Assessment Method Based on AIS Data Combining the Velocity Obstacle Method and Pareto Selection for the Collision Risk of Inland Ships

A ship collision risk assessment model is an essential part of ship safety navigation. At present, the open water collision risk assessment model (such as the closest point of approach) is applied, but a ship collision risk model suitable for inland rivers is still in the exploration stage. Compared...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of marine science and engineering Ročník 10; číslo 11; s. 1723
Hlavní autori: Wang, Yan, Zhang, Yi, Zhao, Hengchao, Wang, Hongbo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.11.2022
Predmet:
ISSN:2077-1312, 2077-1312
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A ship collision risk assessment model is an essential part of ship safety navigation. At present, the open water collision risk assessment model (such as the closest point of approach) is applied, but a ship collision risk model suitable for inland rivers is still in the exploration stage. Compared with open waters, the inland waterway has a larger density of ships, and the land and water environments are complex. The existing risk assessment models lack adaptability under the conditions of inland navigation. Therefore, this paper proposes a real-time collision risk assessment method for ships navigating inland rivers. This method utilizes the information of ships’ size in the automatic identification system (AIS) to construct the velocity obstacle cone between convex polygonal targets using the velocity obstacle method. Then, according to the geometric relationship between the relative velocity of two targets and the velocity obstacle cone, a new collision risk assessment model is defined. This model defines two indicators to evaluate the navigation collision risk: the degree of velocity obstacle intrusion (DVOI) and time of velocity obstacle intrusion (TVOI). These two indicators assess the risk of collision, respectively, from two aspects speed and course. In addition, a method using a trajectory compression algorithm to screen collision avoidance operation points in ship AIS trajectory is proposed to screen collision avoidance scenarios in the Yangtze River waterway. The effectiveness of the proposed collision risk model is verified in course-keeping and collision avoidance scenarios and compared with the traditional closest point of approach (CPA) method. The results indicate that the evaluation model for collision risk assessment is more accurate than the CPA method in all scenarios. Finally, this paper uses the Pareto selection algorithm to combine DVOI and TVOI, which can identify the ship that poses the greatest risk to our ship.
AbstractList A ship collision risk assessment model is an essential part of ship safety navigation. At present, the open water collision risk assessment model (such as the closest point of approach) is applied, but a ship collision risk model suitable for inland rivers is still in the exploration stage. Compared with open waters, the inland waterway has a larger density of ships, and the land and water environments are complex. The existing risk assessment models lack adaptability under the conditions of inland navigation. Therefore, this paper proposes a real-time collision risk assessment method for ships navigating inland rivers. This method utilizes the information of ships’ size in the automatic identification system (AIS) to construct the velocity obstacle cone between convex polygonal targets using the velocity obstacle method. Then, according to the geometric relationship between the relative velocity of two targets and the velocity obstacle cone, a new collision risk assessment model is defined. This model defines two indicators to evaluate the navigation collision risk: the degree of velocity obstacle intrusion (DVOI) and time of velocity obstacle intrusion (TVOI). These two indicators assess the risk of collision, respectively, from two aspects speed and course. In addition, a method using a trajectory compression algorithm to screen collision avoidance operation points in ship AIS trajectory is proposed to screen collision avoidance scenarios in the Yangtze River waterway. The effectiveness of the proposed collision risk model is verified in course-keeping and collision avoidance scenarios and compared with the traditional closest point of approach (CPA) method. The results indicate that the evaluation model for collision risk assessment is more accurate than the CPA method in all scenarios. Finally, this paper uses the Pareto selection algorithm to combine DVOI and TVOI, which can identify the ship that poses the greatest risk to our ship.
