Assessment Method Based on AIS Data Combining the Velocity Obstacle Method and Pareto Selection for the Collision Risk of Inland Ships
A ship collision risk assessment model is an essential part of ship safety navigation. At present, the open water collision risk assessment model (such as the closest point of approach) is applied, but a ship collision risk model suitable for inland rivers is still in the exploration stage. Compared...
Uložené v:
| Vydané v: | Journal of marine science and engineering Ročník 10; číslo 11; s. 1723 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.11.2022
|
| Predmet: | |
| ISSN: | 2077-1312, 2077-1312 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A ship collision risk assessment model is an essential part of ship safety navigation. At present, the open water collision risk assessment model (such as the closest point of approach) is applied, but a ship collision risk model suitable for inland rivers is still in the exploration stage. Compared with open waters, the inland waterway has a larger density of ships, and the land and water environments are complex. The existing risk assessment models lack adaptability under the conditions of inland navigation. Therefore, this paper proposes a real-time collision risk assessment method for ships navigating inland rivers. This method utilizes the information of ships’ size in the automatic identification system (AIS) to construct the velocity obstacle cone between convex polygonal targets using the velocity obstacle method. Then, according to the geometric relationship between the relative velocity of two targets and the velocity obstacle cone, a new collision risk assessment model is defined. This model defines two indicators to evaluate the navigation collision risk: the degree of velocity obstacle intrusion (DVOI) and time of velocity obstacle intrusion (TVOI). These two indicators assess the risk of collision, respectively, from two aspects speed and course. In addition, a method using a trajectory compression algorithm to screen collision avoidance operation points in ship AIS trajectory is proposed to screen collision avoidance scenarios in the Yangtze River waterway. The effectiveness of the proposed collision risk model is verified in course-keeping and collision avoidance scenarios and compared with the traditional closest point of approach (CPA) method. The results indicate that the evaluation model for collision risk assessment is more accurate than the CPA method in all scenarios. Finally, this paper uses the Pareto selection algorithm to combine DVOI and TVOI, which can identify the ship that poses the greatest risk to our ship. |
|---|---|
| AbstractList | A ship collision risk assessment model is an essential part of ship safety navigation. At present, the open water collision risk assessment model (such as the closest point of approach) is applied, but a ship collision risk model suitable for inland rivers is still in the exploration stage. Compared with open waters, the inland waterway has a larger density of ships, and the land and water environments are complex. The existing risk assessment models lack adaptability under the conditions of inland navigation. Therefore, this paper proposes a real-time collision risk assessment method for ships navigating inland rivers. This method utilizes the information of ships’ size in the automatic identification system (AIS) to construct the velocity obstacle cone between convex polygonal targets using the velocity obstacle method. Then, according to the geometric relationship between the relative velocity of two targets and the velocity obstacle cone, a new collision risk assessment model is defined. This model defines two indicators to evaluate the navigation collision risk: the degree of velocity obstacle intrusion (DVOI) and time of velocity obstacle intrusion (TVOI). These two indicators assess the risk of collision, respectively, from two aspects speed and course. In addition, a method using a trajectory compression algorithm to screen collision avoidance operation points in ship AIS trajectory is proposed to screen collision avoidance scenarios in the Yangtze River waterway. The effectiveness of the proposed collision risk model is verified in course-keeping and collision avoidance scenarios and compared with the traditional closest point of approach (CPA) method. The results indicate that the evaluation model for collision risk assessment is more accurate than the CPA method in all scenarios. Finally, this paper uses the Pareto selection algorithm to combine DVOI and TVOI, which can identify the ship that poses the greatest risk to our ship. |
| Author | Wang, Hongbo Zhang, Yi Zhao, Hengchao Wang, Yan |
| Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0002-9313-2293 surname: Wang fullname: Wang, Yan – sequence: 2 givenname: Yi surname: Zhang fullname: Zhang, Yi – sequence: 3 givenname: Hengchao surname: Zhao fullname: Zhao, Hengchao – sequence: 4 givenname: Hongbo orcidid: 0000-0002-4947-750X surname: Wang fullname: Wang, Hongbo |
| BookMark | eNptkctOWzEQhi1EJS5lxwNYYttQX87xZRnCLRKIqilsLeecMXE4sVPbLHgBnhuHFAmhzsaj0f_9M545QLshBkDomJJTzjX5uVxloIRSKhnfQfuMSDminLLdT_keOsp5SWooJigR--h1nDPkvIJQ8C2URezxmc3Q4xjweDrD57ZYPImruQ8-POKyAPwAQ-x8ecF381xsN8AHaEOPf9kEJeIZDNAVX01cTO_UJA6Dz5vKb5-fcHR4GoYNMVv4df6Ovjk7ZDj69x6i-8uLP5Pr0c3d1XQyvhl1XMgyEtq5hhOnetZT2koigQNRBCyDudZtKxxXhHdONk63TAPrBcyVbXsrCOOKH6Lp1rePdmnWya9sejHRevNeiOnR2FR8_ZSRilNOOKXVolGS6462bUNI7ew0E7p6nWy91in-fYZczDI-p1DHN0w2imkhZFtVbKvqUsw5gTN1d3azmpKsHwwlZnM-8_l8FfrxBfoY9b_yNxOzm_k |
| CitedBy_id | crossref_primary_10_1016_j_ress_2025_111373 crossref_primary_10_1109_ACCESS_2023_3246093 crossref_primary_10_3390_jmse12101775 crossref_primary_10_1016_j_oceaneng_2024_119512 crossref_primary_10_1016_j_oceaneng_2023_116347 crossref_primary_10_3390_jmse11091831 crossref_primary_10_3390_jmse12091672 crossref_primary_10_1016_j_oceaneng_2024_117641 crossref_primary_10_1016_j_apor_2025_104753 crossref_primary_10_1007_s42405_024_00851_0 crossref_primary_10_1016_j_oceaneng_2025_121935 crossref_primary_10_1109_ACCESS_2023_3321270 |
| Cites_doi | 10.1016/j.ress.2021.107901 10.1016/j.ssci.2020.104838 10.1016/j.oceaneng.2019.04.033 10.1016/j.ssci.2019.09.018 10.1016/j.oceaneng.2013.09.016 10.1016/j.oceaneng.2018.12.059 10.3390/jmse10060814 10.1016/j.aap.2013.05.006 10.1016/j.aap.2011.05.022 10.1017/S0373463306003833 10.3390/jmse9040428 10.1016/j.oceaneng.2018.10.023 10.1109/ACCESS.2021.3059248 10.1016/j.neucom.2015.12.028 10.1016/j.eswa.2012.05.060 10.1016/j.oceaneng.2010.01.012 10.1016/j.oceaneng.2019.106175 10.1109/TITS.2017.2724551 10.1007/s007730200009 10.1016/j.oceaneng.2017.09.020 10.3390/jmse9121365 10.1016/j.ress.2020.107086 10.3390/app12084073 10.1109/ICSRS48664.2019.8987698 10.1016/j.apor.2019.05.020 10.1016/j.apor.2016.09.005 10.1016/j.marstruc.2010.05.001 10.3390/jmse8040264 10.1016/j.ssci.2016.02.026 10.1016/j.apor.2012.05.008 10.1109/TEVC.2015.2504730 10.1017/S0373463310000202 10.1017/S0373463320000053 10.1016/j.oceaneng.2019.04.024 10.1016/j.oceaneng.2017.10.051 10.1177/027836499801700706 10.1109/TEVC.2012.2227145 10.1016/j.oceaneng.2016.08.030 10.1017/S0373463321000461 10.3390/jmse8121002 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7ST 7TN 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY SOI DOA |
| DOI | 10.3390/jmse10111723 |
| DatabaseName | CrossRef Environment Abstracts Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Oceanography |
