Modified extended tanh-function method and its applications to the Bogoyavlenskii equation
In this study, we consider exact traveling wave solutions of the Bogoyavlenskii equation using a modified extended tanh-function method. This method has a broad applicability to many other nonlinear evolution equations in mathematical physics.
Uloženo v:
| Vydáno v: | Applied mathematical modelling Ročník 40; číslo 3; s. 1769 - 1775 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.02.2016
|
| Témata: | |
| ISSN: | 0307-904X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this study, we consider exact traveling wave solutions of the Bogoyavlenskii equation using a modified extended tanh-function method. This method has a broad applicability to many other nonlinear evolution equations in mathematical physics. |
|---|---|
| AbstractList | In this study, we consider exact traveling wave solutions of the Bogoyavlenskii equation using a modified extended tanh-function method. This method has a broad applicability to many other nonlinear evolution equations in mathematical physics. |
| Author | H.M. Zahran, Emad M.A. Khater, Mostafa |
| Author_xml | – sequence: 1 givenname: Emad surname: H.M. Zahran fullname: H.M. Zahran, Emad organization: Department of Mathematical and Physical Engineering, University of Benha, College of Engineering, Shubra, Egypt – sequence: 2 givenname: Mostafa orcidid: 0000-0001-8466-168X surname: M.A. Khater fullname: M.A. Khater, Mostafa email: mostafa.khater2024@yahoo.com, darsh_2024@yahoo.com organization: Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt |
| BookMark | eNp9kM9OwzAMh3MYEtvgAbjlBVqctWlScYKJf9IQF5AQlygkLsvoktFkE3t7uo0Th51s66fPsr8RGfjgkZALBjkDVl0ucr1a5hNgPAeZA5MDMoQCRFZD-XZKRjEuAID305C8PwXrGoeW4k9Cb_smaT_PmrU3yQVPl5jmwVLtLXUpUr1atc7oXRRpCjTNkd6Ez7DVmxZ9_HKO4vd6n5-Rk0a3Ec__6pi83t2-TB-y2fP94_R6lpmiEinjXIq6lqWttcSCYcV1VXJruSikBctqOxHwUfYXC8ZRQCmLyjTWNBIaNtGiGBNx2Gu6EGOHjTIu7S9InXatYqB2WtRC9VrUTosCqXotPcn-kavOLXW3PcpcHRjsX9o47FQ0Dr1B6zo0SdngjtC_s3GAOA |
| CitedBy_id | crossref_primary_10_1016_j_ijleo_2023_171140 crossref_primary_10_1007_s11071_024_10101_3 crossref_primary_10_3934_math_2025578 crossref_primary_10_1007_s11082_022_04530_w crossref_primary_10_1088_1402_4896_ab61dd crossref_primary_10_1016_j_future_2019_04_031 crossref_primary_10_1007_s00521_017_2999_3 crossref_primary_10_1088_1402_4896_ad9781 crossref_primary_10_1088_1674_1056_ac48ff crossref_primary_10_1002_num_22700 crossref_primary_10_1007_s10598_023_09563_8 crossref_primary_10_1016_j_camwa_2017_08_021 crossref_primary_10_1007_s11082_022_03613_y crossref_primary_10_1515_ijnsns_2018_0188 crossref_primary_10_3390_fractalfract8070388 crossref_primary_10_1007_s11082_017_1195_0 crossref_primary_10_3390_fractalfract7020138 crossref_primary_10_1007_s11082_024_06851_4 crossref_primary_10_1007_s40819_019_0711_2 crossref_primary_10_1016_j_spmi_2017_11_011 crossref_primary_10_1007_s11082_023_06198_2 crossref_primary_10_3390_sym16070847 crossref_primary_10_1007_s11071_025_10912_y crossref_primary_10_3390_fractalfract6050252 crossref_primary_10_3390_sym14112370 crossref_primary_10_1038_s41598_025_05064_3 crossref_primary_10_1007_s10773_025_05898_7 crossref_primary_10_1002_num_22681 crossref_primary_10_1016_j_chaos_2022_112388 crossref_primary_10_1016_j_cnsns_2021_106242 crossref_primary_10_1140_epjp_s13360_020_00218_w crossref_primary_10_1051_itmconf_20182201065 crossref_primary_10_1007_s12648_024_03426_7 crossref_primary_10_1088_1402_4896_ad21ca crossref_primary_10_1142_S0217984924504918 crossref_primary_10_1007_s10773_024_05631_w crossref_primary_10_1007_s11082_023_05453_w crossref_primary_10_1088_1402_4896_ad1455 crossref_primary_10_3390_fractalfract6040202 crossref_primary_10_1007_s11082_021_03032_5 crossref_primary_10_1155_2024_8812792 crossref_primary_10_3390_math11020488 crossref_primary_10_1002_mma_8596 crossref_primary_10_1016_j_joems_2016_04_006 crossref_primary_10_1142_S0217732325500993 crossref_primary_10_1016_j_cnsns_2025_108647 crossref_primary_10_1007_s11082_023_06197_3 crossref_primary_10_1007_s11082_017_1249_3 crossref_primary_10_1007_s11082_022_03562_6 crossref_primary_10_1088_1402_4896_ac42eb crossref_primary_10_3390_fractalfract6030156 crossref_primary_10_1088_1402_4896_ad36f1 crossref_primary_10_3390_axioms11090445 crossref_primary_10_3390_math9243223 crossref_primary_10_1016_j_rineng_2024_103757 crossref_primary_10_29059_cienciauat_v13i2_1119 crossref_primary_10_1080_09720502_2021_1966954 crossref_primary_10_1140_epjp_s13360_021_01385_0 crossref_primary_10_1063_5_0143256 crossref_primary_10_1007_s11071_018_4509_2 crossref_primary_10_2478_ama_2025_0048 crossref_primary_10_1007_s11082_021_03122_4 crossref_primary_10_1016_j_matcom_2022_03_007 crossref_primary_10_1007_s11082_022_04117_5 crossref_primary_10_3390_fractalfract9070453 crossref_primary_10_3390_sym15010135 crossref_primary_10_1007_s11082_017_0974_y crossref_primary_10_1007_s40065_023_00454_9 crossref_primary_10_1134_S1063780X20090068 crossref_primary_10_1016_j_ijleo_2021_166539 crossref_primary_10_1140_epjp_s13360_024_05765_0 crossref_primary_10_1016_j_ijleo_2021_166939 crossref_primary_10_1016_j_ijleo_2016_11_029 crossref_primary_10_1016_j_ijleo_2020_166157 crossref_primary_10_1007_s11071_024_09872_6 crossref_primary_10_1016_j_cjph_2022_03_008 crossref_primary_10_1142_S0217732325500658 crossref_primary_10_1007_s11071_024_09724_3 crossref_primary_10_3389_fphy_2024_1347636 crossref_primary_10_3390_math12132053 crossref_primary_10_1016_j_asej_2025_103539 crossref_primary_10_3390_axioms12050466 crossref_primary_10_1016_j_ijleo_2020_165233 crossref_primary_10_3390_computation9030030 crossref_primary_10_1007_s11082_023_05935_x crossref_primary_10_3390_fractalfract7070523 crossref_primary_10_1088_1402_4896_ad6ec9 crossref_primary_10_1007_s12043_021_02174_1 crossref_primary_10_1016_j_padiff_2025_101295 crossref_primary_10_1002_mma_6811 crossref_primary_10_1007_s11082_024_06468_7 crossref_primary_10_1016_j_chaos_2017_07_025 crossref_primary_10_1007_s40819_021_00953_3 crossref_primary_10_3390_math9161986 crossref_primary_10_1186_s13662_021_03311_1 crossref_primary_10_1007_s11082_017_1127_z crossref_primary_10_1007_s11082_022_03599_7 crossref_primary_10_1088_1572_9494_ab8a13 crossref_primary_10_1080_09205071_2018_1431156 crossref_primary_10_3390_math7030264 crossref_primary_10_1088_1402_4896_aceb40 crossref_primary_10_1007_s11766_024_4563_0 crossref_primary_10_1155_2017_9257019 crossref_primary_10_1063_5_0002879 crossref_primary_10_3390_math12142257 crossref_primary_10_1080_09205071_2017_1362361 crossref_primary_10_1155_2022_5224289 crossref_primary_10_46939_J_Sci_Arts_21_1_a09 crossref_primary_10_1142_S0217984925501027 |
| Cites_doi | 10.1088/0266-5611/13/6/004 10.2991/jnmp.2004.11.2.3 10.1088/0031-8949/54/6/003 10.1023/A:1024909327151 10.1016/j.camwa.2012.04.018 10.1016/0375-9601(96)00103-X 10.1016/j.physleta.2005.10.099 10.1016/j.chaos.2005.05.016 10.1016/j.amc.2006.07.092 10.1070/RM1990v045n04ABEH002377 10.1016/j.physleta.2007.11.026 10.1016/S0375-9601(98)00547-7 10.1016/j.physleta.2007.07.051 10.1016/j.chaos.2005.04.071 10.1016/S0375-9601(02)01516-5 10.1016/j.amc.2010.06.030 10.1016/j.amc.2006.09.013 10.1016/j.amc.2006.07.002 10.1016/j.amc.2009.11.005 10.1016/j.chaos.2006.03.020 10.1088/0305-4470/31/47/011 10.1016/j.chaos.2005.04.063 10.1016/j.camwa.2005.05.010 10.1007/s10255-014-0416-6 10.1016/j.mcm.2003.12.010 10.1007/s12043-006-0005-1 10.1016/S0375-9601(96)00770-0 10.1002/num.20497 10.1016/j.chaos.2005.09.030 10.1016/S0096-3003(03)00745-8 10.1016/S0375-9601(01)00580-1 10.1155/2013/685736 10.1119/1.17120 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Inc. |
| Copyright_xml | – notice: 2015 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.apm.2015.08.018 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EndPage | 1775 |
| ExternalDocumentID | 10_1016_j_apm_2015_08_018 S0307904X15005429 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSW SSZ T5K TN5 WH7 ZMT ~02 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FGOYB G-2 HZ~ MVM R2- SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c367t-55879984d9a8e31e65a645dd5738d0d19d270b4000715e704836cfdcf80f12a73 |
| ISICitedReferencesCount | 165 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369191600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0307-904X |
| IngestDate | Sat Nov 29 03:21:55 EST 2025 Tue Nov 18 22:15:34 EST 2025 Fri Feb 23 02:30:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Bogoyavlenskii equation Modified extended tanh-function method Riccati equation Traveling wave solution |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-55879984d9a8e31e65a645dd5738d0d19d270b4000715e704836cfdcf80f12a73 |
| ORCID | 0000-0001-8466-168X |
| PageCount | 7 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_apm_2015_08_018 crossref_primary_10_1016_j_apm_2015_08_018 elsevier_sciencedirect_doi_10_1016_j_apm_2015_08_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-02-01 |
| PublicationDateYYYYMMDD | 2016-02-01 |
| PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied mathematical modelling |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Abdelrahman, Zahran, Khater (bib0022) 2015; 112 Prabhakar, Bhate (bib0038) 2003; 64 Peng, Shen (bib0039) 2006; 67 Fan, Zhang (bib0008) 1998; 246 Zahran, Khater (bib0023) 2014; 64 Xin, Liu, Zhang (bib0037) 2010; 215 Wazwaz (bib0029) 2007; 187 Jawad, Petkovic, Biswas (bib0024) 2010; 217 Bogoyavlenskii (bib0032) 1990; 45 Clarkson, Gordoa, Pickering (bib0034) 1997; 13 Wazwaz (bib0004) 2004; 154 Khater (bib0025) 2015; 15 Aminikhad, Moosaei, Hajipour (bib0018) 2009; 26 Zayed, Hoda (bib0026) 2014; 30 Wazwaz (bib0031) 2007; 186 Zhang (bib0019) 2008; 32 Kudryasho, Pickering (bib0033) 1998; 31 Wang, Zhang, Li (bib0020) 2008; 372 Wazwaz (bib0005) 2005; 50 Malik, Chand, Kumar, Mishra (bib0040) 2012; 64 Zhao, Zhi, Zhang (bib0013) 2006; 28 Wang (bib0009) 1996; 213 Zhang, Wang, Wang, Fang (bib0016) 2006; 350 Zhang, Tong, Wang (bib0021) 2008; 372 Fan, Zhang (bib0011) 2002; 305 Wazwaz (bib0030) 2007; 184 Wazwaz (bib0006) 2004; 40 Estevez, Prada (bib0035) 2004; 11 Yan (bib0007) 1996; 224 Abadi, Naja (bib0036) 2012; 1 Malfliet, Hereman (bib0003) 1996; 54 Khater, Zahran (bib0028) 2015; 6 Ablowitz, Segur (bib0001) 1981 He, Wu (bib0017) 2006; 30 Dai, Zhang (bib0010) 2006; 27 K. Khan, M.A. Akbar, Traveling Wave Solutions of Some Coupled Nonlinear Evolution Equations, Hindawi Publishing Corporation, ISRN Mathematical Physics, Vol. 2013, Article ID 685736, 8 pages. Liu, Fu, Liu, Zhao (bib0012) 2001; 289 Abdou (bib0014) 2007; 31 Malfliet (bib0002) 1992; 60 Ren, Zhang (bib0015) 2006; 27 Zhao (10.1016/j.apm.2015.08.018_bib0013) 2006; 28 Clarkson (10.1016/j.apm.2015.08.018_bib0034) 1997; 13 Wazwaz (10.1016/j.apm.2015.08.018_bib0004) 2004; 154 Wang (10.1016/j.apm.2015.08.018_bib0009) 1996; 213 Zhang (10.1016/j.apm.2015.08.018_bib0019) 2008; 32 Kudryasho (10.1016/j.apm.2015.08.018_bib0033) 1998; 31 Khater (10.1016/j.apm.2015.08.018_bib0025) 2015; 15 Malfliet (10.1016/j.apm.2015.08.018_bib0002) 1992; 60 Malik (10.1016/j.apm.2015.08.018_bib0040) 2012; 64 Malfliet (10.1016/j.apm.2015.08.018_bib0003) 1996; 54 Wazwaz (10.1016/j.apm.2015.08.018_bib0029) 2007; 187 Wazwaz (10.1016/j.apm.2015.08.018_bib0031) 2007; 186 Xin (10.1016/j.apm.2015.08.018_bib0037) 2010; 215 Ren (10.1016/j.apm.2015.08.018_bib0015) 2006; 27 Wang (10.1016/j.apm.2015.08.018_bib0020) 2008; 372 Yan (10.1016/j.apm.2015.08.018_bib0007) 1996; 224 Abdelrahman (10.1016/j.apm.2015.08.018_bib0022) 2015; 112 Liu (10.1016/j.apm.2015.08.018_bib0012) 2001; 289 Zhang (10.1016/j.apm.2015.08.018_bib0016) 2006; 350 Prabhakar (10.1016/j.apm.2015.08.018_bib0038) 2003; 64 Wazwaz (10.1016/j.apm.2015.08.018_bib0030) 2007; 184 Jawad (10.1016/j.apm.2015.08.018_bib0024) 2010; 217 Zayed (10.1016/j.apm.2015.08.018_bib0026) 2014; 30 Abdou (10.1016/j.apm.2015.08.018_bib0014) 2007; 31 Abadi (10.1016/j.apm.2015.08.018_bib0036) 2012; 1 Dai (10.1016/j.apm.2015.08.018_bib0010) 2006; 27 Aminikhad (10.1016/j.apm.2015.08.018_bib0018) 2009; 26 Bogoyavlenskii (10.1016/j.apm.2015.08.018_bib0032) 1990; 45 Ablowitz (10.1016/j.apm.2015.08.018_bib0001) 1981 Fan (10.1016/j.apm.2015.08.018_bib0008) 1998; 246 Wazwaz (10.1016/j.apm.2015.08.018_bib0006) 2004; 40 He (10.1016/j.apm.2015.08.018_bib0017) 2006; 30 Estevez (10.1016/j.apm.2015.08.018_bib0035) 2004; 11 Khater (10.1016/j.apm.2015.08.018_bib0028) 2015; 6 Fan (10.1016/j.apm.2015.08.018_bib0011) 2002; 305 Zhang (10.1016/j.apm.2015.08.018_bib0021) 2008; 372 Wazwaz (10.1016/j.apm.2015.08.018_bib0005) 2005; 50 Peng (10.1016/j.apm.2015.08.018_bib0039) 2006; 67 Zahran (10.1016/j.apm.2015.08.018_bib0023) 2014; 64 10.1016/j.apm.2015.08.018_bib0027 |
| References_xml | – volume: 31 start-page: 9505 year: 1998 end-page: 9518 ident: bib0033 article-title: Rational solutions for schwarzian integrable hierarchies publication-title: J. Phys. A – volume: 28 start-page: 112 year: 2006 end-page: 126 ident: bib0013 article-title: Improved jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized ito system publication-title: Chaos Solitons Fractals – volume: 184 start-page: 1002 year: 2007 end-page: 1014 ident: bib0030 publication-title: Appl. Math. Comput. – volume: 213 start-page: 279 year: 1996 end-page: 287 ident: bib0009 article-title: Exact solutions for a compound kdv-burgers equation publication-title: Phys. Lett. A – volume: 30 start-page: 700 year: 2006 end-page: 708 ident: bib0017 article-title: Exp-function method for nonlinear wave equations publication-title: Chaos Solitons Fractals – volume: 305 start-page: 383 year: 2002 end-page: 392 ident: bib0011 article-title: Applications of the jacobi elliptic function method to special-type nonlinear equations publication-title: Phys. Lett. A – volume: 15 year: 2015 ident: bib0025 article-title: The modified simple equation method and its applications in mathematical physics and biology publication-title: Global Journal of Science Frontier Research: F Mathematics and Decision Sciences – volume: 372 start-page: 2254 year: 2008 end-page: 2257 ident: bib0021 article-title: A generalized publication-title: Phys. Lett. A – volume: 67 start-page: 449 year: 2006 end-page: 456 ident: bib0039 article-title: On exact solutions of bogoyavlenskii equation publication-title: Pramana J. Phys. – volume: 64 start-page: 226 year: 2014 end-page: 238 ident: bib0023 article-title: Exact solutions to some nonlinear evolution equations by using publication-title: Jokull J. – volume: 30 start-page: 749 year: 2014 end-page: 754 ident: bib0026 article-title: Ibrahim, exact solutions of kolmogorov-petrovskii-piskunov equation using the modified simple equation method publication-title: Acta Math. Appl. Sinica, English series – reference: K. Khan, M.A. Akbar, Traveling Wave Solutions of Some Coupled Nonlinear Evolution Equations, Hindawi Publishing Corporation, ISRN Mathematical Physics, Vol. 2013, Article ID 685736, 8 pages. – year: 1981 ident: bib0001 article-title: Solitions and Inverse Scattering Transform – volume: 54 start-page: 563 year: 1996 end-page: 568 ident: bib0003 article-title: The tanh method: Exact solutions of nonlinear evolution and wave equations publication-title: Phys. Scr. – volume: 27 start-page: 1042 year: 2006 end-page: 1049 ident: bib0010 article-title: Jacobian elliptic function method for nonlinear differential–difference equations publication-title: Chaos Solutions Fractals – volume: 26 start-page: 1427 year: 2009 end-page: 1433 ident: bib0018 article-title: Exact solutions for nonlinear partial differential equations via exp-function method, Numer. publication-title: Methods Partial Differ. Eq. – volume: 224 start-page: 77 year: 1996 end-page: 84 ident: bib0007 article-title: A simple transformation for nonlinear waves publication-title: Phys. Lett. A – volume: 372 start-page: 417 year: 2008 end-page: 423 ident: bib0020 article-title: The publication-title: Phys. Lett. A – volume: 187 start-page: 1131 year: 2007 end-page: 1142 ident: bib0029 article-title: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations publication-title: Appl. Math. Comput. – volume: 13 start-page: 1463 year: 1997 end-page: 1476 ident: bib0034 article-title: Multicomponent equations associated to non-isospectral scattering probl. publication-title: Inverse Problems – volume: 350 start-page: 103 year: 2006 end-page: 109 ident: bib0016 article-title: The improved f-expansion method and its applications publication-title: Phys. Lett. A – volume: 154 start-page: 714 year: 2004 end-page: 723 ident: bib0004 article-title: The tanh method for travelling wave solutions of nonlinear equations publication-title: Appl. Math. Comput. – volume: 1 start-page: 141 year: 2012 end-page: 149 ident: bib0036 article-title: Soliton solutions for publication-title: Int. J. Appl. Math. Res. – volume: 64 start-page: 2850 year: 2012 end-page: 2859 ident: bib0040 article-title: Exact solutions of the bogoyavlenskii equation using the multiple publication-title: Appl. Math. Comput. – volume: 31 start-page: 95 year: 2007 end-page: 104 ident: bib0014 article-title: The extended f-expansion method and its application for a class of nonlinear evolution equations publication-title: Chaos Solitons Fractals – volume: 50 start-page: 1685 year: 2005 end-page: 1696 ident: bib0005 article-title: Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method publication-title: Comput. Math. Appl. – volume: 217 start-page: 869 year: 2010 end-page: 877 ident: bib0024 article-title: Modified simple equation method for nonlinear evolution equations publication-title: Appl. Math. Comput. – volume: 32 start-page: 235 year: 2008 end-page: 240 ident: bib0019 article-title: New exact traveling wave solutions for the nonlinear klein-gordon equation publication-title: Turk. J. Phys. – volume: 112 year: 2015 ident: bib0022 article-title: Exact traveling wave solutions for modified Liouville equation arising in mathematical physics and biology publication-title: Int. J. Comput. Appl. (0975-8887) – volume: 186 start-page: 130 year: 2007 end-page: 141 ident: bib0031 publication-title: Appl. Math. Comput. – volume: 246 start-page: 403 year: 1998 end-page: 406 ident: bib0008 article-title: A note on the homogeneous balance method publication-title: Phys. Lett. A – volume: 40 start-page: 499 year: 2004 end-page: 508 ident: bib0006 article-title: A sine-cosine method for handling nonlinear wave equations publication-title: Math. Comput. Model – volume: 64 start-page: 1 year: 2003 end-page: 6 ident: bib0038 article-title: Exact solutions of the bogoyavlensky-konoplechenko equation publication-title: Lett. Math. Phys. – volume: 6 year: 2015 ident: bib0028 article-title: New solitary wave solution of the generalized Hirota-Satsuma couple KdV system publication-title: Int. J. Sci. Eng. Res. – volume: 289 start-page: 69 year: 2001 end-page: 74 ident: bib0012 article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations publication-title: Phys. Lett. A – volume: 215 start-page: 3669 year: 2010 end-page: 3673 ident: bib0037 article-title: Explicit solutions of the bogoyavlensky-konoplechenko equation publication-title: Appl. Math. Comput. – volume: 60 start-page: 650 year: 1992 end-page: 654 ident: bib0002 article-title: Solitary wave solutions of nonlinear wave equation publication-title: Am. J. Phys. – volume: 45 start-page: 1 year: 1990 end-page: 86 ident: bib0032 article-title: Breaking solitons in publication-title: Russ. Math. Surv. – volume: 27 start-page: 959 year: 2006 end-page: 979 ident: bib0015 article-title: A generalized f-expansion method to find abundant families of jacobi elliptic function solutions of the publication-title: Chaos Solitons Fractals – volume: 11 start-page: 168 year: 2004 end-page: 179 ident: bib0035 article-title: A generalization of the sine-gordon equation publication-title: J. Nonlinear Math. Phys. – volume: 13 start-page: 1463 year: 1997 ident: 10.1016/j.apm.2015.08.018_bib0034 article-title: Multicomponent equations associated to non-isospectral scattering probl. publication-title: Inverse Problems doi: 10.1088/0266-5611/13/6/004 – volume: 11 start-page: 168 year: 2004 ident: 10.1016/j.apm.2015.08.018_bib0035 article-title: A generalization of the sine-gordon equation (2+1)-dimensions publication-title: J. Nonlinear Math. Phys. doi: 10.2991/jnmp.2004.11.2.3 – volume: 54 start-page: 563 year: 1996 ident: 10.1016/j.apm.2015.08.018_bib0003 article-title: The tanh method: Exact solutions of nonlinear evolution and wave equations publication-title: Phys. Scr. doi: 10.1088/0031-8949/54/6/003 – volume: 64 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.apm.2015.08.018_bib0038 article-title: Exact solutions of the bogoyavlensky-konoplechenko equation publication-title: Lett. Math. Phys. doi: 10.1023/A:1024909327151 – volume: 64 start-page: 2850 year: 2012 ident: 10.1016/j.apm.2015.08.018_bib0040 article-title: Exact solutions of the bogoyavlenskii equation using the multiple G′G-expansion method publication-title: Appl. Math. Comput. doi: 10.1016/j.camwa.2012.04.018 – volume: 213 start-page: 279 year: 1996 ident: 10.1016/j.apm.2015.08.018_bib0009 article-title: Exact solutions for a compound kdv-burgers equation publication-title: Phys. Lett. A doi: 10.1016/0375-9601(96)00103-X – volume: 350 start-page: 103 year: 2006 ident: 10.1016/j.apm.2015.08.018_bib0016 article-title: The improved f-expansion method and its applications publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2005.10.099 – volume: 28 start-page: 112 year: 2006 ident: 10.1016/j.apm.2015.08.018_bib0013 article-title: Improved jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized ito system publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.05.016 – volume: 186 start-page: 130 year: 2007 ident: 10.1016/j.apm.2015.08.018_bib0031 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.07.092 – volume: 45 start-page: 1 year: 1990 ident: 10.1016/j.apm.2015.08.018_bib0032 article-title: Breaking solitons in 2+1-dimensional integrable equations publication-title: Russ. Math. Surv. doi: 10.1070/RM1990v045n04ABEH002377 – volume: 372 start-page: 2254 year: 2008 ident: 10.1016/j.apm.2015.08.018_bib0021 article-title: A generalized (G′G)-expansion method for the mkdv equation with variable coefficients publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2007.11.026 – volume: 246 start-page: 403 year: 1998 ident: 10.1016/j.apm.2015.08.018_bib0008 article-title: A note on the homogeneous balance method publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(98)00547-7 – volume: 15 issue: 4 year: 2015 ident: 10.1016/j.apm.2015.08.018_bib0025 article-title: The modified simple equation method and its applications in mathematical physics and biology publication-title: Global Journal of Science Frontier Research: F Mathematics and Decision Sciences – volume: 372 start-page: 417 year: 2008 ident: 10.1016/j.apm.2015.08.018_bib0020 article-title: The (G′G)-expansion method and travelling wave solutions of nonlinear evolutions equations in mathematical physics publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2007.07.051 – volume: 27 start-page: 1042 year: 2006 ident: 10.1016/j.apm.2015.08.018_bib0010 article-title: Jacobian elliptic function method for nonlinear differential–difference equations publication-title: Chaos Solutions Fractals doi: 10.1016/j.chaos.2005.04.071 – volume: 305 start-page: 383 year: 2002 ident: 10.1016/j.apm.2015.08.018_bib0011 article-title: Applications of the jacobi elliptic function method to special-type nonlinear equations publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(02)01516-5 – volume: 217 start-page: 869 year: 2010 ident: 10.1016/j.apm.2015.08.018_bib0024 article-title: Modified simple equation method for nonlinear evolution equations publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2010.06.030 – volume: 187 start-page: 1131 year: 2007 ident: 10.1016/j.apm.2015.08.018_bib0029 article-title: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.09.013 – volume: 184 start-page: 1002 year: 2007 ident: 10.1016/j.apm.2015.08.018_bib0030 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.07.002 – volume: 215 start-page: 3669 year: 2010 ident: 10.1016/j.apm.2015.08.018_bib0037 article-title: Explicit solutions of the bogoyavlensky-konoplechenko equation publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.11.005 – volume: 30 start-page: 700 year: 2006 ident: 10.1016/j.apm.2015.08.018_bib0017 article-title: Exp-function method for nonlinear wave equations publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.03.020 – volume: 32 start-page: 235 year: 2008 ident: 10.1016/j.apm.2015.08.018_bib0019 article-title: New exact traveling wave solutions for the nonlinear klein-gordon equation publication-title: Turk. J. Phys. – volume: 31 start-page: 9505 year: 1998 ident: 10.1016/j.apm.2015.08.018_bib0033 article-title: Rational solutions for schwarzian integrable hierarchies publication-title: J. Phys. A doi: 10.1088/0305-4470/31/47/011 – volume: 27 start-page: 959 year: 2006 ident: 10.1016/j.apm.2015.08.018_bib0015 article-title: A generalized f-expansion method to find abundant families of jacobi elliptic function solutions of the (2+1)-dimensional nizhnik-novikov-veselov equation publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.04.063 – volume: 1 start-page: 141 year: 2012 ident: 10.1016/j.apm.2015.08.018_bib0036 article-title: Soliton solutions for (2+1)-dimensional breaking soliton equation: three wave method publication-title: Int. J. Appl. Math. Res. – volume: 50 start-page: 1685 year: 2005 ident: 10.1016/j.apm.2015.08.018_bib0005 article-title: Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2005.05.010 – volume: 112 issue: 12 year: 2015 ident: 10.1016/j.apm.2015.08.018_bib0022 article-title: Exact traveling wave solutions for modified Liouville equation arising in mathematical physics and biology publication-title: Int. J. Comput. Appl. (0975-8887) – volume: 30 start-page: 749 issue: 3 year: 2014 ident: 10.1016/j.apm.2015.08.018_bib0026 article-title: Ibrahim, exact solutions of kolmogorov-petrovskii-piskunov equation using the modified simple equation method publication-title: Acta Math. Appl. Sinica, English series doi: 10.1007/s10255-014-0416-6 – volume: 40 start-page: 499 year: 2004 ident: 10.1016/j.apm.2015.08.018_bib0006 article-title: A sine-cosine method for handling nonlinear wave equations publication-title: Math. Comput. Model doi: 10.1016/j.mcm.2003.12.010 – volume: 67 start-page: 449 year: 2006 ident: 10.1016/j.apm.2015.08.018_bib0039 article-title: On exact solutions of bogoyavlenskii equation publication-title: Pramana J. Phys. doi: 10.1007/s12043-006-0005-1 – volume: 224 start-page: 77 year: 1996 ident: 10.1016/j.apm.2015.08.018_bib0007 article-title: A simple transformation for nonlinear waves publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(96)00770-0 – volume: 64 start-page: 226 issue: 5 year: 2014 ident: 10.1016/j.apm.2015.08.018_bib0023 article-title: Exact solutions to some nonlinear evolution equations by using (G′G)-expansion method publication-title: Jokull J. – volume: 26 start-page: 1427 year: 2009 ident: 10.1016/j.apm.2015.08.018_bib0018 article-title: Exact solutions for nonlinear partial differential equations via exp-function method, Numer. publication-title: Methods Partial Differ. Eq. doi: 10.1002/num.20497 – volume: 31 start-page: 95 year: 2007 ident: 10.1016/j.apm.2015.08.018_bib0014 article-title: The extended f-expansion method and its application for a class of nonlinear evolution equations publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.09.030 – volume: 6 issue: 8 year: 2015 ident: 10.1016/j.apm.2015.08.018_bib0028 article-title: New solitary wave solution of the generalized Hirota-Satsuma couple KdV system publication-title: Int. J. Sci. Eng. Res. – volume: 154 start-page: 714 year: 2004 ident: 10.1016/j.apm.2015.08.018_bib0004 article-title: The tanh method for travelling wave solutions of nonlinear equations publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(03)00745-8 – volume: 289 start-page: 69 year: 2001 ident: 10.1016/j.apm.2015.08.018_bib0012 article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(01)00580-1 – year: 1981 ident: 10.1016/j.apm.2015.08.018_bib0001 – ident: 10.1016/j.apm.2015.08.018_bib0027 doi: 10.1155/2013/685736 – volume: 60 start-page: 650 year: 1992 ident: 10.1016/j.apm.2015.08.018_bib0002 article-title: Solitary wave solutions of nonlinear wave equation publication-title: Am. J. Phys. doi: 10.1119/1.17120 |
| SSID | ssj0005904 |
| Score | 2.5302205 |
| Snippet | In this study, we consider exact traveling wave solutions of the Bogoyavlenskii equation using a modified extended tanh-function method. This method has a... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1769 |
| SubjectTerms | Bogoyavlenskii equation Modified extended tanh-function method Riccati equation Traveling wave solution |
| Title | Modified extended tanh-function method and its applications to the Bogoyavlenskii equation |
| URI | https://dx.doi.org/10.1016/j.apm.2015.08.018 |
| Volume | 40 |
| WOSCitedRecordID | wos000369191600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0307-904X databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 20180131 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005904 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1BygEOqHyJAkV74ERky4738xhQUAtKxaFIUS_Wxrsm6YcdkrQq_55Z767jFIrogYtlWfHa8Xuaed4dz0PonV3ZoZKwiE2NtTBjJpIZTSPFVcGZEczIsjGb4EdHYjKRX33p0KqxE-BVJa6v5eK_Qg3HAGz76ewd4G4HhQOwD6DDFmCH7T8BP671vLTCMsxv90H_zSKbwBqsnWd0u2jQXcEOQvRD_b3-qa4gIa3O5vO--XG5wS90rPXq9aJt-2o_Q7G2OuchGVqyxOO4f6JmSzfNOrpQukU4Hsb9LzPljUHGNcjUUnUnIdK2brmNVbbXpExcsWUIrK4PkydQ1omSKXf2LD7jptyZp_wWzd3EwmmsFrZnQEqbZqs-XG91zr6R0do6w1DCdprDELkdIremm6m4j3YGnErRQzvDw9Hk86YqSCYk9M60_ycshDclgTfu489SpiNPjnfRY_9egYeOD0_QPVM9RY_GLTqrZ-gkMAMHZuAtZmDHDAzMwMAM3GUGXtcYhsLbzMCBGc_Rt0-j448HkbfWiIqM8XVEqeDwok20VMJkqWFUMUK1pjwTOtGp1AOeTEmjQKnh1neAFaUuSpGU6UDx7AXqVXVlXiLMMk1LU2QZYYIQMoWEkJRMFhDbp4YWeg8l4Snlhe87b-1PzvNb0dlD79tTFq7pyt9-TMKjz71qdGowBxrdftqru1zjNXq4Yf0b1FsvL80-elBcreer5VvPoV_bgY3T |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+extended+tanh-function+method+and+its+applications+to+the+Bogoyavlenskii+equation&rft.jtitle=Applied+mathematical+modelling&rft.au=H.M.+Zahran%2C+Emad&rft.au=M.A.+Khater%2C+Mostafa&rft.date=2016-02-01&rft.issn=0307-904X&rft.volume=40&rft.issue=3&rft.spage=1769&rft.epage=1775&rft_id=info:doi/10.1016%2Fj.apm.2015.08.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2015_08_018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |