Experimental studies on the terminal velocity of air bubbles in water and glycerol aqueous solution

•Experiments on the terminal rising velocity of air bubbles were carried out.•The behavior of the terminal velocity under various bubble diameters was discussed.•The accuracy of the correlations for predicting terminal velocity was evaluated. Terminal rising velocity of a single bubble in stagnant w...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Experimental thermal and fluid science Ročník 78; s. 254 - 265
Hlavní autori: Liu, Liu, Yan, Hongjie, Zhao, Guojian, Zhuang, Jiacai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.11.2016
Predmet:
ISSN:0894-1777, 1879-2286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Experiments on the terminal rising velocity of air bubbles were carried out.•The behavior of the terminal velocity under various bubble diameters was discussed.•The accuracy of the correlations for predicting terminal velocity was evaluated. Terminal rising velocity of a single bubble in stagnant water and glycerol aqueous solution was studied by the techniques of high-speed photography and digital image analysis. The results can be summarized as follows: In water, bubble terminal velocity increases while aspect ratio decreases almost linearly in the region where d<0.83mm. Then, both terminal velocity and aspect ratio begin to show a widely scattered trend with the bubble diameter in the range 0.83–6mm. Finally, the level of scattering tends to be weak and the terminal velocity increases gradually while the aspect ratio remains relatively stable when d>6mm. In the surface-tension-dominated regime, the aspect ratio of a single bubble varies significantly with the value fluctuating from 0.4 to 0.99. The aspect ratio should be taken into account with the bubble diameter when predicting the terminal velocity. In the inertia-dominated regime, the terminal velocity increases gradually with increasing the bubble diameter while their aspect ratios vary between 0.4 and 0.7. In the glycerin aqueous solution, as a whole, the terminal velocity increases with bubble diameter and the trend of the bubble velocity does not show a scattered behavior. In water, the most accurate model for predicting terminal velocity throughout the investigated range is given by Tomiyama et al. (2002), and then followed by Ishii and Chawla (1979).
AbstractList •Experiments on the terminal rising velocity of air bubbles were carried out.•The behavior of the terminal velocity under various bubble diameters was discussed.•The accuracy of the correlations for predicting terminal velocity was evaluated. Terminal rising velocity of a single bubble in stagnant water and glycerol aqueous solution was studied by the techniques of high-speed photography and digital image analysis. The results can be summarized as follows: In water, bubble terminal velocity increases while aspect ratio decreases almost linearly in the region where d<0.83mm. Then, both terminal velocity and aspect ratio begin to show a widely scattered trend with the bubble diameter in the range 0.83–6mm. Finally, the level of scattering tends to be weak and the terminal velocity increases gradually while the aspect ratio remains relatively stable when d>6mm. In the surface-tension-dominated regime, the aspect ratio of a single bubble varies significantly with the value fluctuating from 0.4 to 0.99. The aspect ratio should be taken into account with the bubble diameter when predicting the terminal velocity. In the inertia-dominated regime, the terminal velocity increases gradually with increasing the bubble diameter while their aspect ratios vary between 0.4 and 0.7. In the glycerin aqueous solution, as a whole, the terminal velocity increases with bubble diameter and the trend of the bubble velocity does not show a scattered behavior. In water, the most accurate model for predicting terminal velocity throughout the investigated range is given by Tomiyama et al. (2002), and then followed by Ishii and Chawla (1979).
Author Zhuang, Jiacai
Liu, Liu
Yan, Hongjie
Zhao, Guojian
Author_xml – sequence: 1
  givenname: Liu
  surname: Liu
  fullname: Liu, Liu
  email: znliuliu@163.com
– sequence: 2
  givenname: Hongjie
  surname: Yan
  fullname: Yan, Hongjie
  email: s-rfy@csu.edu.cn
– sequence: 3
  givenname: Guojian
  surname: Zhao
  fullname: Zhao, Guojian
  email: csu_zgj@163.com
– sequence: 4
  givenname: Jiacai
  orcidid: 0000-0003-2663-1305
  surname: Zhuang
  fullname: Zhuang, Jiacai
  email: zhuangjiacai1@163.com
BookMark eNqNkEFLAzEUhINUsK3-hxy8bk12t9ld8KKlVaHgRc_hbfpWU9KkJtna_ntT6kVPhYEHj5kPZkZkYJ1FQm45m3DGxd16gvtt_ES_6UwflJ7k6TthSZxfkCGvqybL81oMyJDVTZnxqqquyCiENWOszjkbEjXfb9HrDdoIhobYrzQG6ixNWBoTWdv036FxSscDdR0F7Wnbt61JPm3pNyQXBbuiH-ag0DtD4atH1wcanOmjdvaaXHZgAt783jF5X8zfZs_Z8vXpZfawzFQhqpgJBjkWddswVdYdCODTEjvBWsGRiw4KKKZcoUCoQDVtXud1i6qZTkULpeJNMSb3J67yLgSPndymZuAPkjN5HEyu5d_B5HEwyZI4T_HHf_FUGY4FogdtzoUsThBMRXcavUwOtApX2qOKcuX0eaAfkryZlw
CitedBy_id crossref_primary_10_3389_fenrg_2023_1041986
crossref_primary_10_1016_j_ces_2018_08_061
crossref_primary_10_1007_s40435_020_00641_y
crossref_primary_10_1016_j_ces_2025_122034
crossref_primary_10_1016_j_nucengdes_2017_04_006
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103818
crossref_primary_10_1016_j_anucene_2019_05_045
crossref_primary_10_1016_j_petsci_2023_02_014
crossref_primary_10_1080_19942060_2021_1876775
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104557
crossref_primary_10_3390_min13030417
crossref_primary_10_1016_j_cej_2019_04_158
crossref_primary_10_1002_srin_202200314
crossref_primary_10_1016_j_expthermflusci_2018_05_016
crossref_primary_10_1002_cite_202100145
crossref_primary_10_1016_j_wavemoti_2023_103227
crossref_primary_10_2298_TSCI210215250X
crossref_primary_10_1002_cjce_23610
crossref_primary_10_1016_j_enganabound_2019_04_002
crossref_primary_10_1038_s41526_022_00212_9
crossref_primary_10_1016_j_seppur_2022_122888
crossref_primary_10_1016_j_nucengdes_2022_111864
crossref_primary_10_1007_s12217_019_9673_6
crossref_primary_10_1016_j_watres_2022_119360
crossref_primary_10_1119_1_5085437
crossref_primary_10_1515_ijcre_2022_0065
crossref_primary_10_1016_j_ces_2022_117532
crossref_primary_10_1016_j_expthermflusci_2018_05_009
crossref_primary_10_3390_chemengineering6010004
crossref_primary_10_1016_j_expthermflusci_2023_110996
crossref_primary_10_1139_cjp_2019_0505
crossref_primary_10_1016_j_anucene_2019_02_020
crossref_primary_10_1139_er_2021_0127
crossref_primary_10_1007_s10665_019_09998_2
crossref_primary_10_1016_j_ijmultiphaseflow_2018_09_011
crossref_primary_10_1155_2019_2045751
crossref_primary_10_1002_cjce_25444
crossref_primary_10_1016_j_pnucene_2025_105896
crossref_primary_10_2298_TSCI220813204T
crossref_primary_10_1063_5_0253636
crossref_primary_10_1016_j_jcp_2019_05_003
crossref_primary_10_1016_j_ces_2025_122411
crossref_primary_10_1016_S1003_6326_18_64930_1
crossref_primary_10_1007_s11771_018_3971_9
crossref_primary_10_3390_pr8080999
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104257
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104736
crossref_primary_10_3390_fluids6120437
crossref_primary_10_1007_s11771_019_4154_z
crossref_primary_10_1016_j_ijhydene_2020_12_097
crossref_primary_10_1016_j_pnucene_2025_105609
crossref_primary_10_1016_j_expthermflusci_2017_07_009
crossref_primary_10_1016_j_ces_2018_07_034
crossref_primary_10_1007_s11663_020_01947_0
crossref_primary_10_1016_j_colsurfa_2021_127341
crossref_primary_10_1016_j_expthermflusci_2019_01_014
crossref_primary_10_1016_j_jnnfm_2025_105458
crossref_primary_10_1016_j_cherd_2021_02_029
crossref_primary_10_1039_D2RA06144A
crossref_primary_10_1175_JTECH_D_19_0137_1
crossref_primary_10_1016_j_ces_2025_122246
crossref_primary_10_1109_TIM_2025_3533662
crossref_primary_10_1016_j_mineng_2021_107188
crossref_primary_10_1016_j_gete_2024_100561
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104789
crossref_primary_10_1007_s12650_018_0494_2
crossref_primary_10_1016_j_cep_2018_03_001
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127450
crossref_primary_10_1007_s40962_019_00395_0
crossref_primary_10_1007_s42241_022_0012_9
crossref_primary_10_1016_j_mineng_2023_108043
crossref_primary_10_1016_j_icheatmasstransfer_2020_104557
crossref_primary_10_1063_5_0055804
crossref_primary_10_1016_j_seppur_2025_135181
Cites_doi 10.1016/j.cej.2007.11.015
10.1007/s11837-001-0054-3
10.1146/annurev-fluid-122109-160744
10.1016/0032-5910(86)80012-2
10.1016/0029-5493(95)01161-7
10.1016/S0301-9322(02)00032-0
10.1063/1.858501
10.1016/j.expthermflusci.2006.06.006
10.1109/TPAMI.1986.4767851
10.1146/annurev.fl.28.010196.000303
10.1016/j.expthermflusci.2014.11.018
10.1002/cjce.5450790118
10.1016/0301-9322(74)90003-2
10.1016/j.powtec.2011.03.025
10.1017/S002211208100311X
10.1016/j.expthermflusci.2005.08.006
10.1017/S0022112087003185
10.1117/12.807380
10.1007/s003480050104
10.1299/jsmeb.41.472
10.1016/j.flowmeasinst.2005.03.009
10.1007/s00348-009-0668-8
10.1016/j.ces.2012.06.061
10.1007/s10494-013-9510-8
10.1016/0301-7516(95)00088-7
10.1016/j.anucene.2013.09.020
10.1016/j.ces.2011.01.019
10.2355/isijinternational.35.1
10.1017/S0022112086000460
10.1016/j.ijmultiphaseflow.2013.08.009
10.1002/aic.690130213
10.1016/S0377-0257(96)01486-3
10.1016/j.ces.2013.04.013
10.1016/S0009-2509(01)00304-9
10.1061/TACEAT.0007317
10.1016/S0009-2509(99)00385-1
10.1016/j.ces.2013.04.050
10.1016/j.jcp.2007.12.002
10.1016/S0017-9310(02)00345-9
10.1016/j.ces.2004.01.063
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright_xml – notice: 2016 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.expthermflusci.2016.06.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2286
EndPage 265
ExternalDocumentID 10_1016_j_expthermflusci_2016_06_011
S089417771630156X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
UHS
VH1
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c367t-60a2e38b90c48fa6a154ef60b61e16fa3a351ce6ea7ac9b2828bec9556ba4c193
ISICitedReferencesCount 89
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381835200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0894-1777
IngestDate Tue Nov 18 19:52:41 EST 2025
Sat Nov 29 03:11:45 EST 2025
Fri Feb 23 02:31:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bubble dynamics
Empirical correlations
Aspect ratio
Bubble terminal velocity
Image processing algorithm
Drag coefficient
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-60a2e38b90c48fa6a154ef60b61e16fa3a351ce6ea7ac9b2828bec9556ba4c193
ORCID 0000-0003-2663-1305
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_expthermflusci_2016_06_011
crossref_citationtrail_10_1016_j_expthermflusci_2016_06_011
elsevier_sciencedirect_doi_10_1016_j_expthermflusci_2016_06_011
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Experimental thermal and fluid science
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Stokes (b0105) 1880
Wallis (b0145) 1974; 1
Aybers, Tapucu (b0180) 1969; 2
Otsu (b0230) 1979; 9
Sam, Gomez, Finch (b0185) 1996; 47
Mei, Klausner (b0155) 1992; 4
Rodrigue, De Kee, Fong (b0160) 1996; 66
Busciglio, Vella, Micale, Rizzuti (b0220) 2008; 140
Liu, Yan, Zhao (b0080) 2015; 62
Bongiovanni, Chevaillier, Fabre (b0245) 1997; 23
Celata, Cumo, D’Annibale, Di Marco, Tomiyama, Zovini (b0195) 2006; 31
Hua, Stene, Lin (b0085) 2008; 227
Turton, Levenspiel (b0150) 1986; 47
Bhaga, Weber (b0040) 1981; 105
Žun, Grošelj (b0020) 1996; 163
Tomiyama, Kataoka, Zun, Sakaguchi (b0165) 1998; 41
Pivello, Villar, Serfaty, Roma, Silveira-Neto (b0095) 2014; 58
Jamialahmadi, Branch, Müller-Steinhagen (b0125) 1994; 72
Peebles, Garber (b0140) 1953; 49
Mazumdar, Guthrie (b0010) 1995; 35
Nagami, Saito (b0075) 2014; 92
Zhang, McLaughlin, Finch (b0190) 2001; 56
Yu, Yang, Fan (b0090) 2011; 66
Aybers, Tapucu (b0175) 1969; 2
Shen, Johnsson, Leckner (b0210) 2004; 59
Rodrigue (b0170) 2001; 79
Mendelson (b0120) 1967; 13
Maldonado, Quinn, Gomez, Finch (b0065) 2013; 98
Davies, Taylor (b0110) 1950
Raymond, Rosant (b0055) 2000; 55
R. Clift, J. Grace, M. Weber, Bubbles, Drops, and Particles, 1978.
Canny (b0240) 1986; 8
H. Wang, F. Dong, Track of rising bubble in bubbling tower based on image processing of high-speed video, in: Seventh International Symposium on Instrumentation and Control Technology, International Society for Optics and Photonics, 2008, pp. 712907-712907-712906.
Grace, Wairegi, Nguyen (b0030) 1976; 54
Celata, D’Annibale, Di Marco, Memoli, Tomiyama (b0200) 2007; 31
Peters, Els (b0260) 2012; 82
Crowe, Troutt, Chung (b0015) 1996; 28
Fan, Tsuchiya (b0130) 1990
Zeng, Cai (b0100) 2014; 63
Haberman, Morton (b0115) 1956; 121
Lezzi, Prosperetti (b0050) 1987; 185
A. Tomiyama, Drag, lift and virtual mass force acting on a single bubble, in: 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, 2004, Pisa, 2004, pp. 3–12.
Asegehegn, Schreiber, Krautz (b0225) 2011; 210
Dehaeck, Van Parys, Hubin, Van Beeck (b0250) 2009; 47
Okawa, Tanaka, Kataoka, Mori (b0205) 2003; 46
Prosperetti, Lezzi (b0045) 1986; 168
Manning, Fruehan (b0005) 2001; 53
Ishii, Chawla (b0135) 1979
Mikaelian, Larcy, Dehaeck (b0070) 2013; 100
Ranjan, Oakley, Bonazza (b0025) 2011; 43
Zaruba, Krepper, Prasser, Vanga (b0215) 2005; 16
Tomiyama, Celata, Hosokawa, Yoshida (b0060) 2002; 28
Haberman (10.1016/j.expthermflusci.2016.06.011_b0115) 1956; 121
Rodrigue (10.1016/j.expthermflusci.2016.06.011_b0170) 2001; 79
Okawa (10.1016/j.expthermflusci.2016.06.011_b0205) 2003; 46
10.1016/j.expthermflusci.2016.06.011_b0255
Mazumdar (10.1016/j.expthermflusci.2016.06.011_b0010) 1995; 35
Žun (10.1016/j.expthermflusci.2016.06.011_b0020) 1996; 163
Sam (10.1016/j.expthermflusci.2016.06.011_b0185) 1996; 47
Peters (10.1016/j.expthermflusci.2016.06.011_b0260) 2012; 82
Aybers (10.1016/j.expthermflusci.2016.06.011_b0175) 1969; 2
Lezzi (10.1016/j.expthermflusci.2016.06.011_b0050) 1987; 185
Raymond (10.1016/j.expthermflusci.2016.06.011_b0055) 2000; 55
Pivello (10.1016/j.expthermflusci.2016.06.011_b0095) 2014; 58
Zaruba (10.1016/j.expthermflusci.2016.06.011_b0215) 2005; 16
Maldonado (10.1016/j.expthermflusci.2016.06.011_b0065) 2013; 98
Shen (10.1016/j.expthermflusci.2016.06.011_b0210) 2004; 59
Mei (10.1016/j.expthermflusci.2016.06.011_b0155) 1992; 4
Jamialahmadi (10.1016/j.expthermflusci.2016.06.011_b0125) 1994; 72
Davies (10.1016/j.expthermflusci.2016.06.011_b0110) 1950
Celata (10.1016/j.expthermflusci.2016.06.011_b0200) 2007; 31
Yu (10.1016/j.expthermflusci.2016.06.011_b0090) 2011; 66
Bhaga (10.1016/j.expthermflusci.2016.06.011_b0040) 1981; 105
Tomiyama (10.1016/j.expthermflusci.2016.06.011_b0165) 1998; 41
Otsu (10.1016/j.expthermflusci.2016.06.011_b0230) 1979; 9
Turton (10.1016/j.expthermflusci.2016.06.011_b0150) 1986; 47
10.1016/j.expthermflusci.2016.06.011_b0235
Crowe (10.1016/j.expthermflusci.2016.06.011_b0015) 1996; 28
10.1016/j.expthermflusci.2016.06.011_b0035
Prosperetti (10.1016/j.expthermflusci.2016.06.011_b0045) 1986; 168
Fan (10.1016/j.expthermflusci.2016.06.011_b0130) 1990
Ranjan (10.1016/j.expthermflusci.2016.06.011_b0025) 2011; 43
Wallis (10.1016/j.expthermflusci.2016.06.011_b0145) 1974; 1
Busciglio (10.1016/j.expthermflusci.2016.06.011_b0220) 2008; 140
Asegehegn (10.1016/j.expthermflusci.2016.06.011_b0225) 2011; 210
Mendelson (10.1016/j.expthermflusci.2016.06.011_b0120) 1967; 13
Tomiyama (10.1016/j.expthermflusci.2016.06.011_b0060) 2002; 28
Rodrigue (10.1016/j.expthermflusci.2016.06.011_b0160) 1996; 66
Aybers (10.1016/j.expthermflusci.2016.06.011_b0180) 1969; 2
Celata (10.1016/j.expthermflusci.2016.06.011_b0195) 2006; 31
Zeng (10.1016/j.expthermflusci.2016.06.011_b0100) 2014; 63
Grace (10.1016/j.expthermflusci.2016.06.011_b0030) 1976; 54
Nagami (10.1016/j.expthermflusci.2016.06.011_b0075) 2014; 92
Ishii (10.1016/j.expthermflusci.2016.06.011_b0135) 1979
Dehaeck (10.1016/j.expthermflusci.2016.06.011_b0250) 2009; 47
Zhang (10.1016/j.expthermflusci.2016.06.011_b0190) 2001; 56
Bongiovanni (10.1016/j.expthermflusci.2016.06.011_b0245) 1997; 23
Liu (10.1016/j.expthermflusci.2016.06.011_b0080) 2015; 62
Canny (10.1016/j.expthermflusci.2016.06.011_b0240) 1986; 8
Peebles (10.1016/j.expthermflusci.2016.06.011_b0140) 1953; 49
Hua (10.1016/j.expthermflusci.2016.06.011_b0085) 2008; 227
Stokes (10.1016/j.expthermflusci.2016.06.011_b0105) 1880
Manning (10.1016/j.expthermflusci.2016.06.011_b0005) 2001; 53
Mikaelian (10.1016/j.expthermflusci.2016.06.011_b0070) 2013; 100
References_xml – volume: 72
  start-page: 119
  year: 1994
  end-page: 122
  ident: b0125
  article-title: Terminal bubble rise velocity in liquids
  publication-title: Chem. Eng. Res. Des.
– year: 1990
  ident: b0130
  article-title: Bubble Wake Dynamics in Liquids and Liquid-solid Suspensions
– volume: 59
  start-page: 2607
  year: 2004
  end-page: 2617
  ident: b0210
  article-title: Digital image analysis of hydrodynamics two-dimensional bubbling fluidized beds
  publication-title: Chem. Eng. Sci.
– volume: 79
  start-page: 119
  year: 2001
  end-page: 123
  ident: b0170
  article-title: Drag coefficient-Reynolds number transition for gas bubbles rising steadily in viscous fluids
  publication-title: Can. J. Chem. Eng.
– volume: 98
  start-page: 7
  year: 2013
  end-page: 11
  ident: b0065
  article-title: An experimental study examining the relationship between bubble shape and rise velocity
  publication-title: Chem. Eng. Sci.
– volume: 63
  start-page: 680
  year: 2014
  end-page: 690
  ident: b0100
  article-title: Three-dimension simulation of bubble behavior under nonlinear oscillation
  publication-title: Ann. Nucl. Energy
– volume: 47
  start-page: 333
  year: 2009
  end-page: 341
  ident: b0250
  article-title: Laser marked shadowgraphy: a novel optical planar technique for the study of microbubbles and droplets
  publication-title: Exp. Fluids
– volume: 121
  start-page: 227
  year: 1956
  end-page: 250
  ident: b0115
  article-title: An experimental study of bubbles moving in liquids
  publication-title: Trans. Am. Soc. Civ. Eng.
– volume: 66
  start-page: 3441
  year: 2011
  end-page: 3451
  ident: b0090
  article-title: Numerical simulation of bubble interactions using an adaptive lattice Boltzmann method
  publication-title: Chem. Eng. Sci.
– volume: 66
  start-page: 213
  year: 1996
  end-page: 232
  ident: b0160
  article-title: An experimental study of the effect of surfactants on the free rise velocity of gas bubbles
  publication-title: J. Non-Newton. Fluid
– volume: 210
  start-page: 248
  year: 2011
  end-page: 260
  ident: b0225
  article-title: Investigation of bubble behavior in fluidized beds with and without immersed horizontal tubes using a digital image analysis technique
  publication-title: Powder Technol.
– volume: 31
  start-page: 37
  year: 2006
  end-page: 53
  ident: b0195
  article-title: Effect of gas injection mode and purity of liquid on bubble rising in two-component systems
  publication-title: Exp. Therm. Fluid Sci.
– volume: 47
  start-page: 83
  year: 1986
  end-page: 86
  ident: b0150
  article-title: A short note on the drag correlation for spheres
  publication-title: Powder Technol.
– start-page: 375
  year: 1950
  end-page: 390
  ident: b0110
  article-title: The mechanics of large bubbles rising through extended liquids and through liquids in tubes
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 49
  start-page: 88
  year: 1953
  end-page: 97
  ident: b0140
  article-title: Studies on the motion of gas bubbles in liquids
  publication-title: Chem. Eng. Prog.
– volume: 227
  start-page: 3358
  year: 2008
  end-page: 3382
  ident: b0085
  article-title: Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method
  publication-title: J. Comput. Phys.
– volume: 105
  start-page: 61
  year: 1981
  end-page: 85
  ident: b0040
  article-title: Bubbles in viscous liquids: shapes, wakes and velocities
  publication-title: J. Fluid Mech.
– volume: 62
  start-page: 109
  year: 2015
  end-page: 121
  ident: b0080
  article-title: Experimental studies on the shape and motion of air bubbles in viscous liquids
  publication-title: Exp. Therm. Fluid Sci.
– volume: 13
  start-page: 250
  year: 1967
  end-page: 253
  ident: b0120
  article-title: The prediction of bubble terminal velocities from wave theory
  publication-title: AIChE J.
– volume: 55
  start-page: 943
  year: 2000
  end-page: 955
  ident: b0055
  article-title: A numerical and experimental study of the terminal velocity and shape of bubbles in viscous liquids
  publication-title: Chem. Eng. Sci.
– volume: 35
  start-page: 1
  year: 1995
  end-page: 20
  ident: b0010
  article-title: The physical and mathematical modelling of gas stirred ladle systems
  publication-title: ISIJ Int.
– volume: 41
  start-page: 472
  year: 1998
  end-page: 479
  ident: b0165
  article-title: Drag coefficients of single bubbles under normal and micro gravity conditions
  publication-title: JSME Int. J. B – Fluid Therm. Eng.
– volume: 46
  start-page: 903
  year: 2003
  end-page: 913
  ident: b0205
  article-title: Temperature effect on single bubble rise characteristics in stagnant distilled water
  publication-title: Int. J. Heat Mass Transf.
– volume: 2
  start-page: 118
  year: 1969
  end-page: 128
  ident: b0175
  article-title: The motion of gas bubbles rising through stagnant liquid
  publication-title: Heat Mass Transf.
– volume: 47
  start-page: 177
  year: 1996
  end-page: 196
  ident: b0185
  article-title: Axial velocity profiles of single bubbles in water/frother solutions
  publication-title: Int. J. Miner. Process.
– volume: 23
  start-page: 209
  year: 1997
  end-page: 216
  ident: b0245
  article-title: Sizing of bubbles by incoherent imaging: defocus bias
  publication-title: Exp. Fluids
– reference: A. Tomiyama, Drag, lift and virtual mass force acting on a single bubble, in: 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, 2004, Pisa, 2004, pp. 3–12.
– volume: 53
  start-page: 36
  year: 2001
  end-page: 43
  ident: b0005
  article-title: Emerging technologies for iron and steelmaking
  publication-title: JOM
– volume: 58
  start-page: 72
  year: 2014
  end-page: 82
  ident: b0095
  article-title: A fully adaptive front tracking method for the simulation of two phase flows
  publication-title: Int. J. Multiphase Flow
– volume: 31
  start-page: 609
  year: 2007
  end-page: 623
  ident: b0200
  article-title: Measurements of rising velocity of a small bubble in a stagnant fluid in one-and two-component systems
  publication-title: Exp. Therm. Fluid Sci.
– volume: 28
  start-page: 11
  year: 1996
  end-page: 43
  ident: b0015
  article-title: Numerical models for two-phase turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 4
  start-page: 63
  year: 1992
  end-page: 70
  ident: b0155
  article-title: Unsteady force on a spherical bubble at finite Reynolds number with small fluctuations in the free-stream velocity
  publication-title: Phys. Fluids A
– volume: 8
  start-page: 679
  year: 1986
  end-page: 698
  ident: b0240
  article-title: A computational approach to edge detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 43
  start-page: 117
  year: 2011
  end-page: 140
  ident: b0025
  article-title: Shock-bubble interactions
  publication-title: Annu. Rev. Fluid Mech.
– year: 1880
  ident: b0105
  article-title: Mathematical and Physical Papers
– year: 1979
  ident: b0135
  article-title: Local drag laws in dispersed two-phase flow
– volume: 185
  start-page: 289
  year: 1987
  end-page: 321
  ident: b0050
  article-title: Bubble dynamics in a compressible liquid. Part 2. Second-order theory
  publication-title: J. Fluid Mech.
– volume: 163
  start-page: 99
  year: 1996
  end-page: 115
  ident: b0020
  article-title: The structure of bubble non-equilibrium movement in free-rise and agitated-rise conditions
  publication-title: Nucl. Eng. Des.
– reference: R. Clift, J. Grace, M. Weber, Bubbles, Drops, and Particles, 1978.
– volume: 2
  start-page: 171
  year: 1969
  end-page: 177
  ident: b0180
  article-title: Reynolds number transition for gas bubbles rising steadily in viscous fluids studies on the drag and shape of gas bubbles rising through a stagnant liquid
  publication-title: Heat Mass Transf.
– volume: 16
  start-page: 277
  year: 2005
  end-page: 287
  ident: b0215
  article-title: Experimental study on bubble motion in a rectangular bubble column using high-speed video observations
  publication-title: Flow Meas. Instrum.
– volume: 56
  start-page: 6605
  year: 2001
  end-page: 6616
  ident: b0190
  article-title: Bubble velocity profile and model of surfactant mass transfer to bubble surface
  publication-title: Chem. Eng. Sci.
– volume: 82
  start-page: 194
  year: 2012
  end-page: 199
  ident: b0260
  article-title: An experimental study on slow and fast bubbles in tap water
  publication-title: Chem. Eng. Sci.
– volume: 140
  start-page: 398
  year: 2008
  end-page: 413
  ident: b0220
  article-title: Analysis of the bubbling behaviour of 2D gas solid fluidized beds: Part I. Digital image analysis technique
  publication-title: Chem. Eng. J.
– volume: 168
  start-page: 457
  year: 1986
  end-page: 478
  ident: b0045
  article-title: Bubble dynamics in a compressible liquid. Part 1. First-order theory
  publication-title: J. Fluid Mech.
– volume: 28
  start-page: 1497
  year: 2002
  end-page: 1519
  ident: b0060
  article-title: Terminal velocity of single bubbles in surface tension force dominant regime
  publication-title: Int. J. Multiphase Flow
– volume: 100
  start-page: 529
  year: 2013
  end-page: 538
  ident: b0070
  article-title: A new experimental method to analyze the dynamics and the morphology of bubbles in liquids: application to single ellipsoidal bubbles
  publication-title: Chem. Eng. Sci.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b0230
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. SMC
– volume: 54
  start-page: 167
  year: 1976
  end-page: 173
  ident: b0030
  article-title: Shapes and velocities of single drops and bubbles moving freely through immiscible liquids
  publication-title: Trans. Inst. Chem. Eng.
– reference: H. Wang, F. Dong, Track of rising bubble in bubbling tower based on image processing of high-speed video, in: Seventh International Symposium on Instrumentation and Control Technology, International Society for Optics and Photonics, 2008, pp. 712907-712907-712906.
– volume: 1
  start-page: 491
  year: 1974
  end-page: 511
  ident: b0145
  article-title: The terminal speed of single drops or bubbles in an infinite medium
  publication-title: Int. J. Multiphase Flow
– volume: 92
  start-page: 147
  year: 2014
  end-page: 174
  ident: b0075
  article-title: An experimental study of the modulation of the bubble motion by gas–liquid-phase interaction in oscillating-grid decaying turbulence
  publication-title: Flow Turbul. Combust.
– year: 1979
  ident: 10.1016/j.expthermflusci.2016.06.011_b0135
– volume: 140
  start-page: 398
  year: 2008
  ident: 10.1016/j.expthermflusci.2016.06.011_b0220
  article-title: Analysis of the bubbling behaviour of 2D gas solid fluidized beds: Part I. Digital image analysis technique
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2007.11.015
– volume: 53
  start-page: 36
  year: 2001
  ident: 10.1016/j.expthermflusci.2016.06.011_b0005
  article-title: Emerging technologies for iron and steelmaking
  publication-title: JOM
  doi: 10.1007/s11837-001-0054-3
– volume: 43
  start-page: 117
  year: 2011
  ident: 10.1016/j.expthermflusci.2016.06.011_b0025
  article-title: Shock-bubble interactions
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122109-160744
– volume: 47
  start-page: 83
  year: 1986
  ident: 10.1016/j.expthermflusci.2016.06.011_b0150
  article-title: A short note on the drag correlation for spheres
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(86)80012-2
– volume: 163
  start-page: 99
  year: 1996
  ident: 10.1016/j.expthermflusci.2016.06.011_b0020
  article-title: The structure of bubble non-equilibrium movement in free-rise and agitated-rise conditions
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(95)01161-7
– volume: 28
  start-page: 1497
  year: 2002
  ident: 10.1016/j.expthermflusci.2016.06.011_b0060
  article-title: Terminal velocity of single bubbles in surface tension force dominant regime
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/S0301-9322(02)00032-0
– year: 1880
  ident: 10.1016/j.expthermflusci.2016.06.011_b0105
– volume: 4
  start-page: 63
  year: 1992
  ident: 10.1016/j.expthermflusci.2016.06.011_b0155
  article-title: Unsteady force on a spherical bubble at finite Reynolds number with small fluctuations in the free-stream velocity
  publication-title: Phys. Fluids A
  doi: 10.1063/1.858501
– volume: 54
  start-page: 167
  year: 1976
  ident: 10.1016/j.expthermflusci.2016.06.011_b0030
  article-title: Shapes and velocities of single drops and bubbles moving freely through immiscible liquids
  publication-title: Trans. Inst. Chem. Eng.
– volume: 31
  start-page: 609
  year: 2007
  ident: 10.1016/j.expthermflusci.2016.06.011_b0200
  article-title: Measurements of rising velocity of a small bubble in a stagnant fluid in one-and two-component systems
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2006.06.006
– volume: 8
  start-page: 679
  year: 1986
  ident: 10.1016/j.expthermflusci.2016.06.011_b0240
  article-title: A computational approach to edge detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767851
– volume: 28
  start-page: 11
  year: 1996
  ident: 10.1016/j.expthermflusci.2016.06.011_b0015
  article-title: Numerical models for two-phase turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.28.010196.000303
– year: 1990
  ident: 10.1016/j.expthermflusci.2016.06.011_b0130
– volume: 62
  start-page: 109
  year: 2015
  ident: 10.1016/j.expthermflusci.2016.06.011_b0080
  article-title: Experimental studies on the shape and motion of air bubbles in viscous liquids
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2014.11.018
– volume: 2
  start-page: 118
  year: 1969
  ident: 10.1016/j.expthermflusci.2016.06.011_b0175
  article-title: The motion of gas bubbles rising through stagnant liquid
  publication-title: Heat Mass Transf.
– volume: 79
  start-page: 119
  year: 2001
  ident: 10.1016/j.expthermflusci.2016.06.011_b0170
  article-title: Drag coefficient-Reynolds number transition for gas bubbles rising steadily in viscous fluids
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450790118
– volume: 1
  start-page: 491
  year: 1974
  ident: 10.1016/j.expthermflusci.2016.06.011_b0145
  article-title: The terminal speed of single drops or bubbles in an infinite medium
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/0301-9322(74)90003-2
– volume: 210
  start-page: 248
  year: 2011
  ident: 10.1016/j.expthermflusci.2016.06.011_b0225
  article-title: Investigation of bubble behavior in fluidized beds with and without immersed horizontal tubes using a digital image analysis technique
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2011.03.025
– ident: 10.1016/j.expthermflusci.2016.06.011_b0255
– volume: 72
  start-page: 119
  year: 1994
  ident: 10.1016/j.expthermflusci.2016.06.011_b0125
  article-title: Terminal bubble rise velocity in liquids
  publication-title: Chem. Eng. Res. Des.
– volume: 105
  start-page: 61
  year: 1981
  ident: 10.1016/j.expthermflusci.2016.06.011_b0040
  article-title: Bubbles in viscous liquids: shapes, wakes and velocities
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211208100311X
– volume: 31
  start-page: 37
  year: 2006
  ident: 10.1016/j.expthermflusci.2016.06.011_b0195
  article-title: Effect of gas injection mode and purity of liquid on bubble rising in two-component systems
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2005.08.006
– volume: 185
  start-page: 289
  year: 1987
  ident: 10.1016/j.expthermflusci.2016.06.011_b0050
  article-title: Bubble dynamics in a compressible liquid. Part 2. Second-order theory
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112087003185
– ident: 10.1016/j.expthermflusci.2016.06.011_b0235
  doi: 10.1117/12.807380
– volume: 23
  start-page: 209
  year: 1997
  ident: 10.1016/j.expthermflusci.2016.06.011_b0245
  article-title: Sizing of bubbles by incoherent imaging: defocus bias
  publication-title: Exp. Fluids
  doi: 10.1007/s003480050104
– volume: 41
  start-page: 472
  year: 1998
  ident: 10.1016/j.expthermflusci.2016.06.011_b0165
  article-title: Drag coefficients of single bubbles under normal and micro gravity conditions
  publication-title: JSME Int. J. B – Fluid Therm. Eng.
  doi: 10.1299/jsmeb.41.472
– volume: 9
  start-page: 62
  year: 1979
  ident: 10.1016/j.expthermflusci.2016.06.011_b0230
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. SMC
– volume: 16
  start-page: 277
  year: 2005
  ident: 10.1016/j.expthermflusci.2016.06.011_b0215
  article-title: Experimental study on bubble motion in a rectangular bubble column using high-speed video observations
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2005.03.009
– volume: 47
  start-page: 333
  year: 2009
  ident: 10.1016/j.expthermflusci.2016.06.011_b0250
  article-title: Laser marked shadowgraphy: a novel optical planar technique for the study of microbubbles and droplets
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-009-0668-8
– volume: 82
  start-page: 194
  year: 2012
  ident: 10.1016/j.expthermflusci.2016.06.011_b0260
  article-title: An experimental study on slow and fast bubbles in tap water
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.06.061
– start-page: 375
  year: 1950
  ident: 10.1016/j.expthermflusci.2016.06.011_b0110
  article-title: The mechanics of large bubbles rising through extended liquids and through liquids in tubes
– volume: 92
  start-page: 147
  year: 2014
  ident: 10.1016/j.expthermflusci.2016.06.011_b0075
  article-title: An experimental study of the modulation of the bubble motion by gas–liquid-phase interaction in oscillating-grid decaying turbulence
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-013-9510-8
– volume: 47
  start-page: 177
  year: 1996
  ident: 10.1016/j.expthermflusci.2016.06.011_b0185
  article-title: Axial velocity profiles of single bubbles in water/frother solutions
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/0301-7516(95)00088-7
– volume: 63
  start-page: 680
  year: 2014
  ident: 10.1016/j.expthermflusci.2016.06.011_b0100
  article-title: Three-dimension simulation of bubble behavior under nonlinear oscillation
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2013.09.020
– ident: 10.1016/j.expthermflusci.2016.06.011_b0035
– volume: 66
  start-page: 3441
  year: 2011
  ident: 10.1016/j.expthermflusci.2016.06.011_b0090
  article-title: Numerical simulation of bubble interactions using an adaptive lattice Boltzmann method
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.01.019
– volume: 35
  start-page: 1
  year: 1995
  ident: 10.1016/j.expthermflusci.2016.06.011_b0010
  article-title: The physical and mathematical modelling of gas stirred ladle systems
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.35.1
– volume: 168
  start-page: 457
  year: 1986
  ident: 10.1016/j.expthermflusci.2016.06.011_b0045
  article-title: Bubble dynamics in a compressible liquid. Part 1. First-order theory
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112086000460
– volume: 58
  start-page: 72
  year: 2014
  ident: 10.1016/j.expthermflusci.2016.06.011_b0095
  article-title: A fully adaptive front tracking method for the simulation of two phase flows
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2013.08.009
– volume: 13
  start-page: 250
  year: 1967
  ident: 10.1016/j.expthermflusci.2016.06.011_b0120
  article-title: The prediction of bubble terminal velocities from wave theory
  publication-title: AIChE J.
  doi: 10.1002/aic.690130213
– volume: 66
  start-page: 213
  year: 1996
  ident: 10.1016/j.expthermflusci.2016.06.011_b0160
  article-title: An experimental study of the effect of surfactants on the free rise velocity of gas bubbles
  publication-title: J. Non-Newton. Fluid
  doi: 10.1016/S0377-0257(96)01486-3
– volume: 49
  start-page: 88
  year: 1953
  ident: 10.1016/j.expthermflusci.2016.06.011_b0140
  article-title: Studies on the motion of gas bubbles in liquids
  publication-title: Chem. Eng. Prog.
– volume: 100
  start-page: 529
  year: 2013
  ident: 10.1016/j.expthermflusci.2016.06.011_b0070
  article-title: A new experimental method to analyze the dynamics and the morphology of bubbles in liquids: application to single ellipsoidal bubbles
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.04.013
– volume: 56
  start-page: 6605
  year: 2001
  ident: 10.1016/j.expthermflusci.2016.06.011_b0190
  article-title: Bubble velocity profile and model of surfactant mass transfer to bubble surface
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(01)00304-9
– volume: 121
  start-page: 227
  year: 1956
  ident: 10.1016/j.expthermflusci.2016.06.011_b0115
  article-title: An experimental study of bubbles moving in liquids
  publication-title: Trans. Am. Soc. Civ. Eng.
  doi: 10.1061/TACEAT.0007317
– volume: 2
  start-page: 171
  year: 1969
  ident: 10.1016/j.expthermflusci.2016.06.011_b0180
  article-title: Reynolds number transition for gas bubbles rising steadily in viscous fluids studies on the drag and shape of gas bubbles rising through a stagnant liquid
  publication-title: Heat Mass Transf.
– volume: 55
  start-page: 943
  year: 2000
  ident: 10.1016/j.expthermflusci.2016.06.011_b0055
  article-title: A numerical and experimental study of the terminal velocity and shape of bubbles in viscous liquids
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(99)00385-1
– volume: 98
  start-page: 7
  year: 2013
  ident: 10.1016/j.expthermflusci.2016.06.011_b0065
  article-title: An experimental study examining the relationship between bubble shape and rise velocity
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.04.050
– volume: 227
  start-page: 3358
  year: 2008
  ident: 10.1016/j.expthermflusci.2016.06.011_b0085
  article-title: Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.12.002
– volume: 46
  start-page: 903
  year: 2003
  ident: 10.1016/j.expthermflusci.2016.06.011_b0205
  article-title: Temperature effect on single bubble rise characteristics in stagnant distilled water
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(02)00345-9
– volume: 59
  start-page: 2607
  year: 2004
  ident: 10.1016/j.expthermflusci.2016.06.011_b0210
  article-title: Digital image analysis of hydrodynamics two-dimensional bubbling fluidized beds
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.01.063
SSID ssj0008210
Score 2.4527674
Snippet •Experiments on the terminal rising velocity of air bubbles were carried out.•The behavior of the terminal velocity under various bubble diameters was...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 254
SubjectTerms Aspect ratio
Bubble dynamics
Bubble terminal velocity
Drag coefficient
Empirical correlations
Image processing algorithm
Title Experimental studies on the terminal velocity of air bubbles in water and glycerol aqueous solution
URI https://dx.doi.org/10.1016/j.expthermflusci.2016.06.011
Volume 78
WOSCitedRecordID wos000381835200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008210
  issn: 0894-1777
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpJT2UPoKTV_okJsxWH7INj2UULZNQwmFprDkYiStnHhx7WWzTtMf1P_ZkTVyvLSFLaUXs5i1JWs-z4zGnz4RcpBIwVTCNUxLWObHUs99iOuxzzULQ12mZSp7EdeP6clJNpvlnyaTH24tzFWdNk12fZ0v_6up4RwY2yyd_QtzDzeFE_AbjA5HMDsctzL8dKzZf2lpgvhJwEPqS-0ZppBCNoaoVp7spKx7bpb3TRjdRFNPP6-_K2147AKCh6HKuo5vlPPHzZls8iuqD5R1V809jLAD76fqbCWgG9yNrcAetc35ohr-d3Yh-hru-65djAB8dtFhffu4EkpU45oF47h4byikucU0G1zPIMtjn6W4q4u2_jhLcz8MUS0bHbbd88d5XKtBjcE7tBtP_BIXbIliAQFv2Y8EDAE8v2H28V6-FR3-pvL2Z9Mj0yHIWc2K89ktshumSQ7Oc_fww3R2PIT8LOxlL4YnuEMOboiEf27z97nQKL85fUDu48SEHlpAPSQT3Twi90ZylY-JGtuaIrRo21BomDpoUQct2pYUoEURWrRqaA8tCuCgDloUoUUdtJ6QL--mp2-PfNykw1cRT9c-D0Soo0zmgYqzUnABObkueSA504yXIhJRwpTmWqRC5dLM8MFt5EnCpYgVTB_2yE7TNvopoXNhVp6VouTmc3w0lxGk5yoJoAWehHO9T1674SoUKtibjVTqwlEVF8XmYBdmsAvD3GRsnyTD1Uur5LLldW-cZQp8Z2y2WQC4trrDs3--w3Ny9-Y1ekF21qtOvyS31dW6uly9QjT-BBnlwwk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+studies+on+the+terminal+velocity+of+air+bubbles+in+water+and+glycerol+aqueous+solution&rft.jtitle=Experimental+thermal+and+fluid+science&rft.au=Liu%2C+Liu&rft.au=Yan%2C+Hongjie&rft.au=Zhao%2C+Guojian&rft.au=Zhuang%2C+Jiacai&rft.date=2016-11-01&rft.pub=Elsevier+Inc&rft.issn=0894-1777&rft.eissn=1879-2286&rft.volume=78&rft.spage=254&rft.epage=265&rft_id=info:doi/10.1016%2Fj.expthermflusci.2016.06.011&rft.externalDocID=S089417771630156X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1777&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1777&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1777&client=summon