| EISSN | 2077-1312 |
| ExternalDocumentID | oai_doaj_org_article_783130311d6e48739c1554002d1f9269 10_3390_jmse10111723 |
| GroupedDBID | 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AEUYN AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION D1J GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PYCSY 7ST 7TN ABUWG AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQQKQ PQUKI SOI |
| ID | FETCH-LOGICAL-c367t-69ff430f8d2d115707e3e080ea2eb99556f3803cf74f9529e2d6eb8a5da602383 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000910819600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2077-1312 |
| IngestDate | Fri Oct 03 12:46:26 EDT 2025 Fri Jul 25 11:50:42 EDT 2025 Sat Nov 29 07:14:58 EST 2025 Tue Nov 18 22:35:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-69ff430f8d2d115707e3e080ea2eb99556f3803cf74f9529e2d6eb8a5da602383 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9313-2293 0000-0002-4947-750X |
| OpenAccessLink | https://www.proquest.com/docview/2748296675?pq-origsite=%requestingapplication% |
| PQID | 2748296675 |
| PQPubID | 2032377 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_783130311d6e48739c1554002d1f9269 proquest_journals_2748296675 crossref_citationtrail_10_3390_jmse10111723 crossref_primary_10_3390_jmse10111723 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Journal of marine science and engineering |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhao (ref_29) 2016; 182 Szlapczynski (ref_13) 2006; 59 Qiao (ref_15) 2021; 9 Li (ref_25) 2020; 73 Szlapczynski (ref_12) 2017; 145 Tu (ref_36) 2018; 19 Cai (ref_34) 2021; 215 Kang (ref_42) 2019; 182 Qu (ref_37) 2011; 43 Szlapczynski (ref_14) 2016; 126 ref_16 Paik (ref_35) 2019; 173 Wang (ref_21) 2010; 63 Graziano (ref_4) 2016; 86 Li (ref_40) 2016; 20 Liu (ref_8) 2019; 89 Ahn (ref_28) 2012; 37 Pedersen (ref_5) 2010; 23 Huang (ref_7) 2020; 121 Zhang (ref_6) 2020; 130 Fiorini (ref_38) 1998; 17 (ref_41) 2012; 39 Lei (ref_17) 2021; 74 Kaneko (ref_31) 2002; 7 Yu (ref_32) 2020; 203 Chauvin (ref_3) 2013; 59 Rong (ref_18) 2019; 182 ref_23 ref_20 Mou (ref_10) 2010; 37 ref_1 ref_2 Chen (ref_19) 2018; 170 Li (ref_33) 2014; 10 ref_27 Kang (ref_11) 2019; 15 ref_26 Kang (ref_9) 2018; 147 Li (ref_30) 2013; 74 Liu (ref_22) 2019; 187 You (ref_24) 2016; 60 Yang (ref_39) 2013; 17 |
| References_xml | – volume: 215 start-page: 107086 year: 2021 ident: ref_34 article-title: Collision risk analysis on ferry ships in Jiangsu Section of the Yangtze River based on AIS data publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107901 – volume: 130 start-page: 104838 year: 2020 ident: ref_6 article-title: A probabilistic model of human error assessment for autonomous cargo ships focusing on human-autonomy collaboration publication-title: Saf. Sci. doi: 10.1016/j.ssci.2020.104838 – volume: 182 start-page: 329 year: 2019 ident: ref_42 article-title: How do ships pass through L-shaped turnings in the Singapore strait? publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.04.033 – volume: 121 start-page: 451 year: 2020 ident: ref_7 article-title: Ship collision avoidance methods: State-of-the-art publication-title: Saf. Sci. doi: 10.1016/j.ssci.2019.09.018 – volume: 74 start-page: 16 year: 2013 ident: ref_30 article-title: An approach of vessel collision risk assessment based on the D-S evidence theory publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2013.09.016 – volume: 173 start-page: 358 year: 2019 ident: ref_35 article-title: A probabilistic approach to determine design loads for collision between an offshore supply vessel and offshore installations publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.12.059 – ident: ref_2 doi: 10.3390/jmse10060814 – volume: 59 start-page: 26 year: 2013 ident: ref_3 article-title: Human and organisational factors in maritime accidents: Analysis of collisions at sea using the HFACS publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2013.05.006 – volume: 10 start-page: 89 year: 2014 ident: ref_33 article-title: Bayesian network with quantitative input for maritime risk analysis publication-title: Transp. A – volume: 43 start-page: 2030 year: 2011 ident: ref_37 article-title: Ship collision risk assessment for the Singapore Strait publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2011.05.022 – volume: 59 start-page: 477 year: 2006 ident: ref_13 article-title: A unified measure of collision risk derived from the concept of a ship domain publication-title: J. Navig. doi: 10.1017/S0373463306003833 – ident: ref_26 doi: 10.3390/jmse9040428 – volume: 170 start-page: 186 year: 2018 ident: ref_19 article-title: Ship collision candidate detection method: A velocity obstacle approach publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.10.023 – volume: 9 start-page: 30539 year: 2021 ident: ref_15 article-title: A Collision Risk Identification Method for Autonomous Ships Based on Field Theory publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3059248 – volume: 182 start-page: 255 year: 2016 ident: ref_29 article-title: A real-time collision avoidance learning system for Unmanned Surface Vessels publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.028 – volume: 39 start-page: 13426 year: 2012 ident: ref_41 article-title: Machine learning for vessel trajectories using compression, alignments and domain knowledge publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.05.060 – volume: 37 start-page: 483 year: 2010 ident: ref_10 article-title: Study on collision avoidance in busy waterways by using AIS data publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2010.01.012 – volume: 187 start-page: 12 year: 2019 ident: ref_22 article-title: A cooperative game approach for assessing the collision risk in multi-vessel encountering publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106175 – volume: 19 start-page: 1559 year: 2018 ident: ref_36 article-title: Exploiting AIS Data for Intelligent Maritime Navigation: A Comprehensive Survey From Data to Methodology publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2724551 – volume: 15 start-page: 1124 year: 2019 ident: ref_11 article-title: Maritime simulator based determination of minimum DCPA and TCPA in head-on ship-to-ship collision avoidance in confined waters publication-title: Transp. A – volume: 7 start-page: 1 year: 2002 ident: ref_31 article-title: Methods for probabilistic safety assessments of ships publication-title: J. Mar. Sci. Technol. doi: 10.1007/s007730200009 – volume: 145 start-page: 277 year: 2017 ident: ref_12 article-title: Review of ship safety domains: Models and applications publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.09.020 – ident: ref_16 doi: 10.3390/jmse9121365 – volume: 203 start-page: 1 year: 2020 ident: ref_32 article-title: Realising advanced risk assessment of vessel traffic flows near offshore wind farms publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107086 – ident: ref_1 doi: 10.3390/app12084073 – ident: ref_23 doi: 10.1109/ICSRS48664.2019.8987698 – volume: 89 start-page: 261 year: 2019 ident: ref_8 article-title: A novel framework for regional collision risk identification based on AIS data publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2019.05.020 – volume: 60 start-page: 164 year: 2016 ident: ref_24 article-title: Development of the collision ratio to infer the time at which to begin a collision avoidance of a ship publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2016.09.005 – volume: 23 start-page: 241 year: 2010 ident: ref_5 article-title: Review and application of ship collision and grounding analysis procedures publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2010.05.001 – ident: ref_20 doi: 10.3390/jmse8040264 – volume: 86 start-page: 245 year: 2016 ident: ref_4 article-title: Classification of human errors in grounding and collision accidents using the TRACEr taxonomy publication-title: Saf. Sci. doi: 10.1016/j.ssci.2016.02.026 – volume: 37 start-page: 162 year: 2012 ident: ref_28 article-title: A study on the collision avoidance of a ship using neural networks and fuzzy logic publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2012.05.008 – volume: 20 start-page: 645 year: 2016 ident: ref_40 article-title: Pareto or Non-Pareto: Bi-Criterion Evolution in Multiobjective Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2504730 – volume: 63 start-page: 733 year: 2010 ident: ref_21 article-title: An Intelligent Spatial Collision Risk Based on the Quaternion Ship Domain publication-title: J. Navig. doi: 10.1017/S0373463310000202 – volume: 73 start-page: 971 year: 2020 ident: ref_25 article-title: Distributed Multi-Objective Algorithm for Preventing Multi-Ship Collisions at Sea publication-title: J. Navig. doi: 10.1017/S0373463320000053 – volume: 182 start-page: 499 year: 2019 ident: ref_18 article-title: Ship trajectory uncertainty prediction based on a Gaussian Process model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.04.024 – volume: 147 start-page: 340 year: 2018 ident: ref_9 article-title: Fundamental diagram of ship traffic in the Singapore Strait publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.10.051 – volume: 17 start-page: 760 year: 1998 ident: ref_38 article-title: Motion Planning in Dynamic Environments Using Velocity Obstacles publication-title: Int. J. Robot. Res. doi: 10.1177/027836499801700706 – volume: 17 start-page: 721 year: 2013 ident: ref_39 article-title: A Grid-Based Evolutionary Algorithm for Many-Objective Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2227145 – volume: 126 start-page: 47 year: 2016 ident: ref_14 article-title: An analysis of domain-based ship collision risk parameters publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.08.030 – volume: 74 start-page: 1284 year: 2021 ident: ref_17 article-title: Automatic identification system data-driven model for analysis of ship domain near bridge-waters publication-title: J. Navig. doi: 10.1017/S0373463321000461 – ident: ref_27 doi: 10.3390/jmse8121002 |
| SSID | ssj0000826106 |
| Score | 2.2942553 |
| Snippet | A ship collision risk assessment model is an essential part of ship safety navigation. At present, the open water collision risk assessment model (such as the... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1723 |
| SubjectTerms | Adaptability AIS data Algorithms Barriers closest point of approach Collision avoidance Collision dynamics Compression Evaluation Indicators Information processing inland ships Inland waterways Intrusion Methods Navigation Pareto selection Risk Risk assessment Rivers Robots Ships Velocity velocity obstacle |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHkQQn7i-mIOepNgmbZMc1xd68IGr4q0kTYLroyt29Sf4u52k3WVFxIvXkLRlZpL5pmS-j5AdoxK0vTORFjqNUsrjSAqjwk0Ap7PcaBsHsQl-cSHu7-XVhNSXvxPW0AM3htvngvljNklMbhFcM1n6DIj72CRO0jy07sVcThRT4QxG1IzFTnPTnWFdv__4UtvEC6tzyr7loEDV_-MkDunlZIHMt7gQus33LJIpWy2RucvSqqollV4mn90xjSacB-VnOMAkZGBQQfesB0dqqAA3uA6iD4DQDu4sJisE2nCpEQbik0cLVWXgyivcDqAXpHDQP4AANqzyfxNCzzlc9-snGDg4q_wNSOg99F_rFXJ7cnxzeBq1OgpRyXI-jHLpXMpiJwwaLcl4zC2ziBStolZLmWW5YyJmpeOpkxmVlqKttVCZUblP6WyVTFeDyq4R0HGZW-OE00ykilutaGAIROCBA2nSIXsjyxZlSzLutS6eCyw2vB-KST90yO549mtDrvHLvAPvpPEcT4kdBjBQijZQir8CpUM2Ry4u2n1aF1iTC4oVH8_W_-MdG2SW-vaI0Ku4SaaHb-92i8yUH8N-_bYdQvQLgp_nvw priority: 102 providerName: Directory of Open Access Journals |
| Title | Assessment Method Based on AIS Data Combining the Velocity Obstacle Method and Pareto Selection for the Collision Risk of Inland Ships |
| URI | https://www.proquest.com/docview/2748296675 https://doaj.org/article/783130311d6e48739c1554002d1f9269 |
| Volume | 10 |
| WOSCitedRecordID | wos000910819600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: PCBAR dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: M7S dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: PATMY dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2077-1312 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826106 issn: 2077-1312 databaseCode: PIMPY dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZg44CQGD-1wqjeAU4oWmInsX1C7dhED-uiFdA4RXZss26QlKbwJ_B38-y6BYTgwtWxIyvv2e_zy_P3EfLcqAy_vTOJFjpPcsrTRAqjQiWA00VptE2D2ASfTsXFhaxiwq2PZZWbPTFs1KZrfI78EE9PgiI258WrxZfEq0b5v6tRQuMm2fVMZejnu-PjaXW-zbJggEN8UK4r3hme7w-vPvc28wLrnLLfYlGg7P9jRw5h5mTvfyd4j9yNABNGa4-4T27Y9gG5c9ZY1UZ26ofk-2jLxwmnQUIaxhjNDHQtjCYzeK1WCnCn0EE9AhAjwnuLUQ8RO5xpxJP45s1A1RqovFRuB7OgqYOGBkTCYZRPS4TL63A-76-hczBpfSklzC7ni_4ReXdy_PboTRIFGZKGlXyVlNK5nKVOGGo8SU_KLbMIOa2iVktZFKVjImWN47mTBZWWmtJqoQqjSo8N2GOy03at3Seg06a0xgmnmcgVt1rRQDWICAYb8mxAXm5MUzeRrdyLZnyq8dTiDVn_asgBebHtvVizdPyl39hbedvHc2uHhm75sY5LteaC-cCeZTh5PM4x2XjMhZHDZE7SUg7IwcYB6rjg-_qn9Z_8-_FTcpv6GxThOuMB2Vktv9pn5FbzbTXvl8Pov8OQGhj6QtQZtlWT0-rDD9dX_W8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRIIiW_EQgEfKBcUNbETxz5w2G2pumq7XbUF9Rbs2IblI1k2C4g_wM_hNzL2JgsIwa0HroltRc7LzBtnZh7AY6MS3HtnIi10GqU0jyMpjAqZAE5n3GgbB7GJfDwWZ2dysgbfu1oYn1bZ2cRgqE1d-jPyLYyeBEVunncZlPv26xeMz5pnox18mZuU7j4_3d6LWgmBqGQ8X0RcOpey2AlDjW8rE-eWWSRJVlGrpcwy7piIWeny1MmMSksNt1qozCjuvRnDdZ_MPkZepcr_zW0lOy7AuuAyzXqwPtkeDo5XpzroUJGP8GWGPWMy3nr7obGJF3TPKfvN9wWJgD88QHBru9f-tw25DldbAk0GS8TfgDVb3YQrR6VVVdt9-xZ8G6z6jZLDIJFNhuitDakrMhidkB21UAQtoQ7qGAQ5MHlp0atjREKONPJlXLmbqCpDJl4KuCYnQTMIgUyQ6YdZ_tglFOeT42nzjtSOjCqfKkpO3kxnzW14cS6bcwd6VV3Zu0B0XHJrnHCaiVTlVisaWikiQ8MLadKHpx0UirLtxu5FQd4XGJV54BS_AqcPm6vRs2UXkr-MG3pUrcb43uHhQj1_XbSmqMgF88QlSfDhMVxlsvScEj2jSZykXPZhowNc0Rq0pviJtnv_vv0ILu2dHh4UB6Px_n24TH21SCjd3IDeYv7JPoCL5efFtJk_bL8dAq_OG7A_APPnVZU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHUIIiW9ExwA_sCcUNbHzYT8g1FEqqrGuogNtT8GObSgbSdcUEH-AH8Wv49pNCgjB2x54dWwrco7vPde5vgfgkZYRrr3VgeIqDmKahYHgWvpMAKuSVCsTerGJbDzmR0disgHf27swLq2ytYneUOuqcGfkPYyeOEVuniU926RFTAbDp_OzwClIuT-trZzGCiJ75usXDN_qJ6MBfusdSofPD5-9CBqFgaBgabYMUmFtzELLNdWu6kyYGWaQQxlJjRIiSVLLeMgKm8VWJFQYqlOjuEy0TJ2zYzjvBdjkKe6bDmxO-of7x-sTHnSuyE3SVbY9YyLsffhYm8iJu2eU_eYHvVzAH97Au7jhtf95ca7D1YZYk_5qJ9yADVPehCsHhZFlU5X7Fnzrr-uQkn0vnU120YtrUpWkP5qSgVxKghZSedUMgtyYvDHo7TFSIQcKeTTO3A6UpSYTJxFckanXEkKAE4wA_Ch3HOMv7ZNXs_qEVJaMSpdCSqbvZ_P6Nrw-l5W4A52yKs1dICosUqMtt4rxWGZGSepLLCJzw4Y46sLjFhZ50VRpd2IhpzlGaw5E-a8g6sLOuvd8VZ3kL_12HcLWfVxNcd9QLd7ljYnKM84coYkifHkMY5koHNdEj6kjK2gqurDdgi9vDF2d_0Te1r8fP4RLCMn85Wi8dw8uU3eJxN_o3IbOcvHJ3IeLxeflrF48aLYRgbfnDc4fyfdekQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+Method+Based+on+AIS+Data+Combining+the+Velocity+Obstacle+Method+and+Pareto+Selection+for+the+Collision+Risk+of+Inland+Ships&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Wang%2C+Yan&rft.au=Zhang%2C+Yi&rft.au=Zhao%2C+Hengchao&rft.au=Wang%2C+Hongbo&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.eissn=2077-1312&rft.volume=10&rft.issue=11&rft.spage=1723&rft_id=info:doi/10.3390%2Fjmse10111723&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon |