Experimental studies on the terminal velocity of air bubbles in water and glycerol aqueous solution
•Experiments on the terminal rising velocity of air bubbles were carried out.•The behavior of the terminal velocity under various bubble diameters was discussed.•The accuracy of the correlations for predicting terminal velocity was evaluated. Terminal rising velocity of a single bubble in stagnant w...
Uložené v:
| Vydané v: | Experimental thermal and fluid science Ročník 78; s. 254 - 265 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.11.2016
|
| Predmet: | |
| ISSN: | 0894-1777, 1879-2286 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Experiments on the terminal rising velocity of air bubbles were carried out.•The behavior of the terminal velocity under various bubble diameters was discussed.•The accuracy of the correlations for predicting terminal velocity was evaluated.
Terminal rising velocity of a single bubble in stagnant water and glycerol aqueous solution was studied by the techniques of high-speed photography and digital image analysis. The results can be summarized as follows: In water, bubble terminal velocity increases while aspect ratio decreases almost linearly in the region where d<0.83mm. Then, both terminal velocity and aspect ratio begin to show a widely scattered trend with the bubble diameter in the range 0.83–6mm. Finally, the level of scattering tends to be weak and the terminal velocity increases gradually while the aspect ratio remains relatively stable when d>6mm. In the surface-tension-dominated regime, the aspect ratio of a single bubble varies significantly with the value fluctuating from 0.4 to 0.99. The aspect ratio should be taken into account with the bubble diameter when predicting the terminal velocity. In the inertia-dominated regime, the terminal velocity increases gradually with increasing the bubble diameter while their aspect ratios vary between 0.4 and 0.7. In the glycerin aqueous solution, as a whole, the terminal velocity increases with bubble diameter and the trend of the bubble velocity does not show a scattered behavior. In water, the most accurate model for predicting terminal velocity throughout the investigated range is given by Tomiyama et al. (2002), and then followed by Ishii and Chawla (1979). |
|---|---|
| AbstractList | •Experiments on the terminal rising velocity of air bubbles were carried out.•The behavior of the terminal velocity under various bubble diameters was discussed.•The accuracy of the correlations for predicting terminal velocity was evaluated.
Terminal rising velocity of a single bubble in stagnant water and glycerol aqueous solution was studied by the techniques of high-speed photography and digital image analysis. The results can be summarized as follows: In water, bubble terminal velocity increases while aspect ratio decreases almost linearly in the region where d<0.83mm. Then, both terminal velocity and aspect ratio begin to show a widely scattered trend with the bubble diameter in the range 0.83–6mm. Finally, the level of scattering tends to be weak and the terminal velocity increases gradually while the aspect ratio remains relatively stable when d>6mm. In the surface-tension-dominated regime, the aspect ratio of a single bubble varies significantly with the value fluctuating from 0.4 to 0.99. The aspect ratio should be taken into account with the bubble diameter when predicting the terminal velocity. In the inertia-dominated regime, the terminal velocity increases gradually with increasing the bubble diameter while their aspect ratios vary between 0.4 and 0.7. In the glycerin aqueous solution, as a whole, the terminal velocity increases with bubble diameter and the trend of the bubble velocity does not show a scattered behavior. In water, the most accurate model for predicting terminal velocity throughout the investigated range is given by Tomiyama et al. (2002), and then followed by Ishii and Chawla (1979). |
| Author | Zhuang, Jiacai Liu, Liu Yan, Hongjie Zhao, Guojian |
| Author_xml | – sequence: 1 givenname: Liu surname: Liu fullname: Liu, Liu email: znliuliu@163.com – sequence: 2 givenname: Hongjie surname: Yan fullname: Yan, Hongjie email: s-rfy@csu.edu.cn – sequence: 3 givenname: Guojian surname: Zhao fullname: Zhao, Guojian email: csu_zgj@163.com – sequence: 4 givenname: Jiacai orcidid: 0000-0003-2663-1305 surname: Zhuang fullname: Zhuang, Jiacai email: zhuangjiacai1@163.com |
| BookMark | eNqNkEFLAzEUhINUsK3-hxy8bk12t9ld8KKlVaHgRc_hbfpWU9KkJtna_ntT6kVPhYEHj5kPZkZkYJ1FQm45m3DGxd16gvtt_ES_6UwflJ7k6TthSZxfkCGvqybL81oMyJDVTZnxqqquyCiENWOszjkbEjXfb9HrDdoIhobYrzQG6ixNWBoTWdv036FxSscDdR0F7Wnbt61JPm3pNyQXBbuiH-ag0DtD4atH1wcanOmjdvaaXHZgAt783jF5X8zfZs_Z8vXpZfawzFQhqpgJBjkWddswVdYdCODTEjvBWsGRiw4KKKZcoUCoQDVtXud1i6qZTkULpeJNMSb3J67yLgSPndymZuAPkjN5HEyu5d_B5HEwyZI4T_HHf_FUGY4FogdtzoUsThBMRXcavUwOtApX2qOKcuX0eaAfkryZlw |
| CitedBy_id | crossref_primary_10_3389_fenrg_2023_1041986 crossref_primary_10_1016_j_ces_2018_08_061 crossref_primary_10_1007_s40435_020_00641_y crossref_primary_10_1016_j_ces_2025_122034 crossref_primary_10_1016_j_nucengdes_2017_04_006 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103818 crossref_primary_10_1016_j_anucene_2019_05_045 crossref_primary_10_1016_j_petsci_2023_02_014 crossref_primary_10_1080_19942060_2021_1876775 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104557 crossref_primary_10_3390_min13030417 crossref_primary_10_1016_j_cej_2019_04_158 crossref_primary_10_1002_srin_202200314 crossref_primary_10_1016_j_expthermflusci_2018_05_016 crossref_primary_10_1002_cite_202100145 crossref_primary_10_1016_j_wavemoti_2023_103227 crossref_primary_10_2298_TSCI210215250X crossref_primary_10_1002_cjce_23610 crossref_primary_10_1016_j_enganabound_2019_04_002 crossref_primary_10_1038_s41526_022_00212_9 crossref_primary_10_1016_j_seppur_2022_122888 crossref_primary_10_1016_j_nucengdes_2022_111864 crossref_primary_10_1007_s12217_019_9673_6 crossref_primary_10_1016_j_watres_2022_119360 crossref_primary_10_1119_1_5085437 crossref_primary_10_1515_ijcre_2022_0065 crossref_primary_10_1016_j_ces_2022_117532 crossref_primary_10_1016_j_expthermflusci_2018_05_009 crossref_primary_10_3390_chemengineering6010004 crossref_primary_10_1016_j_expthermflusci_2023_110996 crossref_primary_10_1139_cjp_2019_0505 crossref_primary_10_1016_j_anucene_2019_02_020 crossref_primary_10_1139_er_2021_0127 crossref_primary_10_1007_s10665_019_09998_2 crossref_primary_10_1016_j_ijmultiphaseflow_2018_09_011 crossref_primary_10_1155_2019_2045751 crossref_primary_10_1002_cjce_25444 crossref_primary_10_1016_j_pnucene_2025_105896 crossref_primary_10_2298_TSCI220813204T crossref_primary_10_1063_5_0253636 crossref_primary_10_1016_j_jcp_2019_05_003 crossref_primary_10_1016_j_ces_2025_122411 crossref_primary_10_1016_S1003_6326_18_64930_1 crossref_primary_10_1007_s11771_018_3971_9 crossref_primary_10_3390_pr8080999 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104257 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104736 crossref_primary_10_3390_fluids6120437 crossref_primary_10_1007_s11771_019_4154_z crossref_primary_10_1016_j_ijhydene_2020_12_097 crossref_primary_10_1016_j_pnucene_2025_105609 crossref_primary_10_1016_j_expthermflusci_2017_07_009 crossref_primary_10_1016_j_ces_2018_07_034 crossref_primary_10_1007_s11663_020_01947_0 crossref_primary_10_1016_j_colsurfa_2021_127341 crossref_primary_10_1016_j_expthermflusci_2019_01_014 crossref_primary_10_1016_j_jnnfm_2025_105458 crossref_primary_10_1016_j_cherd_2021_02_029 crossref_primary_10_1039_D2RA06144A crossref_primary_10_1175_JTECH_D_19_0137_1 crossref_primary_10_1016_j_ces_2025_122246 crossref_primary_10_1109_TIM_2025_3533662 crossref_primary_10_1016_j_mineng_2021_107188 crossref_primary_10_1016_j_gete_2024_100561 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104789 crossref_primary_10_1007_s12650_018_0494_2 crossref_primary_10_1016_j_cep_2018_03_001 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127450 crossref_primary_10_1007_s40962_019_00395_0 crossref_primary_10_1007_s42241_022_0012_9 crossref_primary_10_1016_j_mineng_2023_108043 crossref_primary_10_1016_j_icheatmasstransfer_2020_104557 crossref_primary_10_1063_5_0055804 crossref_primary_10_1016_j_seppur_2025_135181 |
| Cites_doi | 10.1016/j.cej.2007.11.015 10.1007/s11837-001-0054-3 10.1146/annurev-fluid-122109-160744 10.1016/0032-5910(86)80012-2 10.1016/0029-5493(95)01161-7 10.1016/S0301-9322(02)00032-0 10.1063/1.858501 10.1016/j.expthermflusci.2006.06.006 10.1109/TPAMI.1986.4767851 10.1146/annurev.fl.28.010196.000303 10.1016/j.expthermflusci.2014.11.018 10.1002/cjce.5450790118 10.1016/0301-9322(74)90003-2 10.1016/j.powtec.2011.03.025 10.1017/S002211208100311X 10.1016/j.expthermflusci.2005.08.006 10.1017/S0022112087003185 10.1117/12.807380 10.1007/s003480050104 10.1299/jsmeb.41.472 10.1016/j.flowmeasinst.2005.03.009 10.1007/s00348-009-0668-8 10.1016/j.ces.2012.06.061 10.1007/s10494-013-9510-8 10.1016/0301-7516(95)00088-7 10.1016/j.anucene.2013.09.020 10.1016/j.ces.2011.01.019 10.2355/isijinternational.35.1 10.1017/S0022112086000460 10.1016/j.ijmultiphaseflow.2013.08.009 10.1002/aic.690130213 10.1016/S0377-0257(96)01486-3 10.1016/j.ces.2013.04.013 10.1016/S0009-2509(01)00304-9 10.1061/TACEAT.0007317 10.1016/S0009-2509(99)00385-1 10.1016/j.ces.2013.04.050 10.1016/j.jcp.2007.12.002 10.1016/S0017-9310(02)00345-9 10.1016/j.ces.2004.01.063 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Inc. |
| Copyright_xml | – notice: 2016 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.expthermflusci.2016.06.011 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2286 |
| EndPage | 265 |
| ExternalDocumentID | 10_1016_j_expthermflusci_2016_06_011 S089417771630156X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 UHS VH1 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c367t-60a2e38b90c48fa6a154ef60b61e16fa3a351ce6ea7ac9b2828bec9556ba4c193 |
| ISICitedReferencesCount | 89 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381835200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0894-1777 |
| IngestDate | Tue Nov 18 19:52:41 EST 2025 Sat Nov 29 03:11:45 EST 2025 Fri Feb 23 02:31:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bubble dynamics Empirical correlations Aspect ratio Bubble terminal velocity Image processing algorithm Drag coefficient |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-60a2e38b90c48fa6a154ef60b61e16fa3a351ce6ea7ac9b2828bec9556ba4c193 |
| ORCID | 0000-0003-2663-1305 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1016_j_expthermflusci_2016_06_011 crossref_citationtrail_10_1016_j_expthermflusci_2016_06_011 elsevier_sciencedirect_doi_10_1016_j_expthermflusci_2016_06_011 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-11-01 |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Experimental thermal and fluid science |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Stokes (b0105) 1880 Wallis (b0145) 1974; 1 Aybers, Tapucu (b0180) 1969; 2 Otsu (b0230) 1979; 9 Sam, Gomez, Finch (b0185) 1996; 47 Mei, Klausner (b0155) 1992; 4 Rodrigue, De Kee, Fong (b0160) 1996; 66 Busciglio, Vella, Micale, Rizzuti (b0220) 2008; 140 Liu, Yan, Zhao (b0080) 2015; 62 Bongiovanni, Chevaillier, Fabre (b0245) 1997; 23 Celata, Cumo, D’Annibale, Di Marco, Tomiyama, Zovini (b0195) 2006; 31 Hua, Stene, Lin (b0085) 2008; 227 Turton, Levenspiel (b0150) 1986; 47 Bhaga, Weber (b0040) 1981; 105 Žun, Grošelj (b0020) 1996; 163 Tomiyama, Kataoka, Zun, Sakaguchi (b0165) 1998; 41 Pivello, Villar, Serfaty, Roma, Silveira-Neto (b0095) 2014; 58 Jamialahmadi, Branch, Müller-Steinhagen (b0125) 1994; 72 Peebles, Garber (b0140) 1953; 49 Mazumdar, Guthrie (b0010) 1995; 35 Nagami, Saito (b0075) 2014; 92 Zhang, McLaughlin, Finch (b0190) 2001; 56 Yu, Yang, Fan (b0090) 2011; 66 Aybers, Tapucu (b0175) 1969; 2 Shen, Johnsson, Leckner (b0210) 2004; 59 Rodrigue (b0170) 2001; 79 Mendelson (b0120) 1967; 13 Maldonado, Quinn, Gomez, Finch (b0065) 2013; 98 Davies, Taylor (b0110) 1950 Raymond, Rosant (b0055) 2000; 55 R. Clift, J. Grace, M. Weber, Bubbles, Drops, and Particles, 1978. Canny (b0240) 1986; 8 H. Wang, F. Dong, Track of rising bubble in bubbling tower based on image processing of high-speed video, in: Seventh International Symposium on Instrumentation and Control Technology, International Society for Optics and Photonics, 2008, pp. 712907-712907-712906. Grace, Wairegi, Nguyen (b0030) 1976; 54 Celata, D’Annibale, Di Marco, Memoli, Tomiyama (b0200) 2007; 31 Peters, Els (b0260) 2012; 82 Crowe, Troutt, Chung (b0015) 1996; 28 Fan, Tsuchiya (b0130) 1990 Zeng, Cai (b0100) 2014; 63 Haberman, Morton (b0115) 1956; 121 Lezzi, Prosperetti (b0050) 1987; 185 A. Tomiyama, Drag, lift and virtual mass force acting on a single bubble, in: 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, 2004, Pisa, 2004, pp. 3–12. Asegehegn, Schreiber, Krautz (b0225) 2011; 210 Dehaeck, Van Parys, Hubin, Van Beeck (b0250) 2009; 47 Okawa, Tanaka, Kataoka, Mori (b0205) 2003; 46 Prosperetti, Lezzi (b0045) 1986; 168 Manning, Fruehan (b0005) 2001; 53 Ishii, Chawla (b0135) 1979 Mikaelian, Larcy, Dehaeck (b0070) 2013; 100 Ranjan, Oakley, Bonazza (b0025) 2011; 43 Zaruba, Krepper, Prasser, Vanga (b0215) 2005; 16 Tomiyama, Celata, Hosokawa, Yoshida (b0060) 2002; 28 Haberman (10.1016/j.expthermflusci.2016.06.011_b0115) 1956; 121 Rodrigue (10.1016/j.expthermflusci.2016.06.011_b0170) 2001; 79 Okawa (10.1016/j.expthermflusci.2016.06.011_b0205) 2003; 46 10.1016/j.expthermflusci.2016.06.011_b0255 Mazumdar (10.1016/j.expthermflusci.2016.06.011_b0010) 1995; 35 Žun (10.1016/j.expthermflusci.2016.06.011_b0020) 1996; 163 Sam (10.1016/j.expthermflusci.2016.06.011_b0185) 1996; 47 Peters (10.1016/j.expthermflusci.2016.06.011_b0260) 2012; 82 Aybers (10.1016/j.expthermflusci.2016.06.011_b0175) 1969; 2 Lezzi (10.1016/j.expthermflusci.2016.06.011_b0050) 1987; 185 Raymond (10.1016/j.expthermflusci.2016.06.011_b0055) 2000; 55 Pivello (10.1016/j.expthermflusci.2016.06.011_b0095) 2014; 58 Zaruba (10.1016/j.expthermflusci.2016.06.011_b0215) 2005; 16 Maldonado (10.1016/j.expthermflusci.2016.06.011_b0065) 2013; 98 Shen (10.1016/j.expthermflusci.2016.06.011_b0210) 2004; 59 Mei (10.1016/j.expthermflusci.2016.06.011_b0155) 1992; 4 Jamialahmadi (10.1016/j.expthermflusci.2016.06.011_b0125) 1994; 72 Davies (10.1016/j.expthermflusci.2016.06.011_b0110) 1950 Celata (10.1016/j.expthermflusci.2016.06.011_b0200) 2007; 31 Yu (10.1016/j.expthermflusci.2016.06.011_b0090) 2011; 66 Bhaga (10.1016/j.expthermflusci.2016.06.011_b0040) 1981; 105 Tomiyama (10.1016/j.expthermflusci.2016.06.011_b0165) 1998; 41 Otsu (10.1016/j.expthermflusci.2016.06.011_b0230) 1979; 9 Turton (10.1016/j.expthermflusci.2016.06.011_b0150) 1986; 47 10.1016/j.expthermflusci.2016.06.011_b0235 Crowe (10.1016/j.expthermflusci.2016.06.011_b0015) 1996; 28 10.1016/j.expthermflusci.2016.06.011_b0035 Prosperetti (10.1016/j.expthermflusci.2016.06.011_b0045) 1986; 168 Fan (10.1016/j.expthermflusci.2016.06.011_b0130) 1990 Ranjan (10.1016/j.expthermflusci.2016.06.011_b0025) 2011; 43 Wallis (10.1016/j.expthermflusci.2016.06.011_b0145) 1974; 1 Busciglio (10.1016/j.expthermflusci.2016.06.011_b0220) 2008; 140 Asegehegn (10.1016/j.expthermflusci.2016.06.011_b0225) 2011; 210 Mendelson (10.1016/j.expthermflusci.2016.06.011_b0120) 1967; 13 Tomiyama (10.1016/j.expthermflusci.2016.06.011_b0060) 2002; 28 Rodrigue (10.1016/j.expthermflusci.2016.06.011_b0160) 1996; 66 Aybers (10.1016/j.expthermflusci.2016.06.011_b0180) 1969; 2 Celata (10.1016/j.expthermflusci.2016.06.011_b0195) 2006; 31 Zeng (10.1016/j.expthermflusci.2016.06.011_b0100) 2014; 63 Grace (10.1016/j.expthermflusci.2016.06.011_b0030) 1976; 54 Nagami (10.1016/j.expthermflusci.2016.06.011_b0075) 2014; 92 Ishii (10.1016/j.expthermflusci.2016.06.011_b0135) 1979 Dehaeck (10.1016/j.expthermflusci.2016.06.011_b0250) 2009; 47 Zhang (10.1016/j.expthermflusci.2016.06.011_b0190) 2001; 56 Bongiovanni (10.1016/j.expthermflusci.2016.06.011_b0245) 1997; 23 Liu (10.1016/j.expthermflusci.2016.06.011_b0080) 2015; 62 Canny (10.1016/j.expthermflusci.2016.06.011_b0240) 1986; 8 Peebles (10.1016/j.expthermflusci.2016.06.011_b0140) 1953; 49 Hua (10.1016/j.expthermflusci.2016.06.011_b0085) 2008; 227 Stokes (10.1016/j.expthermflusci.2016.06.011_b0105) 1880 Manning (10.1016/j.expthermflusci.2016.06.011_b0005) 2001; 53 Mikaelian (10.1016/j.expthermflusci.2016.06.011_b0070) 2013; 100 |
| References_xml | – volume: 72 start-page: 119 year: 1994 end-page: 122 ident: b0125 article-title: Terminal bubble rise velocity in liquids publication-title: Chem. Eng. Res. Des. – year: 1990 ident: b0130 article-title: Bubble Wake Dynamics in Liquids and Liquid-solid Suspensions – volume: 59 start-page: 2607 year: 2004 end-page: 2617 ident: b0210 article-title: Digital image analysis of hydrodynamics two-dimensional bubbling fluidized beds publication-title: Chem. Eng. Sci. – volume: 79 start-page: 119 year: 2001 end-page: 123 ident: b0170 article-title: Drag coefficient-Reynolds number transition for gas bubbles rising steadily in viscous fluids publication-title: Can. J. Chem. Eng. – volume: 98 start-page: 7 year: 2013 end-page: 11 ident: b0065 article-title: An experimental study examining the relationship between bubble shape and rise velocity publication-title: Chem. Eng. Sci. – volume: 63 start-page: 680 year: 2014 end-page: 690 ident: b0100 article-title: Three-dimension simulation of bubble behavior under nonlinear oscillation publication-title: Ann. Nucl. Energy – volume: 47 start-page: 333 year: 2009 end-page: 341 ident: b0250 article-title: Laser marked shadowgraphy: a novel optical planar technique for the study of microbubbles and droplets publication-title: Exp. Fluids – volume: 121 start-page: 227 year: 1956 end-page: 250 ident: b0115 article-title: An experimental study of bubbles moving in liquids publication-title: Trans. Am. Soc. Civ. Eng. – volume: 66 start-page: 3441 year: 2011 end-page: 3451 ident: b0090 article-title: Numerical simulation of bubble interactions using an adaptive lattice Boltzmann method publication-title: Chem. Eng. Sci. – volume: 66 start-page: 213 year: 1996 end-page: 232 ident: b0160 article-title: An experimental study of the effect of surfactants on the free rise velocity of gas bubbles publication-title: J. Non-Newton. Fluid – volume: 210 start-page: 248 year: 2011 end-page: 260 ident: b0225 article-title: Investigation of bubble behavior in fluidized beds with and without immersed horizontal tubes using a digital image analysis technique publication-title: Powder Technol. – volume: 31 start-page: 37 year: 2006 end-page: 53 ident: b0195 article-title: Effect of gas injection mode and purity of liquid on bubble rising in two-component systems publication-title: Exp. Therm. Fluid Sci. – volume: 47 start-page: 83 year: 1986 end-page: 86 ident: b0150 article-title: A short note on the drag correlation for spheres publication-title: Powder Technol. – start-page: 375 year: 1950 end-page: 390 ident: b0110 article-title: The mechanics of large bubbles rising through extended liquids and through liquids in tubes publication-title: Proc. R. Soc. London, Ser. A – volume: 49 start-page: 88 year: 1953 end-page: 97 ident: b0140 article-title: Studies on the motion of gas bubbles in liquids publication-title: Chem. Eng. Prog. – volume: 227 start-page: 3358 year: 2008 end-page: 3382 ident: b0085 article-title: Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method publication-title: J. Comput. Phys. – volume: 105 start-page: 61 year: 1981 end-page: 85 ident: b0040 article-title: Bubbles in viscous liquids: shapes, wakes and velocities publication-title: J. Fluid Mech. – volume: 62 start-page: 109 year: 2015 end-page: 121 ident: b0080 article-title: Experimental studies on the shape and motion of air bubbles in viscous liquids publication-title: Exp. Therm. Fluid Sci. – volume: 13 start-page: 250 year: 1967 end-page: 253 ident: b0120 article-title: The prediction of bubble terminal velocities from wave theory publication-title: AIChE J. – volume: 55 start-page: 943 year: 2000 end-page: 955 ident: b0055 article-title: A numerical and experimental study of the terminal velocity and shape of bubbles in viscous liquids publication-title: Chem. Eng. Sci. – volume: 35 start-page: 1 year: 1995 end-page: 20 ident: b0010 article-title: The physical and mathematical modelling of gas stirred ladle systems publication-title: ISIJ Int. – volume: 41 start-page: 472 year: 1998 end-page: 479 ident: b0165 article-title: Drag coefficients of single bubbles under normal and micro gravity conditions publication-title: JSME Int. J. B – Fluid Therm. Eng. – volume: 46 start-page: 903 year: 2003 end-page: 913 ident: b0205 article-title: Temperature effect on single bubble rise characteristics in stagnant distilled water publication-title: Int. J. Heat Mass Transf. – volume: 2 start-page: 118 year: 1969 end-page: 128 ident: b0175 article-title: The motion of gas bubbles rising through stagnant liquid publication-title: Heat Mass Transf. – volume: 47 start-page: 177 year: 1996 end-page: 196 ident: b0185 article-title: Axial velocity profiles of single bubbles in water/frother solutions publication-title: Int. J. Miner. Process. – volume: 23 start-page: 209 year: 1997 end-page: 216 ident: b0245 article-title: Sizing of bubbles by incoherent imaging: defocus bias publication-title: Exp. Fluids – reference: A. Tomiyama, Drag, lift and virtual mass force acting on a single bubble, in: 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, 2004, Pisa, 2004, pp. 3–12. – volume: 53 start-page: 36 year: 2001 end-page: 43 ident: b0005 article-title: Emerging technologies for iron and steelmaking publication-title: JOM – volume: 58 start-page: 72 year: 2014 end-page: 82 ident: b0095 article-title: A fully adaptive front tracking method for the simulation of two phase flows publication-title: Int. J. Multiphase Flow – volume: 31 start-page: 609 year: 2007 end-page: 623 ident: b0200 article-title: Measurements of rising velocity of a small bubble in a stagnant fluid in one-and two-component systems publication-title: Exp. Therm. Fluid Sci. – volume: 28 start-page: 11 year: 1996 end-page: 43 ident: b0015 article-title: Numerical models for two-phase turbulent flows publication-title: Annu. Rev. Fluid Mech. – volume: 4 start-page: 63 year: 1992 end-page: 70 ident: b0155 article-title: Unsteady force on a spherical bubble at finite Reynolds number with small fluctuations in the free-stream velocity publication-title: Phys. Fluids A – volume: 8 start-page: 679 year: 1986 end-page: 698 ident: b0240 article-title: A computational approach to edge detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 43 start-page: 117 year: 2011 end-page: 140 ident: b0025 article-title: Shock-bubble interactions publication-title: Annu. Rev. Fluid Mech. – year: 1880 ident: b0105 article-title: Mathematical and Physical Papers – year: 1979 ident: b0135 article-title: Local drag laws in dispersed two-phase flow – volume: 185 start-page: 289 year: 1987 end-page: 321 ident: b0050 article-title: Bubble dynamics in a compressible liquid. Part 2. Second-order theory publication-title: J. Fluid Mech. – volume: 163 start-page: 99 year: 1996 end-page: 115 ident: b0020 article-title: The structure of bubble non-equilibrium movement in free-rise and agitated-rise conditions publication-title: Nucl. Eng. Des. – reference: R. Clift, J. Grace, M. Weber, Bubbles, Drops, and Particles, 1978. – volume: 2 start-page: 171 year: 1969 end-page: 177 ident: b0180 article-title: Reynolds number transition for gas bubbles rising steadily in viscous fluids studies on the drag and shape of gas bubbles rising through a stagnant liquid publication-title: Heat Mass Transf. – volume: 16 start-page: 277 year: 2005 end-page: 287 ident: b0215 article-title: Experimental study on bubble motion in a rectangular bubble column using high-speed video observations publication-title: Flow Meas. Instrum. – volume: 56 start-page: 6605 year: 2001 end-page: 6616 ident: b0190 article-title: Bubble velocity profile and model of surfactant mass transfer to bubble surface publication-title: Chem. Eng. Sci. – volume: 82 start-page: 194 year: 2012 end-page: 199 ident: b0260 article-title: An experimental study on slow and fast bubbles in tap water publication-title: Chem. Eng. Sci. – volume: 140 start-page: 398 year: 2008 end-page: 413 ident: b0220 article-title: Analysis of the bubbling behaviour of 2D gas solid fluidized beds: Part I. Digital image analysis technique publication-title: Chem. Eng. J. – volume: 168 start-page: 457 year: 1986 end-page: 478 ident: b0045 article-title: Bubble dynamics in a compressible liquid. Part 1. First-order theory publication-title: J. Fluid Mech. – volume: 28 start-page: 1497 year: 2002 end-page: 1519 ident: b0060 article-title: Terminal velocity of single bubbles in surface tension force dominant regime publication-title: Int. J. Multiphase Flow – volume: 100 start-page: 529 year: 2013 end-page: 538 ident: b0070 article-title: A new experimental method to analyze the dynamics and the morphology of bubbles in liquids: application to single ellipsoidal bubbles publication-title: Chem. Eng. Sci. – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: b0230 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. SMC – volume: 54 start-page: 167 year: 1976 end-page: 173 ident: b0030 article-title: Shapes and velocities of single drops and bubbles moving freely through immiscible liquids publication-title: Trans. Inst. Chem. Eng. – reference: H. Wang, F. Dong, Track of rising bubble in bubbling tower based on image processing of high-speed video, in: Seventh International Symposium on Instrumentation and Control Technology, International Society for Optics and Photonics, 2008, pp. 712907-712907-712906. – volume: 1 start-page: 491 year: 1974 end-page: 511 ident: b0145 article-title: The terminal speed of single drops or bubbles in an infinite medium publication-title: Int. J. Multiphase Flow – volume: 92 start-page: 147 year: 2014 end-page: 174 ident: b0075 article-title: An experimental study of the modulation of the bubble motion by gas–liquid-phase interaction in oscillating-grid decaying turbulence publication-title: Flow Turbul. Combust. – year: 1979 ident: 10.1016/j.expthermflusci.2016.06.011_b0135 – volume: 140 start-page: 398 year: 2008 ident: 10.1016/j.expthermflusci.2016.06.011_b0220 article-title: Analysis of the bubbling behaviour of 2D gas solid fluidized beds: Part I. Digital image analysis technique publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2007.11.015 – volume: 53 start-page: 36 year: 2001 ident: 10.1016/j.expthermflusci.2016.06.011_b0005 article-title: Emerging technologies for iron and steelmaking publication-title: JOM doi: 10.1007/s11837-001-0054-3 – volume: 43 start-page: 117 year: 2011 ident: 10.1016/j.expthermflusci.2016.06.011_b0025 article-title: Shock-bubble interactions publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122109-160744 – volume: 47 start-page: 83 year: 1986 ident: 10.1016/j.expthermflusci.2016.06.011_b0150 article-title: A short note on the drag correlation for spheres publication-title: Powder Technol. doi: 10.1016/0032-5910(86)80012-2 – volume: 163 start-page: 99 year: 1996 ident: 10.1016/j.expthermflusci.2016.06.011_b0020 article-title: The structure of bubble non-equilibrium movement in free-rise and agitated-rise conditions publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(95)01161-7 – volume: 28 start-page: 1497 year: 2002 ident: 10.1016/j.expthermflusci.2016.06.011_b0060 article-title: Terminal velocity of single bubbles in surface tension force dominant regime publication-title: Int. J. Multiphase Flow doi: 10.1016/S0301-9322(02)00032-0 – year: 1880 ident: 10.1016/j.expthermflusci.2016.06.011_b0105 – volume: 4 start-page: 63 year: 1992 ident: 10.1016/j.expthermflusci.2016.06.011_b0155 article-title: Unsteady force on a spherical bubble at finite Reynolds number with small fluctuations in the free-stream velocity publication-title: Phys. Fluids A doi: 10.1063/1.858501 – volume: 54 start-page: 167 year: 1976 ident: 10.1016/j.expthermflusci.2016.06.011_b0030 article-title: Shapes and velocities of single drops and bubbles moving freely through immiscible liquids publication-title: Trans. Inst. Chem. Eng. – volume: 31 start-page: 609 year: 2007 ident: 10.1016/j.expthermflusci.2016.06.011_b0200 article-title: Measurements of rising velocity of a small bubble in a stagnant fluid in one-and two-component systems publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2006.06.006 – volume: 8 start-page: 679 year: 1986 ident: 10.1016/j.expthermflusci.2016.06.011_b0240 article-title: A computational approach to edge detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767851 – volume: 28 start-page: 11 year: 1996 ident: 10.1016/j.expthermflusci.2016.06.011_b0015 article-title: Numerical models for two-phase turbulent flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.28.010196.000303 – year: 1990 ident: 10.1016/j.expthermflusci.2016.06.011_b0130 – volume: 62 start-page: 109 year: 2015 ident: 10.1016/j.expthermflusci.2016.06.011_b0080 article-title: Experimental studies on the shape and motion of air bubbles in viscous liquids publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2014.11.018 – volume: 2 start-page: 118 year: 1969 ident: 10.1016/j.expthermflusci.2016.06.011_b0175 article-title: The motion of gas bubbles rising through stagnant liquid publication-title: Heat Mass Transf. – volume: 79 start-page: 119 year: 2001 ident: 10.1016/j.expthermflusci.2016.06.011_b0170 article-title: Drag coefficient-Reynolds number transition for gas bubbles rising steadily in viscous fluids publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.5450790118 – volume: 1 start-page: 491 year: 1974 ident: 10.1016/j.expthermflusci.2016.06.011_b0145 article-title: The terminal speed of single drops or bubbles in an infinite medium publication-title: Int. J. Multiphase Flow doi: 10.1016/0301-9322(74)90003-2 – volume: 210 start-page: 248 year: 2011 ident: 10.1016/j.expthermflusci.2016.06.011_b0225 article-title: Investigation of bubble behavior in fluidized beds with and without immersed horizontal tubes using a digital image analysis technique publication-title: Powder Technol. doi: 10.1016/j.powtec.2011.03.025 – ident: 10.1016/j.expthermflusci.2016.06.011_b0255 – volume: 72 start-page: 119 year: 1994 ident: 10.1016/j.expthermflusci.2016.06.011_b0125 article-title: Terminal bubble rise velocity in liquids publication-title: Chem. Eng. Res. Des. – volume: 105 start-page: 61 year: 1981 ident: 10.1016/j.expthermflusci.2016.06.011_b0040 article-title: Bubbles in viscous liquids: shapes, wakes and velocities publication-title: J. Fluid Mech. doi: 10.1017/S002211208100311X – volume: 31 start-page: 37 year: 2006 ident: 10.1016/j.expthermflusci.2016.06.011_b0195 article-title: Effect of gas injection mode and purity of liquid on bubble rising in two-component systems publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2005.08.006 – volume: 185 start-page: 289 year: 1987 ident: 10.1016/j.expthermflusci.2016.06.011_b0050 article-title: Bubble dynamics in a compressible liquid. Part 2. Second-order theory publication-title: J. Fluid Mech. doi: 10.1017/S0022112087003185 – ident: 10.1016/j.expthermflusci.2016.06.011_b0235 doi: 10.1117/12.807380 – volume: 23 start-page: 209 year: 1997 ident: 10.1016/j.expthermflusci.2016.06.011_b0245 article-title: Sizing of bubbles by incoherent imaging: defocus bias publication-title: Exp. Fluids doi: 10.1007/s003480050104 – volume: 41 start-page: 472 year: 1998 ident: 10.1016/j.expthermflusci.2016.06.011_b0165 article-title: Drag coefficients of single bubbles under normal and micro gravity conditions publication-title: JSME Int. J. B – Fluid Therm. Eng. doi: 10.1299/jsmeb.41.472 – volume: 9 start-page: 62 year: 1979 ident: 10.1016/j.expthermflusci.2016.06.011_b0230 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. SMC – volume: 16 start-page: 277 year: 2005 ident: 10.1016/j.expthermflusci.2016.06.011_b0215 article-title: Experimental study on bubble motion in a rectangular bubble column using high-speed video observations publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2005.03.009 – volume: 47 start-page: 333 year: 2009 ident: 10.1016/j.expthermflusci.2016.06.011_b0250 article-title: Laser marked shadowgraphy: a novel optical planar technique for the study of microbubbles and droplets publication-title: Exp. Fluids doi: 10.1007/s00348-009-0668-8 – volume: 82 start-page: 194 year: 2012 ident: 10.1016/j.expthermflusci.2016.06.011_b0260 article-title: An experimental study on slow and fast bubbles in tap water publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.06.061 – start-page: 375 year: 1950 ident: 10.1016/j.expthermflusci.2016.06.011_b0110 article-title: The mechanics of large bubbles rising through extended liquids and through liquids in tubes – volume: 92 start-page: 147 year: 2014 ident: 10.1016/j.expthermflusci.2016.06.011_b0075 article-title: An experimental study of the modulation of the bubble motion by gas–liquid-phase interaction in oscillating-grid decaying turbulence publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-013-9510-8 – volume: 47 start-page: 177 year: 1996 ident: 10.1016/j.expthermflusci.2016.06.011_b0185 article-title: Axial velocity profiles of single bubbles in water/frother solutions publication-title: Int. J. Miner. Process. doi: 10.1016/0301-7516(95)00088-7 – volume: 63 start-page: 680 year: 2014 ident: 10.1016/j.expthermflusci.2016.06.011_b0100 article-title: Three-dimension simulation of bubble behavior under nonlinear oscillation publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2013.09.020 – ident: 10.1016/j.expthermflusci.2016.06.011_b0035 – volume: 66 start-page: 3441 year: 2011 ident: 10.1016/j.expthermflusci.2016.06.011_b0090 article-title: Numerical simulation of bubble interactions using an adaptive lattice Boltzmann method publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.01.019 – volume: 35 start-page: 1 year: 1995 ident: 10.1016/j.expthermflusci.2016.06.011_b0010 article-title: The physical and mathematical modelling of gas stirred ladle systems publication-title: ISIJ Int. doi: 10.2355/isijinternational.35.1 – volume: 168 start-page: 457 year: 1986 ident: 10.1016/j.expthermflusci.2016.06.011_b0045 article-title: Bubble dynamics in a compressible liquid. Part 1. First-order theory publication-title: J. Fluid Mech. doi: 10.1017/S0022112086000460 – volume: 58 start-page: 72 year: 2014 ident: 10.1016/j.expthermflusci.2016.06.011_b0095 article-title: A fully adaptive front tracking method for the simulation of two phase flows publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2013.08.009 – volume: 13 start-page: 250 year: 1967 ident: 10.1016/j.expthermflusci.2016.06.011_b0120 article-title: The prediction of bubble terminal velocities from wave theory publication-title: AIChE J. doi: 10.1002/aic.690130213 – volume: 66 start-page: 213 year: 1996 ident: 10.1016/j.expthermflusci.2016.06.011_b0160 article-title: An experimental study of the effect of surfactants on the free rise velocity of gas bubbles publication-title: J. Non-Newton. Fluid doi: 10.1016/S0377-0257(96)01486-3 – volume: 49 start-page: 88 year: 1953 ident: 10.1016/j.expthermflusci.2016.06.011_b0140 article-title: Studies on the motion of gas bubbles in liquids publication-title: Chem. Eng. Prog. – volume: 100 start-page: 529 year: 2013 ident: 10.1016/j.expthermflusci.2016.06.011_b0070 article-title: A new experimental method to analyze the dynamics and the morphology of bubbles in liquids: application to single ellipsoidal bubbles publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.04.013 – volume: 56 start-page: 6605 year: 2001 ident: 10.1016/j.expthermflusci.2016.06.011_b0190 article-title: Bubble velocity profile and model of surfactant mass transfer to bubble surface publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(01)00304-9 – volume: 121 start-page: 227 year: 1956 ident: 10.1016/j.expthermflusci.2016.06.011_b0115 article-title: An experimental study of bubbles moving in liquids publication-title: Trans. Am. Soc. Civ. Eng. doi: 10.1061/TACEAT.0007317 – volume: 2 start-page: 171 year: 1969 ident: 10.1016/j.expthermflusci.2016.06.011_b0180 article-title: Reynolds number transition for gas bubbles rising steadily in viscous fluids studies on the drag and shape of gas bubbles rising through a stagnant liquid publication-title: Heat Mass Transf. – volume: 55 start-page: 943 year: 2000 ident: 10.1016/j.expthermflusci.2016.06.011_b0055 article-title: A numerical and experimental study of the terminal velocity and shape of bubbles in viscous liquids publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(99)00385-1 – volume: 98 start-page: 7 year: 2013 ident: 10.1016/j.expthermflusci.2016.06.011_b0065 article-title: An experimental study examining the relationship between bubble shape and rise velocity publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.04.050 – volume: 227 start-page: 3358 year: 2008 ident: 10.1016/j.expthermflusci.2016.06.011_b0085 article-title: Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.12.002 – volume: 46 start-page: 903 year: 2003 ident: 10.1016/j.expthermflusci.2016.06.011_b0205 article-title: Temperature effect on single bubble rise characteristics in stagnant distilled water publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(02)00345-9 – volume: 59 start-page: 2607 year: 2004 ident: 10.1016/j.expthermflusci.2016.06.011_b0210 article-title: Digital image analysis of hydrodynamics two-dimensional bubbling fluidized beds publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.01.063 |
| SSID | ssj0008210 |
| Score | 2.4527674 |
| Snippet | •Experiments on the terminal rising velocity of air bubbles were carried out.•The behavior of the terminal velocity under various bubble diameters was... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 254 |
| SubjectTerms | Aspect ratio Bubble dynamics Bubble terminal velocity Drag coefficient Empirical correlations Image processing algorithm |
| Title | Experimental studies on the terminal velocity of air bubbles in water and glycerol aqueous solution |
| URI | https://dx.doi.org/10.1016/j.expthermflusci.2016.06.011 |
| Volume | 78 |
| WOSCitedRecordID | wos000381835200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008210 issn: 0894-1777 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpJT2UPoKTV_okJsxWH7INj2UULZNQwmFprDkYiStnHhx7WWzTtMf1P_ZkTVyvLSFLaUXs5i1JWs-z4zGnz4RcpBIwVTCNUxLWObHUs99iOuxzzULQ12mZSp7EdeP6clJNpvlnyaTH24tzFWdNk12fZ0v_6up4RwY2yyd_QtzDzeFE_AbjA5HMDsctzL8dKzZf2lpgvhJwEPqS-0ZppBCNoaoVp7spKx7bpb3TRjdRFNPP6-_K2147AKCh6HKuo5vlPPHzZls8iuqD5R1V809jLAD76fqbCWgG9yNrcAetc35ohr-d3Yh-hru-65djAB8dtFhffu4EkpU45oF47h4byikucU0G1zPIMtjn6W4q4u2_jhLcz8MUS0bHbbd88d5XKtBjcE7tBtP_BIXbIliAQFv2Y8EDAE8v2H28V6-FR3-pvL2Z9Mj0yHIWc2K89ktshumSQ7Oc_fww3R2PIT8LOxlL4YnuEMOboiEf27z97nQKL85fUDu48SEHlpAPSQT3Twi90ZylY-JGtuaIrRo21BomDpoUQct2pYUoEURWrRqaA8tCuCgDloUoUUdtJ6QL--mp2-PfNykw1cRT9c-D0Soo0zmgYqzUnABObkueSA504yXIhJRwpTmWqRC5dLM8MFt5EnCpYgVTB_2yE7TNvopoXNhVp6VouTmc3w0lxGk5yoJoAWehHO9T1674SoUKtibjVTqwlEVF8XmYBdmsAvD3GRsnyTD1Uur5LLldW-cZQp8Z2y2WQC4trrDs3--w3Ny9-Y1ekF21qtOvyS31dW6uly9QjT-BBnlwwk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+studies+on+the+terminal+velocity+of+air+bubbles+in+water+and+glycerol+aqueous+solution&rft.jtitle=Experimental+thermal+and+fluid+science&rft.au=Liu%2C+Liu&rft.au=Yan%2C+Hongjie&rft.au=Zhao%2C+Guojian&rft.au=Zhuang%2C+Jiacai&rft.date=2016-11-01&rft.pub=Elsevier+Inc&rft.issn=0894-1777&rft.eissn=1879-2286&rft.volume=78&rft.spage=254&rft.epage=265&rft_id=info:doi/10.1016%2Fj.expthermflusci.2016.06.011&rft.externalDocID=S089417771630156X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1777&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1777&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1777&client=summon |