Gradient-Based Optimization Algorithm for Solving Sylvester Matrix Equation
In this paper, we transform the problem of solving the Sylvester matrix equation into an optimization problem through the Kronecker product primarily. We utilize the adaptive accelerated proximal gradient and Newton accelerated proximal gradient methods to solve the constrained non-convex minimizati...
Uloženo v:
| Vydáno v: | Mathematics (Basel) Ročník 10; číslo 7; s. 1040 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.04.2022
|
| Témata: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we transform the problem of solving the Sylvester matrix equation into an optimization problem through the Kronecker product primarily. We utilize the adaptive accelerated proximal gradient and Newton accelerated proximal gradient methods to solve the constrained non-convex minimization problem. Their convergent properties are analyzed. Finally, we offer numerical examples to illustrate the effectiveness of the derived algorithms. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math10071040 |