Author Wang, Hongbo
Zhang, Yi
Zhao, Hengchao
Wang, Yan
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0002-9313-2293
  surname: Wang
  fullname: Wang, Yan
– sequence: 2
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
– sequence: 3
  givenname: Hengchao
  surname: Zhao
  fullname: Zhao, Hengchao
– sequence: 4
  givenname: Hongbo
  orcidid: 0000-0002-4947-750X
  surname: Wang
  fullname: Wang, Hongbo
BookMark eNptkctOWzEQhi1EJS5lxwNYYttQX87xZRnCLRKIqilsLeecMXE4sVPbLHgBnhuHFAmhzsaj0f_9M545QLshBkDomJJTzjX5uVxloIRSKhnfQfuMSDminLLdT_keOsp5SWooJigR--h1nDPkvIJQ8C2URezxmc3Q4xjweDrD57ZYPImruQ8-POKyAPwAQ-x8ecF381xsN8AHaEOPf9kEJeIZDNAVX01cTO_UJA6Dz5vKb5-fcHR4GoYNMVv4df6Ovjk7ZDj69x6i-8uLP5Pr0c3d1XQyvhl1XMgyEtq5hhOnetZT2koigQNRBCyDudZtKxxXhHdONk63TAPrBcyVbXsrCOOKH6Lp1rePdmnWya9sejHRevNeiOnR2FR8_ZSRilNOOKXVolGS6462bUNI7ew0E7p6nWy91in-fYZczDI-p1DHN0w2imkhZFtVbKvqUsw5gTN1d3azmpKsHwwlZnM-8_l8FfrxBfoY9b_yNxOzm_k
CitedBy_id crossref_primary_10_1016_j_ress_2025_111373
crossref_primary_10_1109_ACCESS_2023_3246093
crossref_primary_10_3390_jmse12101775
crossref_primary_10_1016_j_oceaneng_2024_119512
crossref_primary_10_1016_j_oceaneng_2023_116347
crossref_primary_10_3390_jmse11091831
crossref_primary_10_3390_jmse12091672
crossref_primary_10_1016_j_oceaneng_2024_117641
crossref_primary_10_1016_j_apor_2025_104753
crossref_primary_10_1007_s42405_024_00851_0
crossref_primary_10_1016_j_oceaneng_2025_121935
crossref_primary_10_1109_ACCESS_2023_3321270
Cites_doi 10.1016/j.ress.2021.107901
10.1016/j.ssci.2020.104838
10.1016/j.oceaneng.2019.04.033
10.1016/j.ssci.2019.09.018
10.1016/j.oceaneng.2013.09.016
10.1016/j.oceaneng.2018.12.059
10.3390/jmse10060814
10.1016/j.aap.2013.05.006
10.1016/j.aap.2011.05.022
10.1017/S0373463306003833
10.3390/jmse9040428
10.1016/j.oceaneng.2018.10.023
10.1109/ACCESS.2021.3059248
10.1016/j.neucom.2015.12.028
10.1016/j.eswa.2012.05.060
10.1016/j.oceaneng.2010.01.012
10.1016/j.oceaneng.2019.106175
10.1109/TITS.2017.2724551
10.1007/s007730200009
10.1016/j.oceaneng.2017.09.020
10.3390/jmse9121365
10.1016/j.ress.2020.107086
10.3390/app12084073
10.1109/ICSRS48664.2019.8987698
10.1016/j.apor.2019.05.020
10.1016/j.apor.2016.09.005
10.1016/j.marstruc.2010.05.001
10.3390/jmse8040264
10.1016/j.ssci.2016.02.026
10.1016/j.apor.2012.05.008
10.1109/TEVC.2015.2504730
10.1017/S0373463310000202
10.1017/S0373463320000053
10.1016/j.oceaneng.2019.04.024
10.1016/j.oceaneng.2017.10.051
10.1177/027836499801700706
10.1109/TEVC.2012.2227145
10.1016/j.oceaneng.2016.08.030
10.1017/S0373463321000461
10.3390/jmse8121002
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
7TN
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
SOI
DOA
DOI 10.3390/jmse10111723
DatabaseName CrossRef
Environment Abstracts
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2077-1312
ExternalDocumentID oai_doaj_org_article_783130311d6e48739c1554002d1f9269
10_3390_jmse10111723
GroupedDBID 5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AEUYN
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
D1J
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PYCSY
7ST
7TN
ABUWG
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
SOI
ID FETCH-LOGICAL-c367t-69ff430f8d2d115707e3e080ea2eb99556f3803cf74f9529e2d6eb8a5da602383
IEDL.DBID BENPR
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000910819600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2077-1312
IngestDate Fri Oct 03 12:46:26 EDT 2025
Fri Jul 25 11:50:42 EDT 2025
Sat Nov 29 07:14:58 EST 2025
Tue Nov 18 22:35:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-69ff430f8d2d115707e3e080ea2eb99556f3803cf74f9529e2d6eb8a5da602383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9313-2293
0000-0002-4947-750X
OpenAccessLink https://www.proquest.com/docview/2748296675?pq-origsite=%requestingapplication%
PQID 2748296675
PQPubID 2032377
ParticipantIDs doaj_primary_oai_doaj_org_article_783130311d6e48739c1554002d1f9269
proquest_journals_2748296675
crossref_citationtrail_10_3390_jmse10111723
crossref_primary_10_3390_jmse10111723
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of marine science and engineering
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhao (ref_29) 2016; 182
Szlapczynski (ref_13) 2006; 59
Qiao (ref_15) 2021; 9
Li (ref_25) 2020; 73
Szlapczynski (ref_12) 2017; 145
Tu (ref_36) 2018; 19
Cai (ref_34) 2021; 215
Kang (ref_42) 2019; 182
Qu (ref_37) 2011; 43
Szlapczynski (ref_14) 2016; 126
ref_16
Paik (ref_35) 2019; 173
Wang (ref_21) 2010; 63
Graziano (ref_4) 2016; 86
Li (ref_40) 2016; 20
Liu (ref_8) 2019; 89
Ahn (ref_28) 2012; 37
Pedersen (ref_5) 2010; 23
Huang (ref_7) 2020; 121
Zhang (ref_6) 2020; 130
Fiorini (ref_38) 1998; 17
(ref_41) 2012; 39
Lei (ref_17) 2021; 74
Kaneko (ref_31) 2002; 7
Yu (ref_32) 2020; 203
Chauvin (ref_3) 2013; 59
Rong (ref_18) 2019; 182
ref_23
ref_20
Mou (ref_10) 2010; 37
ref_1
ref_2
Chen (ref_19) 2018; 170
Li (ref_33) 2014; 10
ref_27
Kang (ref_11) 2019; 15
ref_26
Kang (ref_9) 2018; 147
Li (ref_30) 2013; 74
Liu (ref_22) 2019; 187
You (ref_24) 2016; 60
Yang (ref_39) 2013; 17
References_xml – volume: 215
  start-page: 107086
  year: 2021
  ident: ref_34
  article-title: Collision risk analysis on ferry ships in Jiangsu Section of the Yangtze River based on AIS data
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107901
– volume: 130
  start-page: 104838
  year: 2020
  ident: ref_6
  article-title: A probabilistic model of human error assessment for autonomous cargo ships focusing on human-autonomy collaboration
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2020.104838
– volume: 182
  start-page: 329
  year: 2019
  ident: ref_42
  article-title: How do ships pass through L-shaped turnings in the Singapore strait?
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.04.033
– volume: 121
  start-page: 451
  year: 2020
  ident: ref_7
  article-title: Ship collision avoidance methods: State-of-the-art
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2019.09.018
– volume: 74
  start-page: 16
  year: 2013
  ident: ref_30
  article-title: An approach of vessel collision risk assessment based on the D-S evidence theory
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2013.09.016
– volume: 173
  start-page: 358
  year: 2019
  ident: ref_35
  article-title: A probabilistic approach to determine design loads for collision between an offshore supply vessel and offshore installations
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.12.059
– ident: ref_2
  doi: 10.3390/jmse10060814
– volume: 59
  start-page: 26
  year: 2013
  ident: ref_3
  article-title: Human and organisational factors in maritime accidents: Analysis of collisions at sea using the HFACS
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2013.05.006
– volume: 10
  start-page: 89
  year: 2014
  ident: ref_33
  article-title: Bayesian network with quantitative input for maritime risk analysis
  publication-title: Transp. A
– volume: 43
  start-page: 2030
  year: 2011
  ident: ref_37
  article-title: Ship collision risk assessment for the Singapore Strait
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2011.05.022
– volume: 59
  start-page: 477
  year: 2006
  ident: ref_13
  article-title: A unified measure of collision risk derived from the concept of a ship domain
  publication-title: J. Navig.
  doi: 10.1017/S0373463306003833
– ident: ref_26
  doi: 10.3390/jmse9040428
– volume: 170
  start-page: 186
  year: 2018
  ident: ref_19
  article-title: Ship collision candidate detection method: A velocity obstacle approach
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.10.023
– volume: 9
  start-page: 30539
  year: 2021
  ident: ref_15
  article-title: A Collision Risk Identification Method for Autonomous Ships Based on Field Theory
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3059248
– volume: 182
  start-page: 255
  year: 2016
  ident: ref_29
  article-title: A real-time collision avoidance learning system for Unmanned Surface Vessels
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.028
– volume: 39
  start-page: 13426
  year: 2012
  ident: ref_41
  article-title: Machine learning for vessel trajectories using compression, alignments and domain knowledge
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.05.060
– volume: 37
  start-page: 483
  year: 2010
  ident: ref_10
  article-title: Study on collision avoidance in busy waterways by using AIS data
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2010.01.012
– volume: 187
  start-page: 12
  year: 2019
  ident: ref_22
  article-title: A cooperative game approach for assessing the collision risk in multi-vessel encountering
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106175
– volume: 19
  start-page: 1559
  year: 2018
  ident: ref_36
  article-title: Exploiting AIS Data for Intelligent Maritime Navigation: A Comprehensive Survey From Data to Methodology
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2724551
– volume: 15
  start-page: 1124
  year: 2019
  ident: ref_11
  article-title: Maritime simulator based determination of minimum DCPA and TCPA in head-on ship-to-ship collision avoidance in confined waters
  publication-title: Transp. A
– volume: 7
  start-page: 1
  year: 2002
  ident: ref_31
  article-title: Methods for probabilistic safety assessments of ships
  publication-title: J. Mar. Sci. Technol.
  doi: 10.1007/s007730200009
– volume: 145
  start-page: 277
  year: 2017
  ident: ref_12
  article-title: Review of ship safety domains: Models and applications
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.09.020
– ident: ref_16
  doi: 10.3390/jmse9121365
– volume: 203
  start-page: 1
  year: 2020
  ident: ref_32
  article-title: Realising advanced risk assessment of vessel traffic flows near offshore wind farms
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107086
– ident: ref_1
  doi: 10.3390/app12084073
– ident: ref_23
  doi: 10.1109/ICSRS48664.2019.8987698
– volume: 89
  start-page: 261
  year: 2019
  ident: ref_8
  article-title: A novel framework for regional collision risk identification based on AIS data
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2019.05.020
– volume: 60
  start-page: 164
  year: 2016
  ident: ref_24
  article-title: Development of the collision ratio to infer the time at which to begin a collision avoidance of a ship
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2016.09.005
– volume: 23
  start-page: 241
  year: 2010
  ident: ref_5
  article-title: Review and application of ship collision and grounding analysis procedures
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2010.05.001
– ident: ref_20
  doi: 10.3390/jmse8040264
– volume: 86
  start-page: 245
  year: 2016
  ident: ref_4
  article-title: Classification of human errors in grounding and collision accidents using the TRACEr taxonomy
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2016.02.026
– volume: 37
  start-page: 162
  year: 2012
  ident: ref_28
  article-title: A study on the collision avoidance of a ship using neural networks and fuzzy logic
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2012.05.008
– volume: 20
  start-page: 645
  year: 2016
  ident: ref_40
  article-title: Pareto or Non-Pareto: Bi-Criterion Evolution in Multiobjective Optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2504730
– volume: 63
  start-page: 733
  year: 2010
  ident: ref_21
  article-title: An Intelligent Spatial Collision Risk Based on the Quaternion Ship Domain
  publication-title: J. Navig.
  doi: 10.1017/S0373463310000202
– volume: 73
  start-page: 971
  year: 2020
  ident: ref_25
  article-title: Distributed Multi-Objective Algorithm for Preventing Multi-Ship Collisions at Sea
  publication-title: J. Navig.
  doi: 10.1017/S0373463320000053
– volume: 182
  start-page: 499
  year: 2019
  ident: ref_18
  article-title: Ship trajectory uncertainty prediction based on a Gaussian Process model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.04.024
– volume: 147
  start-page: 340
  year: 2018
  ident: ref_9
  article-title: Fundamental diagram of ship traffic in the Singapore Strait
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.10.051
– volume: 17
  start-page: 760
  year: 1998
  ident: ref_38
  article-title: Motion Planning in Dynamic Environments Using Velocity Obstacles
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/027836499801700706
– volume: 17
  start-page: 721
  year: 2013
  ident: ref_39
  article-title: A Grid-Based Evolutionary Algorithm for Many-Objective Optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2227145
– volume: 126
  start-page: 47
  year: 2016
  ident: ref_14
  article-title: An analysis of domain-based ship collision risk parameters
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2016.08.030
– volume: 74
  start-page: 1284
  year: 2021
  ident: ref_17
  article-title: Automatic identification system data-driven model for analysis of ship domain near bridge-waters
  publication-title: J. Navig.
  doi: 10.1017/S0373463321000461
– ident: ref_27
  doi: 10.3390/jmse8121002
SSID ssj0000826106
Score 2.2942553
Snippet A ship collision risk assessment model is an essential part of ship safety navigation. At present, the open water collision risk assessment model (such as the...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1723
SubjectTerms Adaptability
AIS data
Algorithms
Barriers
closest point of approach
Collision avoidance
Collision dynamics
Compression
Evaluation
Indicators
Information processing
inland ships
Inland waterways
Intrusion
Methods
Navigation
Pareto selection
Risk
Risk assessment
Rivers
Robots
Ships
Velocity
velocity obstacle
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHkQQn7i-mIOepNgmbZMc1xd68IGr4q0kTYLroyt29Sf4u52k3WVFxIvXkLRlZpL5pmS-j5AdoxK0vTORFjqNUsrjSAqjwk0Ap7PcaBsHsQl-cSHu7-XVhNSXvxPW0AM3htvngvljNklMbhFcM1n6DIj72CRO0jy07sVcThRT4QxG1IzFTnPTnWFdv__4UtvEC6tzyr7loEDV_-MkDunlZIHMt7gQus33LJIpWy2RucvSqqollV4mn90xjSacB-VnOMAkZGBQQfesB0dqqAA3uA6iD4DQDu4sJisE2nCpEQbik0cLVWXgyivcDqAXpHDQP4AANqzyfxNCzzlc9-snGDg4q_wNSOg99F_rFXJ7cnxzeBq1OgpRyXI-jHLpXMpiJwwaLcl4zC2ziBStolZLmWW5YyJmpeOpkxmVlqKttVCZUblP6WyVTFeDyq4R0HGZW-OE00ykilutaGAIROCBA2nSIXsjyxZlSzLutS6eCyw2vB-KST90yO549mtDrvHLvAPvpPEcT4kdBjBQijZQir8CpUM2Ry4u2n1aF1iTC4oVH8_W_-MdG2SW-vaI0Ku4SaaHb-92i8yUH8N-_bYdQvQLgp_nvw
  priority: 102
  providerName: Directory of Open Access Journals
Title Assessment Method Based on AIS Data Combining the Velocity Obstacle Method and Pareto Selection for the Collision Risk of Inland Ships
URI https://www.proquest.com/docview/2748296675
https://doaj.org/article/783130311d6e48739c1554002d1f9269
Volume 10
WOSCitedRecordID wos000910819600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: PCBAR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: M7S
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: PATMY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2077-1312
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826106
  issn: 2077-1312
  databaseCode: PIMPY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZg44CQGD-1wqjeAU4oWmInsX1C7dhED-uiFdA4RXZss26QlKbwJ_B38-y6BYTgwtWxIyvv2e_zy_P3EfLcqAy_vTOJFjpPcsrTRAqjQiWA00VptE2D2ASfTsXFhaxiwq2PZZWbPTFs1KZrfI78EE9PgiI258WrxZfEq0b5v6tRQuMm2fVMZejnu-PjaXW-zbJggEN8UK4r3hme7w-vPvc28wLrnLLfYlGg7P9jRw5h5mTvfyd4j9yNABNGa4-4T27Y9gG5c9ZY1UZ26ofk-2jLxwmnQUIaxhjNDHQtjCYzeK1WCnCn0EE9AhAjwnuLUQ8RO5xpxJP45s1A1RqovFRuB7OgqYOGBkTCYZRPS4TL63A-76-hczBpfSklzC7ni_4ReXdy_PboTRIFGZKGlXyVlNK5nKVOGGo8SU_KLbMIOa2iVktZFKVjImWN47mTBZWWmtJqoQqjSo8N2GOy03at3Seg06a0xgmnmcgVt1rRQDWICAYb8mxAXm5MUzeRrdyLZnyq8dTiDVn_asgBebHtvVizdPyl39hbedvHc2uHhm75sY5LteaC-cCeZTh5PM4x2XjMhZHDZE7SUg7IwcYB6rjg-_qn9Z_8-_FTcpv6GxThOuMB2Vktv9pn5FbzbTXvl8Pov8OQGhj6QtQZtlWT0-rDD9dX_W8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRIIiW_EQgEfKBcUNbETxz5w2G2pumq7XbUF9Rbs2IblI1k2C4g_wM_hNzL2JgsIwa0HroltRc7LzBtnZh7AY6MS3HtnIi10GqU0jyMpjAqZAE5n3GgbB7GJfDwWZ2dysgbfu1oYn1bZ2cRgqE1d-jPyLYyeBEVunncZlPv26xeMz5pnox18mZuU7j4_3d6LWgmBqGQ8X0RcOpey2AlDjW8rE-eWWSRJVlGrpcwy7piIWeny1MmMSksNt1qozCjuvRnDdZ_MPkZepcr_zW0lOy7AuuAyzXqwPtkeDo5XpzroUJGP8GWGPWMy3nr7obGJF3TPKfvN9wWJgD88QHBru9f-tw25DldbAk0GS8TfgDVb3YQrR6VVVdt9-xZ8G6z6jZLDIJFNhuitDakrMhidkB21UAQtoQ7qGAQ5MHlp0atjREKONPJlXLmbqCpDJl4KuCYnQTMIgUyQ6YdZ_tglFOeT42nzjtSOjCqfKkpO3kxnzW14cS6bcwd6VV3Zu0B0XHJrnHCaiVTlVisaWikiQ8MLadKHpx0UirLtxu5FQd4XGJV54BS_AqcPm6vRs2UXkr-MG3pUrcb43uHhQj1_XbSmqMgF88QlSfDhMVxlsvScEj2jSZykXPZhowNc0Rq0pviJtnv_vv0ILu2dHh4UB6Px_n24TH21SCjd3IDeYv7JPoCL5efFtJk_bL8dAq_OG7A_APPnVZU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHUIIiW9ExwA_sCcUNbHzYT8g1FEqqrGuogNtT8GObSgbSdcUEH-AH8Wv49pNCgjB2x54dWwrco7vPde5vgfgkZYRrr3VgeIqDmKahYHgWvpMAKuSVCsTerGJbDzmR0disgHf27swLq2ytYneUOuqcGfkPYyeOEVuniU926RFTAbDp_OzwClIuT-trZzGCiJ75usXDN_qJ6MBfusdSofPD5-9CBqFgaBgabYMUmFtzELLNdWu6kyYGWaQQxlJjRIiSVLLeMgKm8VWJFQYqlOjuEy0TJ2zYzjvBdjkKe6bDmxO-of7x-sTHnSuyE3SVbY9YyLsffhYm8iJu2eU_eYHvVzAH97Au7jhtf95ca7D1YZYk_5qJ9yADVPehCsHhZFlU5X7Fnzrr-uQkn0vnU120YtrUpWkP5qSgVxKghZSedUMgtyYvDHo7TFSIQcKeTTO3A6UpSYTJxFckanXEkKAE4wA_Ch3HOMv7ZNXs_qEVJaMSpdCSqbvZ_P6Nrw-l5W4A52yKs1dICosUqMtt4rxWGZGSepLLCJzw4Y46sLjFhZ50VRpd2IhpzlGaw5E-a8g6sLOuvd8VZ3kL_12HcLWfVxNcd9QLd7ljYnKM84coYkifHkMY5koHNdEj6kjK2gqurDdgi9vDF2d_0Te1r8fP4RLCMn85Wi8dw8uU3eJxN_o3IbOcvHJ3IeLxeflrF48aLYRgbfnDc4fyfdekQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+Method+Based+on+AIS+Data+Combining+the+Velocity+Obstacle+Method+and+Pareto+Selection+for+the+Collision+Risk+of+Inland+Ships&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Wang%2C+Yan&rft.au=Zhang%2C+Yi&rft.au=Zhao%2C+Hengchao&rft.au=Wang%2C+Hongbo&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.eissn=2077-1312&rft.volume=10&rft.issue=11&rft.spage=1723&rft_id=info:doi/10.3390%2Fjmse10111723&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon