489
crossref_primary_10_1016_j_knosys_2022_109773
crossref_primary_10_1016_j_energy_2022_124511
crossref_primary_10_1016_j_energy_2023_127703
crossref_primary_10_3390_en16093753
crossref_primary_10_1016_j_applthermaleng_2024_122781
crossref_primary_10_1016_j_egyr_2023_05_013
crossref_primary_10_1109_TPWRS_2024_3371833
crossref_primary_10_32604_cmc_2023_038300
crossref_primary_10_1016_j_energy_2022_124376
crossref_primary_10_1007_s42235_024_00504_8
crossref_primary_10_1016_j_eswa_2023_120298
crossref_primary_10_1007_s40747_023_01128_x
crossref_primary_10_1016_j_energy_2023_129526
crossref_primary_10_1016_j_energy_2022_124857
crossref_primary_10_3390_electronics11060909
Cites_doi 10.1016/j.ijepes.2016.03.004
10.1016/j.enconman.2015.09.003
10.1016/j.energy.2013.04.066
10.1016/j.asoc.2016.12.046
10.1016/j.energy.2018.07.200
10.1016/j.scs.2021.102790
10.1016/j.asoc.2021.107088
10.1016/j.energy.2017.11.124
10.1016/j.apenergy.2015.09.020
10.1016/j.enconman.2021.113947
10.3390/pr8040441
10.1016/j.enconman.2014.12.029
10.1016/j.enconman.2021.114406
10.1016/j.rser.2017.06.111
10.1016/j.epsr.2006.11.012
10.1093/ce/zkaa031
10.1063/1.5048833
10.1016/j.enconman.2016.09.085
10.1016/j.rser.2017.06.024
10.1016/j.knosys.2020.106619
10.1109/ACCESS.2020.2965725
10.1016/j.knosys.2020.106463
10.1016/j.energy.2019.01.155
10.1109/59.544642
10.1016/j.asoc.2020.106158
10.1016/j.apenergy.2020.114785
10.1016/j.epsr.2012.08.005
10.1016/j.ijepes.2012.10.012
10.1016/j.asoc.2018.06.034
10.1016/j.applthermaleng.2015.12.136
10.1109/ACCESS.2020.2963887
10.1016/j.ijepes.2016.03.016
10.1109/59.336125
10.1016/j.ijepes.2013.04.014
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Apr 1, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 1, 2022
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2022.123108
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2022_123108
S0360544222000111
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-6a11619bbfcc19fc2e5f8a255b89838bab8d0b964f77a854477b0e8e79b18d1a3
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805144900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sat Sep 27 19:55:18 EDT 2025
Wed Aug 13 09:05:07 EDT 2025
Sat Nov 29 07:20:27 EST 2025
Tue Nov 18 20:56:35 EST 2025
Fri Feb 23 02:38:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Combined heat and power system
Economic environment dispatch
Multi-objective optimization
Particle swarm optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-6a11619bbfcc19fc2e5f8a255b89838bab8d0b964f77a854477b0e8e79b18d1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5251-8651
0000-0002-8913-7315
PQID 2642940051
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2636741201
proquest_journals_2642940051
crossref_citationtrail_10_1016_j_energy_2022_123108
crossref_primary_10_1016_j_energy_2022_123108
elsevier_sciencedirect_doi_10_1016_j_energy_2022_123108
PublicationCentury 2000
PublicationDate 2022-04-01
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Basu (bib7) 2013; 53
Yuan, Liu, Bucknall (bib34) 2021; 243
Liu, Luo (bib39) 2010; 30
Rezaei, Mohammad, Fuzhan (bib32) 2021; 5
Rooijers, Van Amerongen (bib3) 1994; 9
Nazari-Heris, Mohammadi-Ivatloo, Gharehpetian (bib5) 2018; 81
Tian, Zhang, Su (bib42) 2021
Sun, Deng, Li (bib11) 2020; 90
Kennedy (bib21) 2003
Nazari-Heris, Fakhim-Babaei, Mohammadi-Ivatloo (bib19) Dec. 2017
Zitzler, Thiele, Laumanns (bib41) 2003; 7
Sundaram (bib13) 2020; 8
Murugan, Mohan, Rajan, Sundari, Arunachalam (bib9) 2018; 72
Hemmati (bib36) 2021; 69
Khan (bib37) 2015; 92
Nasir (bib29) 2021; 102
Li, Wang, Zhao (bib8) 2018; 162
Meng, Mei, Yin, Peng, Guo (bib25) 2015; 105
Chen, Li, Xu (bib14) 2020; 208
Anand, Narang, Dhillon (bib16) 2019; 172
Shi, Yan, Wu (bib10) 2013; 56
Neyestani, Hatami, Hesari (bib18) 2019; 11
Mohammadi-Ivatloo, Moradi-Dalvand, Rabiee (bib15) 2013; 95
Zhang, Zhang, Li (bib38) 2017; 45
Reddy, Vaisakh (bib26) 2013; 46
Prashanth (bib35) 2021
Abdel-Basset, Mohamed, Mirjalili (bib40) 2021; 212
ali Shaabani, Seifi, Kouhanjani (bib12) 2017; 141
Ghorbani (bib24) 2016; 82
Narang, Sharma, Dhillon (bib23) 2017; 52
Kazda, Li (bib1) 2020; 8
Morawski (bib33) 2021; 234
Mahdi, Vasant, Kallimani, Watada, Fai, Abdullah-Al-Wadud (bib4) 2018; 81
Guo, Henwood, Ooijen (bib2) 1996; 11
Jordehi (bib20) 2016; 129
Kim, Kim (bib27) 2020; 265
Dong, Wang (bib28) 2020; 8
Haghrah, Nazari-Heris, Mohammadi-Ivatloo (bib22) 2016; 99
Muwaffaq (bib30) 2019; vol. 200
Wang, Yin, Abdollahi, Lahdelma, Jiao (bib31) 2015; 159
Wang, Singh (bib17) 2007; 77
Singh, Dhillon (bib6) 2016; 82
Khan (10.1016/j.energy.2022.123108_bib37) 2015; 92
Abdel-Basset (10.1016/j.energy.2022.123108_bib40) 2021; 212
Nasir (10.1016/j.energy.2022.123108_bib29) 2021; 102
Chen (10.1016/j.energy.2022.123108_bib14) 2020; 208
Ghorbani (10.1016/j.energy.2022.123108_bib24) 2016; 82
Muwaffaq (10.1016/j.energy.2022.123108_bib30) 2019; vol. 200
Rezaei (10.1016/j.energy.2022.123108_bib32) 2021; 5
Murugan (10.1016/j.energy.2022.123108_bib9) 2018; 72
Basu (10.1016/j.energy.2022.123108_bib7) 2013; 53
Shi (10.1016/j.energy.2022.123108_bib10) 2013; 56
Reddy (10.1016/j.energy.2022.123108_bib26) 2013; 46
Tian (10.1016/j.energy.2022.123108_bib42) 2021
Rooijers (10.1016/j.energy.2022.123108_bib3) 1994; 9
Wang (10.1016/j.energy.2022.123108_bib31) 2015; 159
Sun (10.1016/j.energy.2022.123108_bib11) 2020; 90
Mohammadi-Ivatloo (10.1016/j.energy.2022.123108_bib15) 2013; 95
Jordehi (10.1016/j.energy.2022.123108_bib20) 2016; 129
Zhang (10.1016/j.energy.2022.123108_bib38) 2017; 45
Yuan (10.1016/j.energy.2022.123108_bib34) 2021; 243
Kennedy (10.1016/j.energy.2022.123108_bib21) 2003
Guo (10.1016/j.energy.2022.123108_bib2) 1996; 11
Anand (10.1016/j.energy.2022.123108_bib16) 2019; 172
Meng (10.1016/j.energy.2022.123108_bib25) 2015; 105
Dong (10.1016/j.energy.2022.123108_bib28) 2020; 8
Nazari-Heris (10.1016/j.energy.2022.123108_bib5) 2018; 81
Liu (10.1016/j.energy.2022.123108_bib39) 2010; 30
Zitzler (10.1016/j.energy.2022.123108_bib41) 2003; 7
Mahdi (10.1016/j.energy.2022.123108_bib4) 2018; 81
Nazari-Heris (10.1016/j.energy.2022.123108_bib19) 2017
Morawski (10.1016/j.energy.2022.123108_bib33) 2021; 234
ali Shaabani (10.1016/j.energy.2022.123108_bib12) 2017; 141
Singh (10.1016/j.energy.2022.123108_bib6) 2016; 82
Neyestani (10.1016/j.energy.2022.123108_bib18) 2019; 11
Li (10.1016/j.energy.2022.123108_bib8) 2018; 162
Wang (10.1016/j.energy.2022.123108_bib17) 2007; 77
Hemmati (10.1016/j.energy.2022.123108_bib36) 2021; 69
Kazda (10.1016/j.energy.2022.123108_bib1) 2020; 8
Sundaram (10.1016/j.energy.2022.123108_bib13) 2020; 8
Narang (10.1016/j.energy.2022.123108_bib23) 2017; 52
Kim (10.1016/j.energy.2022.123108_bib27) 2020; 265
Prashanth (10.1016/j.energy.2022.123108_bib35) 2021
Haghrah (10.1016/j.energy.2022.123108_bib22) 2016; 99
References_xml – volume: 234
  start-page: 113947
  year: 2021
  ident: bib33
  article-title: On the suitable superstructure thermoeconomic optimization of a waste heat recovery system for a Brazilian diesel engine power plant
  publication-title: Energy Convers Manag
– volume: 77
  start-page: 1654
  year: 2007
  end-page: 1664
  ident: bib17
  article-title: Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm
  publication-title: Electric Power Sys
– volume: 102
  start-page: 107088
  year: 2021
  ident: bib29
  article-title: A combination of FA and SRPSO algorithm for combined heat and power economic dispatch
  publication-title: Appl Soft Comput
– volume: 99
  start-page: 465
  year: 2016
  end-page: 475
  ident: bib22
  article-title: Solving combined heat and power economic dispatch problem using real coded genetic algorithm with improved Mühlenbein mutation
  publication-title: Appl Therm Eng
– volume: 81
  start-page: 2128
  year: 2018
  end-page: 2143
  ident: bib5
  article-title: A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives
  publication-title: Renew Sustain Energy Rev
– volume: 265
  start-page: 114785
  year: 2020
  ident: bib27
  article-title: Neural-network-based optimization for economic dispatch of combined heat and power systems
  publication-title: Appl Energy
– volume: 5
  start-page: 44
  year: 2021
  end-page: 56
  ident: bib32
  article-title: Biomass-fuelled combined heat and power: integration in district heating and thermal-energy storage
  publication-title: Clean Energy
– volume: 69
  start-page: 102790
  year: 2021
  ident: bib36
  article-title: Economic-environmental analysis of combined heat and power-based reconfigurable microgrid integrated with multiple energy storage and demand response program
  publication-title: Sustain Cities Soc
– year: 2021
  ident: bib42
  article-title: Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization
  publication-title: IEEE Trans Cybern
– start-page: 1
  year: Dec. 2017
  end-page: 9
  ident: bib19
  article-title: A novel hybrid harmony search and particle swarm optimization method for solving combined heat and power economic dispatch
  publication-title: Smart Grid Conference. (SGC)
– volume: 8
  start-page: 16584
  year: 2020
  end-page: 16594
  ident: bib28
  article-title: New optimization algorithm inspired by kernel tricks for the economic emission dispatch problem with valve point
  publication-title: IEEE Access
– volume: 82
  start-page: 339
  year: 2016
  end-page: 353
  ident: bib6
  article-title: Multiobjective thermal power dispatch using opposition-based greedy heuristic search
  publication-title: Int J Electr Power Energy Syst
– volume: 72
  start-page: 189
  year: 2018
  end-page: 217
  ident: bib9
  article-title: Hybridizing bat algorithm with artificial bee colony for combined heat and power economic dispatch
  publication-title: Appl Soft Comput
– volume: 90
  start-page: 106158
  year: 2020
  ident: bib11
  article-title: Indicator & crowding distance-based evolutionary algorithm for combined heat and power economic emission dispatch
  publication-title: Appl Soft Comp J
– volume: vol. 200
  start-page: 112090
  year: 2019
  ident: bib30
  publication-title: Microgrid combined power-heat economic-emission dispatch considering stochastic renewable energy resources, power purchase and emission tax
– volume: 141
  start-page: 1892
  year: 2017
  end-page: 1904
  ident: bib12
  article-title: Stochastic multi-objective optimization of combined heat and power economic/emission dispatch
  publication-title: Energy
– volume: 162
  start-page: 237
  year: 2018
  end-page: 254
  ident: bib8
  article-title: A two-stage approach for combined heat and power economic emission dispatch: combining multi-objective optimization with integrated decision making
  publication-title: Energy
– volume: 82
  start-page: 58
  year: 2016
  end-page: 66
  ident: bib24
  article-title: Combined heat and power economic dispatch using exchange market algorithm
  publication-title: Int J Electr Power Energy Syst
– volume: 159
  start-page: 401
  year: 2015
  end-page: 421
  ident: bib31
  article-title: Modelling and optimization of CHP based district heating system with renewable energy production and energy storage
  publication-title: Appl Energy
– volume: 212
  start-page: 106619
  year: 2021
  ident: bib40
  article-title: A novel whale optimization algorithm integrated with Nelder–Mead simplex for multi-objective optimization problems
  publication-title: Knowl Base Syst
– volume: 30
  start-page: 105
  year: 2010
  end-page: 111
  ident: bib39
  article-title: Environmental economic power generation dispatch using multi-objective random black hole particle swarm optimization algorithm
  publication-title: Proc Chin Soc Electr Eng
– volume: 8
  start-page: 441
  year: 2020
  ident: bib1
  article-title: A critical review of the modeling and optimization of combined heat and power dispatch
  publication-title: Processes
– volume: 45
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib38
  article-title: Research on power system environmental economic dispatch based on multi-objective particle swarm algorithm
  publication-title: Power System Protection and Control
– volume: 52
  start-page: 190
  year: 2017
  end-page: 202
  ident: bib23
  article-title: Combined heat and power economic dispatch using integrated civilized swarm optimization and Powell's pattern search method
  publication-title: Appl Soft Comput
– volume: 95
  start-page: 9
  year: 2013
  end-page: 18
  ident: bib15
  article-title: Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients
  publication-title: Electric Power Sys
– volume: 243
  start-page: 114406
  year: 2021
  ident: bib34
  article-title: Optimised MOPSO with the grey relationship analysis for the multi-criteria objective energy dispatch of a novel SOFC-solar hybrid CCHP residential system in the UK
  publication-title: Energy Convers Manag
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: bib41
  article-title: Performance assessment of multiobjective optimizers:an analysis and review
  publication-title: IEEE Trans Power Syst
– volume: 53
  start-page: 135
  year: 2013
  end-page: 141
  ident: bib7
  article-title: Combined heat and power economic emission dispatch using nondominated sorting genetic algorithm-II
  publication-title: Int J Electr Power Energy Syst
– volume: 92
  start-page: 82
  year: 2015
  end-page: 91
  ident: bib37
  article-title: Combined emission economic dispatch of power system including solar photo voltaic generation
  publication-title: Energy Convers Manag
– volume: 56
  start-page: 135e43
  year: 2013
  ident: bib10
  article-title: Multi-objective optimization for combined heat and power economic dispatch with power transmission loss and emission reduction
  publication-title: Energy
– start-page: 80
  year: 2003
  end-page: 87
  ident: bib21
  article-title: Bare bones particle swarms
  publication-title: Proceedings of the IEEE swarm intelligence symposium
– volume: 46
  start-page: 342
  year: 2013
  end-page: 352
  ident: bib26
  article-title: Shuffled differential evolution for economic dispatch with valve point loading effects
  publication-title: Int J Electr Power Energy Syst
– volume: 11
  start-page: 1778
  year: 1996
  end-page: 1784
  ident: bib2
  article-title: An algorithm for combined heat and power economic dispatch
  publication-title: IEEE Trans Power Syst
– volume: 81
  start-page: 3006
  year: 2018
  end-page: 3020
  ident: bib4
  article-title: A holistic review on optimization strategies for combined economic emission dispatch problem
  publication-title: Renew Sustain Energy Rev
– volume: 8
  start-page: 13748
  year: 2020
  end-page: 13768
  ident: bib13
  article-title: Combined heat and power economic emission dispatch using hybrid NSGA II-MOPSO algorithm incorporating an effective constraint handling mechanism
  publication-title: IEEE Access
– volume: 208
  start-page: 106463
  year: 2020
  ident: bib14
  article-title: Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem
  publication-title: Knowl Base Syst
– volume: 11
  year: 2019
  ident: bib18
  article-title: Combined heat and power economic dispatch problem using advanced modified particle swarm optimization
  publication-title: J Renew Sustain Energy
– start-page: 705
  year: 2021
  end-page: 728
  ident: bib35
  article-title: Comparative analysis of optimal scheduling of multi-objective non-convex combined heat and power units using AI techniques
  publication-title: Metaheuristic and evolutionary computation: algorithms and applications
– volume: 129
  start-page: 262
  year: 2016
  end-page: 274
  ident: bib20
  article-title: Time varying acceleration coefficients particle swarm optimization(TVACPSO): a new optimisation algorithm for estimating parameters of PV cells and modules
  publication-title: Energy Convers Manag
– volume: 9
  start-page: 1392
  year: 1994
  end-page: 1398
  ident: bib3
  article-title: Static economic dispatch for co-generation systems
  publication-title: IEEE Trans Power Syst
– volume: 172
  start-page: 794
  year: 2019
  end-page: 807
  ident: bib16
  article-title: Multi-objective combined heat and power unit commitment using particle swarm optimization
  publication-title: Energy
– volume: 105
  start-page: 1303
  year: 2015
  end-page: 1317
  ident: bib25
  article-title: Crisscross optimization algorithm for solving combined heat and power economic dispatch problem
  publication-title: Energy Convers Manag
– volume: 82
  start-page: 58
  year: 2016
  ident: 10.1016/j.energy.2022.123108_bib24
  article-title: Combined heat and power economic dispatch using exchange market algorithm
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2016.03.004
– volume: 105
  start-page: 1303
  year: 2015
  ident: 10.1016/j.energy.2022.123108_bib25
  article-title: Crisscross optimization algorithm for solving combined heat and power economic dispatch problem
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.09.003
– volume: 56
  start-page: 135e43
  year: 2013
  ident: 10.1016/j.energy.2022.123108_bib10
  article-title: Multi-objective optimization for combined heat and power economic dispatch with power transmission loss and emission reduction
  publication-title: Energy
  doi: 10.1016/j.energy.2013.04.066
– volume: 52
  start-page: 190
  year: 2017
  ident: 10.1016/j.energy.2022.123108_bib23
  article-title: Combined heat and power economic dispatch using integrated civilized swarm optimization and Powell's pattern search method
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.12.046
– volume: 45
  start-page: 1
  issue: 10
  year: 2017
  ident: 10.1016/j.energy.2022.123108_bib38
  article-title: Research on power system environmental economic dispatch based on multi-objective particle swarm algorithm
  publication-title: Power System Protection and Control
– volume: 30
  start-page: 105
  issue: 34
  year: 2010
  ident: 10.1016/j.energy.2022.123108_bib39
  article-title: Environmental economic power generation dispatch using multi-objective random black hole particle swarm optimization algorithm
  publication-title: Proc Chin Soc Electr Eng
– volume: 162
  start-page: 237
  year: 2018
  ident: 10.1016/j.energy.2022.123108_bib8
  article-title: A two-stage approach for combined heat and power economic emission dispatch: combining multi-objective optimization with integrated decision making
  publication-title: Energy
  doi: 10.1016/j.energy.2018.07.200
– volume: 69
  start-page: 102790
  year: 2021
  ident: 10.1016/j.energy.2022.123108_bib36
  article-title: Economic-environmental analysis of combined heat and power-based reconfigurable microgrid integrated with multiple energy storage and demand response program
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2021.102790
– volume: 102
  start-page: 107088
  year: 2021
  ident: 10.1016/j.energy.2022.123108_bib29
  article-title: A combination of FA and SRPSO algorithm for combined heat and power economic dispatch
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107088
– volume: 141
  start-page: 1892
  year: 2017
  ident: 10.1016/j.energy.2022.123108_bib12
  article-title: Stochastic multi-objective optimization of combined heat and power economic/emission dispatch
  publication-title: Energy
  doi: 10.1016/j.energy.2017.11.124
– volume: 159
  start-page: 401
  year: 2015
  ident: 10.1016/j.energy.2022.123108_bib31
  article-title: Modelling and optimization of CHP based district heating system with renewable energy production and energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.09.020
– volume: 234
  start-page: 113947
  year: 2021
  ident: 10.1016/j.energy.2022.123108_bib33
  article-title: On the suitable superstructure thermoeconomic optimization of a waste heat recovery system for a Brazilian diesel engine power plant
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.113947
– volume: 8
  start-page: 441
  issue: 4
  year: 2020
  ident: 10.1016/j.energy.2022.123108_bib1
  article-title: A critical review of the modeling and optimization of combined heat and power dispatch
  publication-title: Processes
  doi: 10.3390/pr8040441
– volume: 92
  start-page: 82
  year: 2015
  ident: 10.1016/j.energy.2022.123108_bib37
  article-title: Combined emission economic dispatch of power system including solar photo voltaic generation
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.12.029
– volume: 243
  start-page: 114406
  year: 2021
  ident: 10.1016/j.energy.2022.123108_bib34
  article-title: Optimised MOPSO with the grey relationship analysis for the multi-criteria objective energy dispatch of a novel SOFC-solar hybrid CCHP residential system in the UK
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114406
– volume: 81
  start-page: 3006
  year: 2018
  ident: 10.1016/j.energy.2022.123108_bib4
  article-title: A holistic review on optimization strategies for combined economic emission dispatch problem
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.06.111
– volume: 77
  start-page: 1654
  issue: 12
  year: 2007
  ident: 10.1016/j.energy.2022.123108_bib17
  article-title: Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm
  publication-title: Electric Power Sys
  doi: 10.1016/j.epsr.2006.11.012
– volume: 5
  start-page: 44
  issue: 1
  year: 2021
  ident: 10.1016/j.energy.2022.123108_bib32
  article-title: Biomass-fuelled combined heat and power: integration in district heating and thermal-energy storage
  publication-title: Clean Energy
  doi: 10.1093/ce/zkaa031
– volume: 11
  issue: 1
  year: 2019
  ident: 10.1016/j.energy.2022.123108_bib18
  article-title: Combined heat and power economic dispatch problem using advanced modified particle swarm optimization
  publication-title: J Renew Sustain Energy
  doi: 10.1063/1.5048833
– volume: 129
  start-page: 262
  year: 2016
  ident: 10.1016/j.energy.2022.123108_bib20
  article-title: Time varying acceleration coefficients particle swarm optimization(TVACPSO): a new optimisation algorithm for estimating parameters of PV cells and modules
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.09.085
– volume: 81
  start-page: 2128
  year: 2018
  ident: 10.1016/j.energy.2022.123108_bib5
  article-title: A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.06.024
– volume: 212
  start-page: 106619
  year: 2021
  ident: 10.1016/j.energy.2022.123108_bib40
  article-title: A novel whale optimization algorithm integrated with Nelder–Mead simplex for multi-objective optimization problems
  publication-title: Knowl Base Syst
  doi: 10.1016/j.knosys.2020.106619
– volume: 8
  start-page: 16584
  year: 2020
  ident: 10.1016/j.energy.2022.123108_bib28
  article-title: New optimization algorithm inspired by kernel tricks for the economic emission dispatch problem with valve point
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2965725
– volume: 208
  start-page: 106463
  year: 2020
  ident: 10.1016/j.energy.2022.123108_bib14
  article-title: Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem
  publication-title: Knowl Base Syst
  doi: 10.1016/j.knosys.2020.106463
– volume: 172
  start-page: 794
  year: 2019
  ident: 10.1016/j.energy.2022.123108_bib16
  article-title: Multi-objective combined heat and power unit commitment using particle swarm optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.155
– start-page: 705
  year: 2021
  ident: 10.1016/j.energy.2022.123108_bib35
  article-title: Comparative analysis of optimal scheduling of multi-objective non-convex combined heat and power units using AI techniques
– volume: 11
  start-page: 1778
  issue: 4
  year: 1996
  ident: 10.1016/j.energy.2022.123108_bib2
  article-title: An algorithm for combined heat and power economic dispatch
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.544642
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 10.1016/j.energy.2022.123108_bib41
  article-title: Performance assessment of multiobjective optimizers:an analysis and review
  publication-title: IEEE Trans Power Syst
– start-page: 1
  year: 2017
  ident: 10.1016/j.energy.2022.123108_bib19
  article-title: A novel hybrid harmony search and particle swarm optimization method for solving combined heat and power economic dispatch
  publication-title: Smart Grid Conference. (SGC)
– volume: 90
  start-page: 106158
  year: 2020
  ident: 10.1016/j.energy.2022.123108_bib11
  article-title: Indicator & crowding distance-based evolutionary algorithm for combined heat and power economic emission dispatch
  publication-title: Appl Soft Comp J
  doi: 10.1016/j.asoc.2020.106158
– year: 2021
  ident: 10.1016/j.energy.2022.123108_bib42
  article-title: Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization
  publication-title: IEEE Trans Cybern
– volume: 265
  start-page: 114785
  year: 2020
  ident: 10.1016/j.energy.2022.123108_bib27
  article-title: Neural-network-based optimization for economic dispatch of combined heat and power systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.114785
– volume: 95
  start-page: 9
  year: 2013
  ident: 10.1016/j.energy.2022.123108_bib15
  article-title: Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients
  publication-title: Electric Power Sys
  doi: 10.1016/j.epsr.2012.08.005
– volume: 46
  start-page: 342
  issue: 3
  year: 2013
  ident: 10.1016/j.energy.2022.123108_bib26
  article-title: Shuffled differential evolution for economic dispatch with valve point loading effects
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.10.012
– volume: 72
  start-page: 189
  year: 2018
  ident: 10.1016/j.energy.2022.123108_bib9
  article-title: Hybridizing bat algorithm with artificial bee colony for combined heat and power economic dispatch
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.06.034
– volume: 99
  start-page: 465
  year: 2016
  ident: 10.1016/j.energy.2022.123108_bib22
  article-title: Solving combined heat and power economic dispatch problem using real coded genetic algorithm with improved Mühlenbein mutation
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.12.136
– volume: 8
  start-page: 13748
  year: 2020
  ident: 10.1016/j.energy.2022.123108_bib13
  article-title: Combined heat and power economic emission dispatch using hybrid NSGA II-MOPSO algorithm incorporating an effective constraint handling mechanism
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2963887
– volume: 82
  start-page: 339
  year: 2016
  ident: 10.1016/j.energy.2022.123108_bib6
  article-title: Multiobjective thermal power dispatch using opposition-based greedy heuristic search
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2016.03.016
– volume: vol. 200
  start-page: 112090
  year: 2019
  ident: 10.1016/j.energy.2022.123108_bib30
– volume: 9
  start-page: 1392
  issue: 3
  year: 1994
  ident: 10.1016/j.energy.2022.123108_bib3
  article-title: Static economic dispatch for co-generation systems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.336125
– volume: 53
  start-page: 135
  year: 2013
  ident: 10.1016/j.energy.2022.123108_bib7
  article-title: Combined heat and power economic emission dispatch using nondominated sorting genetic algorithm-II
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.04.014
– start-page: 80
  year: 2003
  ident: 10.1016/j.energy.2022.123108_bib21
  article-title: Bare bones particle swarms
SSID ssj0005899
Score 2.5809872
Snippet An improved bare-bone multi-objective particle swarm optimization (IBBMOPSO) is proposed to solve the combined heat and power economic emission dispatch...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 123108
SubjectTerms Algorithms
Cogeneration
Combined heat and power system
Economic environment dispatch
Economics
Emissions
energy
energy costs
heat
Multi-objective optimization
Multiple objective analysis
Optimization
Pareto optimum
Particle swarm optimization
Pollutants
Power dispatch
standard deviation
Title Combined heat and power economic emission dispatch using improved bare-bone multi-objective particle swarm optimization
URI https://dx.doi.org/10.1016/j.energy.2022.123108
https://www.proquest.com/docview/2642940051
https://www.proquest.com/docview/2636741201
Volume 244
WOSCitedRecordID wos000805144900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELagQ4IXBIOJwkBGQrxEnprml_04oY6BRuGhk_Jm2a5DW21NaBrWP5-zY6fdAG088BJVruNE_r6c7853PoTeDVM50MVUEBpNGYmjoSAyTFMiFaNKJSIdKGmLTWTjMc1z9s2F8ta2nEC2XNLNhlX_FWpoA7BN6uw_wN0NCg3wG0CHK8AO1zsBD184WLugRxox254DYCqhBdqlIAemwpvxkZnNmQok8SxorMNgbv0LRiMVK01kCeqnDTckpVy0YjGo3POC-kqsLoMS5M2lS-S85uJvEwrNSaabNni-czfkcxcD_LEpF0DN752LZ9a0lbG_iHK2037amMZ8LspdBwXYttu4Fp-YNSBJHF8TuqBVBNVRaLRLSv4oyluvwuJI21c-MiO7_tuly2_Xj7_yk_OzMz4Z5ZP31Q9iioqZzXdXYeU-2htmCaM9tHf8aZR_3sYAUVtgtHtDn1tpAwB_f_DfdJcbq7hVTSZP0GNnU-DjFpun6J5e7qOHPuW83kcHo206I3R08rx-hq48WbAhCwayYEsW7MmCPVmwJwu2ZMGeLLgjC75BFuzJgi1Z8C5ZnqPzk9HkwylxpTiIitJsTVIRgmnApCyUClmhhjopqABzVFJGIyqFpNOBZGlcZJmgMJVZBjKA6ozJkE5DER2g3hJe5QXC0wwmXQ-kFCyJdaqFKESiQhgBLAFNiz6K_CRz5c6pN-VSLrgPSFzwFhpuoOEtNH1Euruq9pyWW_pnHj_udM1Wh-TAv1vuPPRwc_fZ1xzMiiGLzQrXR2-7vwEhs_0mlrpsTB-YyjgEjfvlHfq8Qo-2H9Mh6q1XjX6NHqif63m9euOI_AvMhrvW
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+heat+and+power+economic+emission+dispatch+using+improved+bare-bone+multi-objective+particle+swarm+optimization&rft.jtitle=Energy+%28Oxford%29&rft.au=Xiong%2C+Guojiang&rft.au=Shuai%2C+Maohang&rft.au=Hu%2C+Xiao&rft.date=2022-04-01&rft.issn=0360-5442&rft.volume=244+p.123108-&rft_id=info:doi/10.1016%2Fj.energy.2022.123108&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon