Gradient-Based Optimization Algorithm for Solving Sylvester Matrix Equation

In this paper, we transform the problem of solving the Sylvester matrix equation into an optimization problem through the Kronecker product primarily. We utilize the adaptive accelerated proximal gradient and Newton accelerated proximal gradient methods to solve the constrained non-convex minimizati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 10; číslo 7; s. 1040
Hlavní autoři: Zhang, Juan, Luo, Xiao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.04.2022
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we transform the problem of solving the Sylvester matrix equation into an optimization problem through the Kronecker product primarily. We utilize the adaptive accelerated proximal gradient and Newton accelerated proximal gradient methods to solve the constrained non-convex minimization problem. Their convergent properties are analyzed. Finally, we offer numerical examples to illustrate the effectiveness of the derived algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math10071040