Modified extended tanh-function method and its applications to the Bogoyavlenskii equation

In this study, we consider exact traveling wave solutions of the Bogoyavlenskii equation using a modified extended tanh-function method. This method has a broad applicability to many other nonlinear evolution equations in mathematical physics.

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematical modelling Ročník 40; číslo 3; s. 1769 - 1775
Hlavní autoři: H.M. Zahran, Emad, M.A. Khater, Mostafa
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.02.2016
Témata:
ISSN:0307-904X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this study, we consider exact traveling wave solutions of the Bogoyavlenskii equation using a modified extended tanh-function method. This method has a broad applicability to many other nonlinear evolution equations in mathematical physics.
AbstractList In this study, we consider exact traveling wave solutions of the Bogoyavlenskii equation using a modified extended tanh-function method. This method has a broad applicability to many other nonlinear evolution equations in mathematical physics.
Author H.M. Zahran, Emad
M.A. Khater, Mostafa
Author_xml – sequence: 1
  givenname: Emad
  surname: H.M. Zahran
  fullname: H.M. Zahran, Emad
  organization: Department of Mathematical and Physical Engineering, University of Benha, College of Engineering, Shubra, Egypt
– sequence: 2
  givenname: Mostafa
  orcidid: 0000-0001-8466-168X
  surname: M.A. Khater
  fullname: M.A. Khater, Mostafa
  email: mostafa.khater2024@yahoo.com, darsh_2024@yahoo.com
  organization: Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
BookMark eNp9kM9OwzAMh3MYEtvgAbjlBVqctWlScYKJf9IQF5AQlygkLsvoktFkE3t7uo0Th51s66fPsr8RGfjgkZALBjkDVl0ucr1a5hNgPAeZA5MDMoQCRFZD-XZKRjEuAID305C8PwXrGoeW4k9Cb_smaT_PmrU3yQVPl5jmwVLtLXUpUr1atc7oXRRpCjTNkd6Ez7DVmxZ9_HKO4vd6n5-Rk0a3Ec__6pi83t2-TB-y2fP94_R6lpmiEinjXIq6lqWttcSCYcV1VXJruSikBctqOxHwUfYXC8ZRQCmLyjTWNBIaNtGiGBNx2Gu6EGOHjTIu7S9InXatYqB2WtRC9VrUTosCqXotPcn-kavOLXW3PcpcHRjsX9o47FQ0Dr1B6zo0SdngjtC_s3GAOA
CitedBy_id crossref_primary_10_1016_j_ijleo_2023_171140
crossref_primary_10_1007_s11071_024_10101_3
crossref_primary_10_3934_math_2025578
crossref_primary_10_1007_s11082_022_04530_w
crossref_primary_10_1088_1402_4896_ab61dd
crossref_primary_10_1016_j_future_2019_04_031
crossref_primary_10_1007_s00521_017_2999_3
crossref_primary_10_1088_1402_4896_ad9781
crossref_primary_10_1088_1674_1056_ac48ff
crossref_primary_10_1002_num_22700
crossref_primary_10_1007_s10598_023_09563_8
crossref_primary_10_1016_j_camwa_2017_08_021
crossref_primary_10_1007_s11082_022_03613_y
crossref_primary_10_1515_ijnsns_2018_0188
crossref_primary_10_3390_fractalfract8070388
crossref_primary_10_1007_s11082_017_1195_0
crossref_primary_10_3390_fractalfract7020138
crossref_primary_10_1007_s11082_024_06851_4
crossref_primary_10_1007_s40819_019_0711_2
crossref_primary_10_1016_j_spmi_2017_11_011
crossref_primary_10_1007_s11082_023_06198_2
crossref_primary_10_3390_sym16070847
crossref_primary_10_1007_s11071_025_10912_y
crossref_primary_10_3390_fractalfract6050252
crossref_primary_10_3390_sym14112370
crossref_primary_10_1038_s41598_025_05064_3
crossref_primary_10_1007_s10773_025_05898_7
crossref_primary_10_1002_num_22681
crossref_primary_10_1016_j_chaos_2022_112388
crossref_primary_10_1016_j_cnsns_2021_106242
crossref_primary_10_1140_epjp_s13360_020_00218_w
crossref_primary_10_1051_itmconf_20182201065
crossref_primary_10_1007_s12648_024_03426_7
crossref_primary_10_1088_1402_4896_ad21ca
crossref_primary_10_1142_S0217984924504918
crossref_primary_10_1007_s10773_024_05631_w
crossref_primary_10_1007_s11082_023_05453_w
crossref_primary_10_1088_1402_4896_ad1455
crossref_primary_10_3390_fractalfract6040202
crossref_primary_10_1007_s11082_021_03032_5
crossref_primary_10_1155_2024_8812792
crossref_primary_10_3390_math11020488
crossref_primary_10_1002_mma_8596
crossref_primary_10_1016_j_joems_2016_04_006
crossref_primary_10_1142_S0217732325500993
crossref_primary_10_1016_j_cnsns_2025_108647
crossref_primary_10_1007_s11082_023_06197_3
crossref_primary_10_1007_s11082_017_1249_3
crossref_primary_10_1007_s11082_022_03562_6
crossref_primary_10_1088_1402_4896_ac42eb
crossref_primary_10_3390_fractalfract6030156
crossref_primary_10_1088_1402_4896_ad36f1
crossref_primary_10_3390_axioms11090445
crossref_primary_10_3390_math9243223
crossref_primary_10_1016_j_rineng_2024_103757
crossref_primary_10_29059_cienciauat_v13i2_1119
crossref_primary_10_1080_09720502_2021_1966954
crossref_primary_10_1140_epjp_s13360_021_01385_0
crossref_primary_10_1063_5_0143256
crossref_primary_10_1007_s11071_018_4509_2
crossref_primary_10_2478_ama_2025_0048
crossref_primary_10_1007_s11082_021_03122_4
crossref_primary_10_1016_j_matcom_2022_03_007
crossref_primary_10_1007_s11082_022_04117_5
crossref_primary_10_3390_fractalfract9070453
crossref_primary_10_3390_sym15010135
crossref_primary_10_1007_s11082_017_0974_y
crossref_primary_10_1007_s40065_023_00454_9
crossref_primary_10_1134_S1063780X20090068
crossref_primary_10_1016_j_ijleo_2021_166539
crossref_primary_10_1140_epjp_s13360_024_05765_0
crossref_primary_10_1016_j_ijleo_2021_166939
crossref_primary_10_1016_j_ijleo_2016_11_029
crossref_primary_10_1016_j_ijleo_2020_166157
crossref_primary_10_1007_s11071_024_09872_6
crossref_primary_10_1016_j_cjph_2022_03_008
crossref_primary_10_1142_S0217732325500658
crossref_primary_10_1007_s11071_024_09724_3
crossref_primary_10_3389_fphy_2024_1347636
crossref_primary_10_3390_math12132053
crossref_primary_10_1016_j_asej_2025_103539
crossref_primary_10_3390_axioms12050466
crossref_primary_10_1016_j_ijleo_2020_165233
crossref_primary_10_3390_computation9030030
crossref_primary_10_1007_s11082_023_05935_x
crossref_primary_10_3390_fractalfract7070523
crossref_primary_10_1088_1402_4896_ad6ec9
crossref_primary_10_1007_s12043_021_02174_1
crossref_primary_10_1016_j_padiff_2025_101295
crossref_primary_10_1002_mma_6811
crossref_primary_10_1007_s11082_024_06468_7
crossref_primary_10_1016_j_chaos_2017_07_025
crossref_primary_10_1007_s40819_021_00953_3
crossref_primary_10_3390_math9161986
crossref_primary_10_1186_s13662_021_03311_1
crossref_primary_10_1007_s11082_017_1127_z
crossref_primary_10_1007_s11082_022_03599_7
crossref_primary_10_1088_1572_9494_ab8a13
crossref_primary_10_1080_09205071_2018_1431156
crossref_primary_10_3390_math7030264
crossref_primary_10_1088_1402_4896_aceb40
crossref_primary_10_1007_s11766_024_4563_0
crossref_primary_10_1155_2017_9257019
crossref_primary_10_1063_5_0002879
crossref_primary_10_3390_math12142257
crossref_primary_10_1080_09205071_2017_1362361
crossref_primary_10_1155_2022_5224289
crossref_primary_10_46939_J_Sci_Arts_21_1_a09
crossref_primary_10_1142_S0217984925501027
Cites_doi 10.1088/0266-5611/13/6/004
10.2991/jnmp.2004.11.2.3
10.1088/0031-8949/54/6/003
10.1023/A:1024909327151
10.1016/j.camwa.2012.04.018
10.1016/0375-9601(96)00103-X
10.1016/j.physleta.2005.10.099
10.1016/j.chaos.2005.05.016
10.1016/j.amc.2006.07.092
10.1070/RM1990v045n04ABEH002377
10.1016/j.physleta.2007.11.026
10.1016/S0375-9601(98)00547-7
10.1016/j.physleta.2007.07.051
10.1016/j.chaos.2005.04.071
10.1016/S0375-9601(02)01516-5
10.1016/j.amc.2010.06.030
10.1016/j.amc.2006.09.013
10.1016/j.amc.2006.07.002
10.1016/j.amc.2009.11.005
10.1016/j.chaos.2006.03.020
10.1088/0305-4470/31/47/011
10.1016/j.chaos.2005.04.063
10.1016/j.camwa.2005.05.010
10.1007/s10255-014-0416-6
10.1016/j.mcm.2003.12.010
10.1007/s12043-006-0005-1
10.1016/S0375-9601(96)00770-0
10.1002/num.20497
10.1016/j.chaos.2005.09.030
10.1016/S0096-3003(03)00745-8
10.1016/S0375-9601(01)00580-1
10.1155/2013/685736
10.1119/1.17120
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.apm.2015.08.018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 1775
ExternalDocumentID 10_1016_j_apm_2015_08_018
S0307904X15005429
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FGOYB
G-2
HZ~
MVM
R2-
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c367t-55879984d9a8e31e65a645dd5738d0d19d270b4000715e704836cfdcf80f12a73
ISICitedReferencesCount 165
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369191600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0307-904X
IngestDate Sat Nov 29 03:21:55 EST 2025
Tue Nov 18 22:15:34 EST 2025
Fri Feb 23 02:30:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Bogoyavlenskii equation
Modified extended tanh-function method
Riccati equation
Traveling wave solution
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-55879984d9a8e31e65a645dd5738d0d19d270b4000715e704836cfdcf80f12a73
ORCID 0000-0001-8466-168X
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_apm_2015_08_018
crossref_primary_10_1016_j_apm_2015_08_018
elsevier_sciencedirect_doi_10_1016_j_apm_2015_08_018
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied mathematical modelling
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Abdelrahman, Zahran, Khater (bib0022) 2015; 112
Prabhakar, Bhate (bib0038) 2003; 64
Peng, Shen (bib0039) 2006; 67
Fan, Zhang (bib0008) 1998; 246
Zahran, Khater (bib0023) 2014; 64
Xin, Liu, Zhang (bib0037) 2010; 215
Wazwaz (bib0029) 2007; 187
Jawad, Petkovic, Biswas (bib0024) 2010; 217
Bogoyavlenskii (bib0032) 1990; 45
Clarkson, Gordoa, Pickering (bib0034) 1997; 13
Wazwaz (bib0004) 2004; 154
Khater (bib0025) 2015; 15
Aminikhad, Moosaei, Hajipour (bib0018) 2009; 26
Zayed, Hoda (bib0026) 2014; 30
Wazwaz (bib0031) 2007; 186
Zhang (bib0019) 2008; 32
Kudryasho, Pickering (bib0033) 1998; 31
Wang, Zhang, Li (bib0020) 2008; 372
Wazwaz (bib0005) 2005; 50
Malik, Chand, Kumar, Mishra (bib0040) 2012; 64
Zhao, Zhi, Zhang (bib0013) 2006; 28
Wang (bib0009) 1996; 213
Zhang, Wang, Wang, Fang (bib0016) 2006; 350
Zhang, Tong, Wang (bib0021) 2008; 372
Fan, Zhang (bib0011) 2002; 305
Wazwaz (bib0030) 2007; 184
Wazwaz (bib0006) 2004; 40
Estevez, Prada (bib0035) 2004; 11
Yan (bib0007) 1996; 224
Abadi, Naja (bib0036) 2012; 1
Malfliet, Hereman (bib0003) 1996; 54
Khater, Zahran (bib0028) 2015; 6
Ablowitz, Segur (bib0001) 1981
He, Wu (bib0017) 2006; 30
Dai, Zhang (bib0010) 2006; 27
K. Khan, M.A. Akbar, Traveling Wave Solutions of Some Coupled Nonlinear Evolution Equations, Hindawi Publishing Corporation, ISRN Mathematical Physics, Vol. 2013, Article ID 685736, 8 pages.
Liu, Fu, Liu, Zhao (bib0012) 2001; 289
Abdou (bib0014) 2007; 31
Malfliet (bib0002) 1992; 60
Ren, Zhang (bib0015) 2006; 27
Zhao (10.1016/j.apm.2015.08.018_bib0013) 2006; 28
Clarkson (10.1016/j.apm.2015.08.018_bib0034) 1997; 13
Wazwaz (10.1016/j.apm.2015.08.018_bib0004) 2004; 154
Wang (10.1016/j.apm.2015.08.018_bib0009) 1996; 213
Zhang (10.1016/j.apm.2015.08.018_bib0019) 2008; 32
Kudryasho (10.1016/j.apm.2015.08.018_bib0033) 1998; 31
Khater (10.1016/j.apm.2015.08.018_bib0025) 2015; 15
Malfliet (10.1016/j.apm.2015.08.018_bib0002) 1992; 60
Malik (10.1016/j.apm.2015.08.018_bib0040) 2012; 64
Malfliet (10.1016/j.apm.2015.08.018_bib0003) 1996; 54
Wazwaz (10.1016/j.apm.2015.08.018_bib0029) 2007; 187
Wazwaz (10.1016/j.apm.2015.08.018_bib0031) 2007; 186
Xin (10.1016/j.apm.2015.08.018_bib0037) 2010; 215
Ren (10.1016/j.apm.2015.08.018_bib0015) 2006; 27
Wang (10.1016/j.apm.2015.08.018_bib0020) 2008; 372
Yan (10.1016/j.apm.2015.08.018_bib0007) 1996; 224
Abdelrahman (10.1016/j.apm.2015.08.018_bib0022) 2015; 112
Liu (10.1016/j.apm.2015.08.018_bib0012) 2001; 289
Zhang (10.1016/j.apm.2015.08.018_bib0016) 2006; 350
Prabhakar (10.1016/j.apm.2015.08.018_bib0038) 2003; 64
Wazwaz (10.1016/j.apm.2015.08.018_bib0030) 2007; 184
Jawad (10.1016/j.apm.2015.08.018_bib0024) 2010; 217
Zayed (10.1016/j.apm.2015.08.018_bib0026) 2014; 30
Abdou (10.1016/j.apm.2015.08.018_bib0014) 2007; 31
Abadi (10.1016/j.apm.2015.08.018_bib0036) 2012; 1
Dai (10.1016/j.apm.2015.08.018_bib0010) 2006; 27
Aminikhad (10.1016/j.apm.2015.08.018_bib0018) 2009; 26
Bogoyavlenskii (10.1016/j.apm.2015.08.018_bib0032) 1990; 45
Ablowitz (10.1016/j.apm.2015.08.018_bib0001) 1981
Fan (10.1016/j.apm.2015.08.018_bib0008) 1998; 246
Wazwaz (10.1016/j.apm.2015.08.018_bib0006) 2004; 40
He (10.1016/j.apm.2015.08.018_bib0017) 2006; 30
Estevez (10.1016/j.apm.2015.08.018_bib0035) 2004; 11
Khater (10.1016/j.apm.2015.08.018_bib0028) 2015; 6
Fan (10.1016/j.apm.2015.08.018_bib0011) 2002; 305
Zhang (10.1016/j.apm.2015.08.018_bib0021) 2008; 372
Wazwaz (10.1016/j.apm.2015.08.018_bib0005) 2005; 50
Peng (10.1016/j.apm.2015.08.018_bib0039) 2006; 67
Zahran (10.1016/j.apm.2015.08.018_bib0023) 2014; 64
10.1016/j.apm.2015.08.018_bib0027
References_xml – volume: 31
  start-page: 9505
  year: 1998
  end-page: 9518
  ident: bib0033
  article-title: Rational solutions for schwarzian integrable hierarchies
  publication-title: J. Phys. A
– volume: 28
  start-page: 112
  year: 2006
  end-page: 126
  ident: bib0013
  article-title: Improved jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized ito system
  publication-title: Chaos Solitons Fractals
– volume: 184
  start-page: 1002
  year: 2007
  end-page: 1014
  ident: bib0030
  publication-title: Appl. Math. Comput.
– volume: 213
  start-page: 279
  year: 1996
  end-page: 287
  ident: bib0009
  article-title: Exact solutions for a compound kdv-burgers equation
  publication-title: Phys. Lett. A
– volume: 30
  start-page: 700
  year: 2006
  end-page: 708
  ident: bib0017
  article-title: Exp-function method for nonlinear wave equations
  publication-title: Chaos Solitons Fractals
– volume: 305
  start-page: 383
  year: 2002
  end-page: 392
  ident: bib0011
  article-title: Applications of the jacobi elliptic function method to special-type nonlinear equations
  publication-title: Phys. Lett. A
– volume: 15
  year: 2015
  ident: bib0025
  article-title: The modified simple equation method and its applications in mathematical physics and biology
  publication-title: Global Journal of Science Frontier Research: F Mathematics and Decision Sciences
– volume: 372
  start-page: 2254
  year: 2008
  end-page: 2257
  ident: bib0021
  article-title: A generalized
  publication-title: Phys. Lett. A
– volume: 67
  start-page: 449
  year: 2006
  end-page: 456
  ident: bib0039
  article-title: On exact solutions of bogoyavlenskii equation
  publication-title: Pramana J. Phys.
– volume: 64
  start-page: 226
  year: 2014
  end-page: 238
  ident: bib0023
  article-title: Exact solutions to some nonlinear evolution equations by using
  publication-title: Jokull J.
– volume: 30
  start-page: 749
  year: 2014
  end-page: 754
  ident: bib0026
  article-title: Ibrahim, exact solutions of kolmogorov-petrovskii-piskunov equation using the modified simple equation method
  publication-title: Acta Math. Appl. Sinica, English series
– reference: K. Khan, M.A. Akbar, Traveling Wave Solutions of Some Coupled Nonlinear Evolution Equations, Hindawi Publishing Corporation, ISRN Mathematical Physics, Vol. 2013, Article ID 685736, 8 pages.
– year: 1981
  ident: bib0001
  article-title: Solitions and Inverse Scattering Transform
– volume: 54
  start-page: 563
  year: 1996
  end-page: 568
  ident: bib0003
  article-title: The tanh method: Exact solutions of nonlinear evolution and wave equations
  publication-title: Phys. Scr.
– volume: 27
  start-page: 1042
  year: 2006
  end-page: 1049
  ident: bib0010
  article-title: Jacobian elliptic function method for nonlinear differential–difference equations
  publication-title: Chaos Solutions Fractals
– volume: 26
  start-page: 1427
  year: 2009
  end-page: 1433
  ident: bib0018
  article-title: Exact solutions for nonlinear partial differential equations via exp-function method, Numer.
  publication-title: Methods Partial Differ. Eq.
– volume: 224
  start-page: 77
  year: 1996
  end-page: 84
  ident: bib0007
  article-title: A simple transformation for nonlinear waves
  publication-title: Phys. Lett. A
– volume: 372
  start-page: 417
  year: 2008
  end-page: 423
  ident: bib0020
  article-title: The
  publication-title: Phys. Lett. A
– volume: 187
  start-page: 1131
  year: 2007
  end-page: 1142
  ident: bib0029
  article-title: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations
  publication-title: Appl. Math. Comput.
– volume: 13
  start-page: 1463
  year: 1997
  end-page: 1476
  ident: bib0034
  article-title: Multicomponent equations associated to non-isospectral scattering probl.
  publication-title: Inverse Problems
– volume: 350
  start-page: 103
  year: 2006
  end-page: 109
  ident: bib0016
  article-title: The improved f-expansion method and its applications
  publication-title: Phys. Lett. A
– volume: 154
  start-page: 714
  year: 2004
  end-page: 723
  ident: bib0004
  article-title: The tanh method for travelling wave solutions of nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 1
  start-page: 141
  year: 2012
  end-page: 149
  ident: bib0036
  article-title: Soliton solutions for
  publication-title: Int. J. Appl. Math. Res.
– volume: 64
  start-page: 2850
  year: 2012
  end-page: 2859
  ident: bib0040
  article-title: Exact solutions of the bogoyavlenskii equation using the multiple
  publication-title: Appl. Math. Comput.
– volume: 31
  start-page: 95
  year: 2007
  end-page: 104
  ident: bib0014
  article-title: The extended f-expansion method and its application for a class of nonlinear evolution equations
  publication-title: Chaos Solitons Fractals
– volume: 50
  start-page: 1685
  year: 2005
  end-page: 1696
  ident: bib0005
  article-title: Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method
  publication-title: Comput. Math. Appl.
– volume: 217
  start-page: 869
  year: 2010
  end-page: 877
  ident: bib0024
  article-title: Modified simple equation method for nonlinear evolution equations
  publication-title: Appl. Math. Comput.
– volume: 32
  start-page: 235
  year: 2008
  end-page: 240
  ident: bib0019
  article-title: New exact traveling wave solutions for the nonlinear klein-gordon equation
  publication-title: Turk. J. Phys.
– volume: 112
  year: 2015
  ident: bib0022
  article-title: Exact traveling wave solutions for modified Liouville equation arising in mathematical physics and biology
  publication-title: Int. J. Comput. Appl. (0975-8887)
– volume: 186
  start-page: 130
  year: 2007
  end-page: 141
  ident: bib0031
  publication-title: Appl. Math. Comput.
– volume: 246
  start-page: 403
  year: 1998
  end-page: 406
  ident: bib0008
  article-title: A note on the homogeneous balance method
  publication-title: Phys. Lett. A
– volume: 40
  start-page: 499
  year: 2004
  end-page: 508
  ident: bib0006
  article-title: A sine-cosine method for handling nonlinear wave equations
  publication-title: Math. Comput. Model
– volume: 64
  start-page: 1
  year: 2003
  end-page: 6
  ident: bib0038
  article-title: Exact solutions of the bogoyavlensky-konoplechenko equation
  publication-title: Lett. Math. Phys.
– volume: 6
  year: 2015
  ident: bib0028
  article-title: New solitary wave solution of the generalized Hirota-Satsuma couple KdV system
  publication-title: Int. J. Sci. Eng. Res.
– volume: 289
  start-page: 69
  year: 2001
  end-page: 74
  ident: bib0012
  article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations
  publication-title: Phys. Lett. A
– volume: 215
  start-page: 3669
  year: 2010
  end-page: 3673
  ident: bib0037
  article-title: Explicit solutions of the bogoyavlensky-konoplechenko equation
  publication-title: Appl. Math. Comput.
– volume: 60
  start-page: 650
  year: 1992
  end-page: 654
  ident: bib0002
  article-title: Solitary wave solutions of nonlinear wave equation
  publication-title: Am. J. Phys.
– volume: 45
  start-page: 1
  year: 1990
  end-page: 86
  ident: bib0032
  article-title: Breaking solitons in
  publication-title: Russ. Math. Surv.
– volume: 27
  start-page: 959
  year: 2006
  end-page: 979
  ident: bib0015
  article-title: A generalized f-expansion method to find abundant families of jacobi elliptic function solutions of the
  publication-title: Chaos Solitons Fractals
– volume: 11
  start-page: 168
  year: 2004
  end-page: 179
  ident: bib0035
  article-title: A generalization of the sine-gordon equation
  publication-title: J. Nonlinear Math. Phys.
– volume: 13
  start-page: 1463
  year: 1997
  ident: 10.1016/j.apm.2015.08.018_bib0034
  article-title: Multicomponent equations associated to non-isospectral scattering probl.
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/13/6/004
– volume: 11
  start-page: 168
  year: 2004
  ident: 10.1016/j.apm.2015.08.018_bib0035
  article-title: A generalization of the sine-gordon equation (2+1)-dimensions
  publication-title: J. Nonlinear Math. Phys.
  doi: 10.2991/jnmp.2004.11.2.3
– volume: 54
  start-page: 563
  year: 1996
  ident: 10.1016/j.apm.2015.08.018_bib0003
  article-title: The tanh method: Exact solutions of nonlinear evolution and wave equations
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/54/6/003
– volume: 64
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.apm.2015.08.018_bib0038
  article-title: Exact solutions of the bogoyavlensky-konoplechenko equation
  publication-title: Lett. Math. Phys.
  doi: 10.1023/A:1024909327151
– volume: 64
  start-page: 2850
  year: 2012
  ident: 10.1016/j.apm.2015.08.018_bib0040
  article-title: Exact solutions of the bogoyavlenskii equation using the multiple G′G-expansion method
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.camwa.2012.04.018
– volume: 213
  start-page: 279
  year: 1996
  ident: 10.1016/j.apm.2015.08.018_bib0009
  article-title: Exact solutions for a compound kdv-burgers equation
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(96)00103-X
– volume: 350
  start-page: 103
  year: 2006
  ident: 10.1016/j.apm.2015.08.018_bib0016
  article-title: The improved f-expansion method and its applications
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2005.10.099
– volume: 28
  start-page: 112
  year: 2006
  ident: 10.1016/j.apm.2015.08.018_bib0013
  article-title: Improved jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized ito system
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.05.016
– volume: 186
  start-page: 130
  year: 2007
  ident: 10.1016/j.apm.2015.08.018_bib0031
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.07.092
– volume: 45
  start-page: 1
  year: 1990
  ident: 10.1016/j.apm.2015.08.018_bib0032
  article-title: Breaking solitons in 2+1-dimensional integrable equations
  publication-title: Russ. Math. Surv.
  doi: 10.1070/RM1990v045n04ABEH002377
– volume: 372
  start-page: 2254
  year: 2008
  ident: 10.1016/j.apm.2015.08.018_bib0021
  article-title: A generalized (G′G)-expansion method for the mkdv equation with variable coefficients
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2007.11.026
– volume: 246
  start-page: 403
  year: 1998
  ident: 10.1016/j.apm.2015.08.018_bib0008
  article-title: A note on the homogeneous balance method
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(98)00547-7
– volume: 15
  issue: 4
  year: 2015
  ident: 10.1016/j.apm.2015.08.018_bib0025
  article-title: The modified simple equation method and its applications in mathematical physics and biology
  publication-title: Global Journal of Science Frontier Research: F Mathematics and Decision Sciences
– volume: 372
  start-page: 417
  year: 2008
  ident: 10.1016/j.apm.2015.08.018_bib0020
  article-title: The (G′G)-expansion method and travelling wave solutions of nonlinear evolutions equations in mathematical physics
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2007.07.051
– volume: 27
  start-page: 1042
  year: 2006
  ident: 10.1016/j.apm.2015.08.018_bib0010
  article-title: Jacobian elliptic function method for nonlinear differential–difference equations
  publication-title: Chaos Solutions Fractals
  doi: 10.1016/j.chaos.2005.04.071
– volume: 305
  start-page: 383
  year: 2002
  ident: 10.1016/j.apm.2015.08.018_bib0011
  article-title: Applications of the jacobi elliptic function method to special-type nonlinear equations
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)01516-5
– volume: 217
  start-page: 869
  year: 2010
  ident: 10.1016/j.apm.2015.08.018_bib0024
  article-title: Modified simple equation method for nonlinear evolution equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.06.030
– volume: 187
  start-page: 1131
  year: 2007
  ident: 10.1016/j.apm.2015.08.018_bib0029
  article-title: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.09.013
– volume: 184
  start-page: 1002
  year: 2007
  ident: 10.1016/j.apm.2015.08.018_bib0030
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.07.002
– volume: 215
  start-page: 3669
  year: 2010
  ident: 10.1016/j.apm.2015.08.018_bib0037
  article-title: Explicit solutions of the bogoyavlensky-konoplechenko equation
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.11.005
– volume: 30
  start-page: 700
  year: 2006
  ident: 10.1016/j.apm.2015.08.018_bib0017
  article-title: Exp-function method for nonlinear wave equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.03.020
– volume: 32
  start-page: 235
  year: 2008
  ident: 10.1016/j.apm.2015.08.018_bib0019
  article-title: New exact traveling wave solutions for the nonlinear klein-gordon equation
  publication-title: Turk. J. Phys.
– volume: 31
  start-page: 9505
  year: 1998
  ident: 10.1016/j.apm.2015.08.018_bib0033
  article-title: Rational solutions for schwarzian integrable hierarchies
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/31/47/011
– volume: 27
  start-page: 959
  year: 2006
  ident: 10.1016/j.apm.2015.08.018_bib0015
  article-title: A generalized f-expansion method to find abundant families of jacobi elliptic function solutions of the (2+1)-dimensional nizhnik-novikov-veselov equation
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.04.063
– volume: 1
  start-page: 141
  year: 2012
  ident: 10.1016/j.apm.2015.08.018_bib0036
  article-title: Soliton solutions for (2+1)-dimensional breaking soliton equation: three wave method
  publication-title: Int. J. Appl. Math. Res.
– volume: 50
  start-page: 1685
  year: 2005
  ident: 10.1016/j.apm.2015.08.018_bib0005
  article-title: Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2005.05.010
– volume: 112
  issue: 12
  year: 2015
  ident: 10.1016/j.apm.2015.08.018_bib0022
  article-title: Exact traveling wave solutions for modified Liouville equation arising in mathematical physics and biology
  publication-title: Int. J. Comput. Appl. (0975-8887)
– volume: 30
  start-page: 749
  issue: 3
  year: 2014
  ident: 10.1016/j.apm.2015.08.018_bib0026
  article-title: Ibrahim, exact solutions of kolmogorov-petrovskii-piskunov equation using the modified simple equation method
  publication-title: Acta Math. Appl. Sinica, English series
  doi: 10.1007/s10255-014-0416-6
– volume: 40
  start-page: 499
  year: 2004
  ident: 10.1016/j.apm.2015.08.018_bib0006
  article-title: A sine-cosine method for handling nonlinear wave equations
  publication-title: Math. Comput. Model
  doi: 10.1016/j.mcm.2003.12.010
– volume: 67
  start-page: 449
  year: 2006
  ident: 10.1016/j.apm.2015.08.018_bib0039
  article-title: On exact solutions of bogoyavlenskii equation
  publication-title: Pramana J. Phys.
  doi: 10.1007/s12043-006-0005-1
– volume: 224
  start-page: 77
  year: 1996
  ident: 10.1016/j.apm.2015.08.018_bib0007
  article-title: A simple transformation for nonlinear waves
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(96)00770-0
– volume: 64
  start-page: 226
  issue: 5
  year: 2014
  ident: 10.1016/j.apm.2015.08.018_bib0023
  article-title: Exact solutions to some nonlinear evolution equations by using (G′G)-expansion method
  publication-title: Jokull J.
– volume: 26
  start-page: 1427
  year: 2009
  ident: 10.1016/j.apm.2015.08.018_bib0018
  article-title: Exact solutions for nonlinear partial differential equations via exp-function method, Numer.
  publication-title: Methods Partial Differ. Eq.
  doi: 10.1002/num.20497
– volume: 31
  start-page: 95
  year: 2007
  ident: 10.1016/j.apm.2015.08.018_bib0014
  article-title: The extended f-expansion method and its application for a class of nonlinear evolution equations
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.09.030
– volume: 6
  issue: 8
  year: 2015
  ident: 10.1016/j.apm.2015.08.018_bib0028
  article-title: New solitary wave solution of the generalized Hirota-Satsuma couple KdV system
  publication-title: Int. J. Sci. Eng. Res.
– volume: 154
  start-page: 714
  year: 2004
  ident: 10.1016/j.apm.2015.08.018_bib0004
  article-title: The tanh method for travelling wave solutions of nonlinear equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(03)00745-8
– volume: 289
  start-page: 69
  year: 2001
  ident: 10.1016/j.apm.2015.08.018_bib0012
  article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00580-1
– year: 1981
  ident: 10.1016/j.apm.2015.08.018_bib0001
– ident: 10.1016/j.apm.2015.08.018_bib0027
  doi: 10.1155/2013/685736
– volume: 60
  start-page: 650
  year: 1992
  ident: 10.1016/j.apm.2015.08.018_bib0002
  article-title: Solitary wave solutions of nonlinear wave equation
  publication-title: Am. J. Phys.
  doi: 10.1119/1.17120
SSID ssj0005904
Score 2.5302205
Snippet In this study, we consider exact traveling wave solutions of the Bogoyavlenskii equation using a modified extended tanh-function method. This method has a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1769
SubjectTerms Bogoyavlenskii equation
Modified extended tanh-function method
Riccati equation
Traveling wave solution
Title Modified extended tanh-function method and its applications to the Bogoyavlenskii equation
URI https://dx.doi.org/10.1016/j.apm.2015.08.018
Volume 40
WOSCitedRecordID wos000369191600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0307-904X
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 20180131
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005904
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1BygEOqHyJAkV74ERky4738xhQUAtKxaFIUS_Wxrsm6YcdkrQq_55Z767jFIrogYtlWfHa8Xuaed4dz0PonV3ZoZKwiE2NtTBjJpIZTSPFVcGZEczIsjGb4EdHYjKRX33p0KqxE-BVJa6v5eK_Qg3HAGz76ewd4G4HhQOwD6DDFmCH7T8BP671vLTCMsxv90H_zSKbwBqsnWd0u2jQXcEOQvRD_b3-qa4gIa3O5vO--XG5wS90rPXq9aJt-2o_Q7G2OuchGVqyxOO4f6JmSzfNOrpQukU4Hsb9LzPljUHGNcjUUnUnIdK2brmNVbbXpExcsWUIrK4PkydQ1omSKXf2LD7jptyZp_wWzd3EwmmsFrZnQEqbZqs-XG91zr6R0do6w1DCdprDELkdIremm6m4j3YGnErRQzvDw9Hk86YqSCYk9M60_ycshDclgTfu489SpiNPjnfRY_9egYeOD0_QPVM9RY_GLTqrZ-gkMAMHZuAtZmDHDAzMwMAM3GUGXtcYhsLbzMCBGc_Rt0-j448HkbfWiIqM8XVEqeDwok20VMJkqWFUMUK1pjwTOtGp1AOeTEmjQKnh1neAFaUuSpGU6UDx7AXqVXVlXiLMMk1LU2QZYYIQMoWEkJRMFhDbp4YWeg8l4Snlhe87b-1PzvNb0dlD79tTFq7pyt9-TMKjz71qdGowBxrdftqru1zjNXq4Yf0b1FsvL80-elBcreer5VvPoV_bgY3T
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+extended+tanh-function+method+and+its+applications+to+the+Bogoyavlenskii+equation&rft.jtitle=Applied+mathematical+modelling&rft.au=H.M.+Zahran%2C+Emad&rft.au=M.A.+Khater%2C+Mostafa&rft.date=2016-02-01&rft.issn=0307-904X&rft.volume=40&rft.issue=3&rft.spage=1769&rft.epage=1775&rft_id=info:doi/10.1016%2Fj.apm.2015.08.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2015_08_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon