A vision-based hybrid approach for identification of Anthurium flower cultivars

•Flowers cultivar identification is a key step for subsequent classification tasks.•Anthurium flowers could be identified based on their spadix.•The Viola-Jones algorithm was used to detect the spadix of Anthurium flower.•Computation time is a constraint especially for matching with a lot of templat...

Full description

Saved in:
Bibliographic Details
Published in:Computers and electronics in agriculture Vol. 174; p. 105460
Main Authors: Soleimanipour, A., Chegini, G.R.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.07.2020
Elsevier BV
Subjects:
ISSN:0168-1699, 1872-7107
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Flowers cultivar identification is a key step for subsequent classification tasks.•Anthurium flowers could be identified based on their spadix.•The Viola-Jones algorithm was used to detect the spadix of Anthurium flower.•Computation time is a constraint especially for matching with a lot of templates.•Application of the Viola-Jones algorithm decreased computation time significantly. A hybrid approach was developed for highly accurate and effective identification of Anthurium flower cultivars in a computer vision-based sorting machine. Anthurium flowers have a small spike-shaped inflorescence called spadix. These flowers are distinguishable according to the color scheme of the spadix region. In the developed cultivar classification algorithm, the spadix region of test images was detected using the Viola-Jones object detection algorithm. The Viola-Jones detector was trained by positive images prepared from different cultivars of Anthurium flower, and the Oxford Flowers 17 dataset was used as negative images. Then, the detected region as Region of Interest (ROI) matched with images of various cultivars at different sizes and angles of rotation templates as a multi-template matching approach, in which each image was representative of a specified cultivar. The experiment results indicate that the proposed technique has acceptable performance in detecting the spadix region and inspiring performance in classifying the flower cultivars. At different conditions of the templates used for classification, the computation time as a critical criterion for real-time classification was less than 0.5 s, with the classification accuracy of more than 99%. In an automatic grading machine for flowers, cultivar classification of flowers is an important step for subsequent grading tasks.
AbstractList •Flowers cultivar identification is a key step for subsequent classification tasks.•Anthurium flowers could be identified based on their spadix.•The Viola-Jones algorithm was used to detect the spadix of Anthurium flower.•Computation time is a constraint especially for matching with a lot of templates.•Application of the Viola-Jones algorithm decreased computation time significantly. A hybrid approach was developed for highly accurate and effective identification of Anthurium flower cultivars in a computer vision-based sorting machine. Anthurium flowers have a small spike-shaped inflorescence called spadix. These flowers are distinguishable according to the color scheme of the spadix region. In the developed cultivar classification algorithm, the spadix region of test images was detected using the Viola-Jones object detection algorithm. The Viola-Jones detector was trained by positive images prepared from different cultivars of Anthurium flower, and the Oxford Flowers 17 dataset was used as negative images. Then, the detected region as Region of Interest (ROI) matched with images of various cultivars at different sizes and angles of rotation templates as a multi-template matching approach, in which each image was representative of a specified cultivar. The experiment results indicate that the proposed technique has acceptable performance in detecting the spadix region and inspiring performance in classifying the flower cultivars. At different conditions of the templates used for classification, the computation time as a critical criterion for real-time classification was less than 0.5 s, with the classification accuracy of more than 99%. In an automatic grading machine for flowers, cultivar classification of flowers is an important step for subsequent grading tasks.
A hybrid approach was developed for highly accurate and effective identification of Anthurium flower cultivars in a computer vision-based sorting machine. Anthurium flowers have a small spike-shaped inflorescence called spadix. These flowers are distinguishable according to the color scheme of the spadix region. In the developed cultivar classification algorithm, the spadix region of test images was detected using the Viola-Jones object detection algorithm. The Viola-Jones detector was trained by positive images prepared from different cultivars of Anthurium flower, and the Oxford Flowers 17 dataset was used as negative images. Then, the detected region as Region of Interest (ROI) matched with images of various cultivars at different sizes and angles of rotation templates as a multi-template matching approach, in which each image was representative of a specified cultivar. The experiment results indicate that the proposed technique has acceptable performance in detecting the spadix region and inspiring performance in classifying the flower cultivars. At different conditions of the templates used for classification, the computation time as a critical criterion for real-time classification was less than 0.5 s, with the classification accuracy of more than 99%. In an automatic grading machine for flowers, cultivar classification of flowers is an important step for subsequent grading tasks.
ArticleNumber 105460
Author Soleimanipour, A.
Chegini, G.R.
Author_xml – sequence: 1
  givenname: A.
  surname: Soleimanipour
  fullname: Soleimanipour, A.
  email: asoleimani@ut.ac.ir
– sequence: 2
  givenname: G.R.
  surname: Chegini
  fullname: Chegini, G.R.
  email: chegini@ut.ac.ir
BookMark eNqFkD1PwzAQhi1UJNrCP2CwxMKSYidOXDMgVRVfUqUuMFuOc6au0rjYTlH_PQlh6gDT6U7P--r0TNCocQ0gdE3JjBJa3G1n2u326mOWkrQ_5awgZ2hM5zxNOCV8hMYdNk9oIcQFmoSwJd0u5nyM1gt8sMG6JilVgApvjqW3FVb7vXdKb7BxHtsKmmiN1Sp2IHYGL5q4ab1td9jU7gs81m0d7UH5cInOjaoDXP3OKXp_enxbviSr9fPrcrFKdFbwmOQp4yCYYlwArQCEzktGcmKEEXmpTVmWqU4JrSqSG6YLnXMlRKaAEzMXpsim6Hbo7f78bCFEubNBQ12rBlwbZMoYKQSnLO3QmxN061rfdN_1VFawnNG-kA2U9i4ED0buvd0pf5SUyN6y3MrBsuwty8FyF7s_iWkbfzxFr2z9X_hhCENn6mDBy6AtNBoq60FHWTn7d8E3e1Wc8A
CitedBy_id crossref_primary_10_3390_agronomy13051271
crossref_primary_10_3390_agronomy11101980
crossref_primary_10_1016_j_scienta_2024_113561
crossref_primary_10_1155_2021_8555280
crossref_primary_10_3389_fpls_2023_1221346
crossref_primary_10_3390_horticulturae8010021
crossref_primary_10_3390_math10152767
crossref_primary_10_1007_s11416_023_00499_6
crossref_primary_10_1016_j_compag_2023_108592
crossref_primary_10_1109_TFUZZ_2022_3177764
crossref_primary_10_3389_fpls_2023_1281386
crossref_primary_10_1016_j_compag_2023_108345
crossref_primary_10_1109_ACCESS_2023_3244386
crossref_primary_10_3390_s23041818
Cites_doi 10.1117/12.406527
10.1016/j.postharvbio.2018.01.013
10.1109/ICSTCC.2015.7321390
10.1002/tax.583020
10.1631/jzus.2004.0764
10.17660/ActaHortic.1995.405.19
10.1007/978-3-319-14654-6_5
10.1016/j.scienta.2014.11.024
10.1109/CVPR.2000.855895
10.1016/j.compag.2014.07.004
10.1109/TENCON.2016.7848439
10.1016/j.patrec.2015.10.014
10.1109/CVPR.2006.42
10.1016/j.scienta.2016.05.021
10.1016/j.compag.2016.03.020
10.1016/j.scienta.2008.11.039
10.1109/MVA.2015.7153241
10.1016/j.foodres.2014.03.012
10.1016/j.compag.2016.08.001
10.1016/j.compag.2016.09.002
10.1007/s00138-014-0612-7
10.1016/j.robot.2004.08.011
10.1348/147608308X371778
10.1016/j.imavis.2017.01.013
10.1016/j.compag.2015.05.020
10.1016/j.procs.2015.02.137
10.1016/j.compag.2015.10.009
10.1016/S0031-3203(99)00176-4
10.1023/B:VISI.0000013087.49260.fb
10.1016/j.scienta.2005.01.022
10.1007/978-3-540-88693-8_9
10.1016/j.imavis.2009.10.001
10.1016/j.biosystemseng.2009.06.015
10.1016/j.jpdc.2013.01.012
10.1016/0168-1699(95)00056-9
10.1016/j.compag.2016.01.001
10.1016/j.compind.2018.03.007
10.1007/s11042-017-4415-5
10.1016/j.compag.2015.08.026
10.1049/iet-bmt.2016.0037
10.1109/ICVGIP.2008.47
10.1007/978-3-642-33709-3_36
10.1007/s11119-007-9037-x
10.17660/ActaHortic.2001.562.43
10.17660/ActaHortic.1998.421.8
10.1016/j.engappai.2005.05.009
10.1109/HIPC.2009.5433189
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Jul 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Jul 2020
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2020.105460
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2020_105460
S0168169918309232
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABMAC
ABMZM
ABRWV
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADQTV
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AEXOQ
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
9DU
AAYWO
AAYXX
ACIEU
ACLOT
ACMHX
ACVFH
ADCNI
ADSLC
AEUPX
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c367t-5247e94a479e1dee9c5b4050f9f95bcfbbb2c201dd05f4c6c57a993ae70f89f63
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000540218000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1699
IngestDate Sun Nov 09 14:16:12 EST 2025
Sun Nov 09 06:01:57 EST 2025
Sat Nov 29 07:25:26 EST 2025
Tue Nov 18 22:24:23 EST 2025
Sun Apr 06 06:53:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Viola-Jones
Anthurium
Computation time
Template matching
Identification accuracy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-5247e94a479e1dee9c5b4050f9f95bcfbbb2c201dd05f4c6c57a993ae70f89f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2443645416
PQPubID 2045491
ParticipantIDs proquest_miscellaneous_2440697142
proquest_journals_2443645416
crossref_primary_10_1016_j_compag_2020_105460
crossref_citationtrail_10_1016_j_compag_2020_105460
elsevier_sciencedirect_doi_10_1016_j_compag_2020_105460
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Parsons, Edmondson, Song (b0195) 2009; 104
Tadashi Higaki, J.S.L., 1995. Anthurium culture in Hawaii. https://doi.org/http://hdl.handle.net/10125/5482.
Murphy, Broussard, Schultz, Rakvic, Ngo (b0150) 2017; 6
Nilsback, M.E., Zisserman, A., 2006. A visual vocabulary for flower classification, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp. 1447–1454. https://doi.org/10.1109/CVPR.2006.42.
Guru, Sharath, Manjunath (b0060) 2010
Juman, Wong, Rajkumar, Goh (b0095) 2016; 128
Johansson, Pahlberg, Hagman (b0090) 2015; 118
Viola, Jones (b0260) 2004; 57
Nair, D., Rajagopal, R., Wenzel, L., 2000. Pattern matching based on a generalized Fourier transform, in: Advanced Signal Processing Algorithms, Architectures, and Implementations X. pp. 472–481.
Belhumeur, P.N., Chen, D., Feiner, S., Jacobs, D.W., Kress, W.J., Ling, H., Lopez, I., Ramamoorthi, R., Sheorey, S., White, S., Zhang, L., 2008. Searching the world’s Herbaria: A system for visual identification of plant species, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 116–129. https://doi.org/10.1007/978-3-540-88693-8-9.
Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C., Soares, J.V.B., 2012. Leafsnap: A computer vision system for automatic plant species identification, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 502–516. https://doi.org/10.1007/978-3-642-33709-3_36.
Niu, Shan, Yan, Chen, Gao (b0185) 2006; 2
Puttemans, S., Goedeme, T., 2015. Visual detection and species classification of orchid flowers, in: Proceedings of the 14th IAPR International Conference on Machine Vision Applications, MVA 2015. pp. 505–509. https://doi.org/10.1109/MVA.2015.7153241.
Yanikoglu, Aptoula, Tirkaz (b0270) 2014; 25
Zhenjiang, Gandelin, Baozong (b0280) 2006; 19
Rodrigues, Soares, Costa, Van Baalen, Salvini, Silva, Caliari, Cardoso, Ribeiro, Delbem, Federson, Coelho, Laureano, Lima (b0220) 2016; 123
Nguyen, Hefenbrock, Oberg, Kastner, Baden (b0160) 2013; 73
Pandolfi, C., Messina, G., Mugnai, S., Azzarello, E., Masi, E., Dixon, K., Mancuso, S., 2009. Discrimination and identification of morphotypes of Banksia integrifolia (Proteaceae) by an Artificial Neural Network (ANN), based on morphological and fractal parameters of leaves and flowers. Tax. 58(3), 925-933. https://doi.org/10.1002/tax.583020.
Sharma, B., Thota, R., Vydyanathan, N., Kale, A., 2009. Towards a robust, real-time face processing system using CUDA-enabled GPUs. 2009 Int. Conf. High Perform. Comput. 368–377. https://doi.org/10.1109/HIPC.2009.5433189.
Morel, Galopin, Donès (b0140) 2009; 120
Rao, Garg, Ghosh (b0210) 2007; 8
Aquino, Millan, Gutiérrez, Tardáguila (b0015) 2015; 119
Kohsel, L., 2001. New unsupervised approach for solving classification problems with computer vision, in: Acta Horticulturae. p. 361–375. https://doi.org/10.17660/ActaHortic.2001.562.43.
Yang, Prasher, Landry, Ramaswamy, Ditommaso (b0265) 2000; 42
Bhardwaj, Kaur (b0030) 2013; 4
Mathworks, 2017. Statistics and Machine Learning Toolbox TM User’s Guide R2017a. MatLab 1–9214.
Cuevas, J., Chua, A., Sybingco, E., Bakar, E.A., 2017. Identification of river hydromorphological features using Viola-Jones Algorithm, in: IEEE Region 10 Annual International Conference, Proceedings/TENCON. pp. 2300–2306. https://doi.org/10.1109/TENCON.2016.7848439.
Jenkins, Barrie, Buggy, Morison (b0085) 2016; 69
Teixeira da Silva, Dobránszki, Winarto, Zeng (b0245) 2015
Celikel, F.G., Karacali, I., 1995. Effect of preharvest factors on flower quality and longevity of cut carnations, in: Acta Hort. (ISHS) 405. pp. 156–163. https://doi.org/10.17660/ActaHortic.1995.405.19.
Bao, Cai, Qi, Xun, Zhang, Yang (b0020) 2016; 127
Zhou, Kaneko, Tanaka, Kayamori, Shimizu (b0285) 2015; 116
Mg, Hanson, Joy, Francis (b0135) 2017; 7
Hong, Chen, Li, Chi, Zhang (b0075) 2004; 5
Handa, Agarwal (b0070) 2015; 123
Rikken, M., 2010. The European market for fair and sustainable flowers and plants. Trade for Development Centre, Belgian Development Agency, Belgium.
Moriondo, Leolini, Staglianò, Argenti, Trombi, Brilli, Dibari, Leolini, Bindi (b0145) 2016; 209
Garbez, Chéné, Belin, Sigogne, Labatte, Hunault, Symoneaux, Rousseau, Galopin (b0055) 2016; 121
Dufour, Guérin (b0045) 2005; 105
Kyriacou, Bugmann, Lauria (b0110) 2005
Soleimani Pour, Chegini, Zarafshan, Massah (b0235) 2018; 139
Zhang, B., Huang, W., Li, J., Zhao, C., Fan, S., Wu, J., Liu, C., 2014. Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Res. Int. https://doi.org/10.1016/j.foodres.2014.03.012.
El Kaddouhi, Saaidi, Abarkan (b0050) 2017; 76
Nilsback, Zisserman (b0170) 2010; 28
Agrawal, K.N., Singh, K., Bora, G.C., Lin, D., 2012. Weed Recognition Using Image-Processing Technique Based on Leaf Parameters. J. Agric. Sci. Technol. B J. Agric. Sci. Technol. 2, 1939–1250.
Nikolaidis, Pitas (b0165) 2000; 33
Liu, Ehsani, Toudeshki, Zou, Wang (b0120) 2018; 99
Hsiao, Kang, Chang, Lin (b0080) 2015; 591
Schneiderman, H., Kanade, T., 2000. A statistical method for 3D object detection applied to faces and cars, in: CVPR. https://doi.org/10.1109/CVPR.2000.855895.
Guyer, G.E, M., D.L., G., M.M., S., 1993. Application of machine vision to shape analysis in leaf and plant identification. Trans. ASAE.
Zhou, Kaneko, Tanaka, Kayamori, Shimizu (b0290) 2014; 108
Timmermans, Hulzebosch (b0255) 1996; 15
Lobban, F., Jones, S., 2008. Implementing clinical guidelines (or not?), Psychology and Psychotherapy: Theory, Research and Practice. https://doi.org/10.1348/147608308X371778.
Alionte, E., Lazar, C., 2015. A practical implementation of face detection by using Matlab cascade object detector, in: 2015 19th International Conference on System Theory, Control and Computing, ICSTCC 2015 - Joint Conference SINTES 19, SACCS 15, SIMSIS 19. pp. 785–790. https://doi.org/10.1109/ICSTCC.2015.7321390.
Nilsback, M.E., Zisserman, A., 2008. Automated flower classification over a large number of classes, in: Proceedings - 6th Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2008. pp. 722–729. https://doi.org/10.1109/ICVGIP.2008.47.
Timmermans, A.J.M., 1998. Computer vision system for on-line sorting of pot plants based on learning techniques, in: Acta Horticulturae. pp. 91–98. https://doi.org/10.17660/ActaHortic.1998.421.8.
Lee, Hong (b0115) 2017; 61
Pujari, Yakkundimath, Byadgi (b0200) 2015
Rodrigues (10.1016/j.compag.2020.105460_b0220) 2016; 123
Liu (10.1016/j.compag.2020.105460_b0120) 2018; 99
Zhou (10.1016/j.compag.2020.105460_b0285) 2015; 116
Handa (10.1016/j.compag.2020.105460_b0070) 2015; 123
Johansson (10.1016/j.compag.2020.105460_b0090) 2015; 118
Lee (10.1016/j.compag.2020.105460_b0115) 2017; 61
Yang (10.1016/j.compag.2020.105460_b0265) 2000; 42
Garbez (10.1016/j.compag.2020.105460_b0055) 2016; 121
10.1016/j.compag.2020.105460_b0180
Nikolaidis (10.1016/j.compag.2020.105460_b0165) 2000; 33
Moriondo (10.1016/j.compag.2020.105460_b0145) 2016; 209
Zhou (10.1016/j.compag.2020.105460_b0290) 2014; 108
10.1016/j.compag.2020.105460_b0065
10.1016/j.compag.2020.105460_b0100
Dufour (10.1016/j.compag.2020.105460_b0045) 2005; 105
10.1016/j.compag.2020.105460_b0025
10.1016/j.compag.2020.105460_b0225
10.1016/j.compag.2020.105460_b0105
Jenkins (10.1016/j.compag.2020.105460_b0085) 2016; 69
Yanikoglu (10.1016/j.compag.2020.105460_b0270) 2014; 25
Teixeira da Silva (10.1016/j.compag.2020.105460_b0245) 2015
Pujari (10.1016/j.compag.2020.105460_b0200) 2015
Hong (10.1016/j.compag.2020.105460_b0075) 2004; 5
Mg (10.1016/j.compag.2020.105460_b0135) 2017; 7
Timmermans (10.1016/j.compag.2020.105460_b0255) 1996; 15
Nguyen (10.1016/j.compag.2020.105460_b0160) 2013; 73
10.1016/j.compag.2020.105460_b0250
10.1016/j.compag.2020.105460_b0130
10.1016/j.compag.2020.105460_b0010
10.1016/j.compag.2020.105460_b0175
Guru (10.1016/j.compag.2020.105460_b0060) 2010
10.1016/j.compag.2020.105460_b0215
Bhardwaj (10.1016/j.compag.2020.105460_b0030) 2013; 4
El Kaddouhi (10.1016/j.compag.2020.105460_b0050) 2017; 76
Viola (10.1016/j.compag.2020.105460_b0260) 2004; 57
10.1016/j.compag.2020.105460_b0040
Kyriacou (10.1016/j.compag.2020.105460_b0110) 2005
10.1016/j.compag.2020.105460_b0240
Rao (10.1016/j.compag.2020.105460_b0210) 2007; 8
Parsons (10.1016/j.compag.2020.105460_b0195) 2009; 104
10.1016/j.compag.2020.105460_b0125
10.1016/j.compag.2020.105460_b0005
Morel (10.1016/j.compag.2020.105460_b0140) 2009; 120
10.1016/j.compag.2020.105460_b0205
Juman (10.1016/j.compag.2020.105460_b0095) 2016; 128
Zhenjiang (10.1016/j.compag.2020.105460_b0280) 2006; 19
Murphy (10.1016/j.compag.2020.105460_b0150) 2017; 6
10.1016/j.compag.2020.105460_b0190
Soleimani Pour (10.1016/j.compag.2020.105460_b0235) 2018; 139
Bao (10.1016/j.compag.2020.105460_b0020) 2016; 127
Hsiao (10.1016/j.compag.2020.105460_b0080) 2015; 591
10.1016/j.compag.2020.105460_b0230
10.1016/j.compag.2020.105460_b0275
10.1016/j.compag.2020.105460_b0155
10.1016/j.compag.2020.105460_b0035
Nilsback (10.1016/j.compag.2020.105460_b0170) 2010; 28
Aquino (10.1016/j.compag.2020.105460_b0015) 2015; 119
Niu (10.1016/j.compag.2020.105460_b0185) 2006; 2
References_xml – volume: 57
  start-page: 137
  year: 2004
  end-page: 154
  ident: b0260
  article-title: Robust real-time face detection
  publication-title: Int. J. Comput. Vis.
– reference: Agrawal, K.N., Singh, K., Bora, G.C., Lin, D., 2012. Weed Recognition Using Image-Processing Technique Based on Leaf Parameters. J. Agric. Sci. Technol. B J. Agric. Sci. Technol. 2, 1939–1250.
– reference: Nilsback, M.E., Zisserman, A., 2006. A visual vocabulary for flower classification, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp. 1447–1454. https://doi.org/10.1109/CVPR.2006.42.
– volume: 105
  start-page: 269
  year: 2005
  end-page: 282
  ident: b0045
  article-title: Nutrient solution effects on the development and yield of Anthurium andreanum Lind. in tropical soilless conditions
  publication-title: Sci. Hortic. (Amsterdam)
– volume: 116
  start-page: 65
  year: 2015
  end-page: 79
  ident: b0285
  article-title: Image-based field monitoring of Cercospora leaf spot in sugar beet by robust template matching and pattern recognition
  publication-title: Comput. Electron. Agric.
– reference: Nair, D., Rajagopal, R., Wenzel, L., 2000. Pattern matching based on a generalized Fourier transform, in: Advanced Signal Processing Algorithms, Architectures, and Implementations X. pp. 472–481.
– reference: Puttemans, S., Goedeme, T., 2015. Visual detection and species classification of orchid flowers, in: Proceedings of the 14th IAPR International Conference on Machine Vision Applications, MVA 2015. pp. 505–509. https://doi.org/10.1109/MVA.2015.7153241.
– volume: 2
  start-page: 1216
  year: 2006
  end-page: 1219
  ident: b0185
  article-title: 2D cascaded AdaBoost for eye localization
  publication-title: Proc. - Int. Conf. Pattern Recognit.
– volume: 123
  start-page: 410
  year: 2016
  end-page: 414
  ident: b0220
  article-title: A feasibility cachaca type recognition using computer vision and pattern recognition
  publication-title: Comput. Electron. Agric.
– volume: 5
  start-page: 764
  year: 2004
  end-page: 772
  ident: b0075
  article-title: A flower image retrieval method based on ROI feature
  publication-title: J. Zhejiang Univ. Sci.
– reference: Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C., Soares, J.V.B., 2012. Leafsnap: A computer vision system for automatic plant species identification, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 502–516. https://doi.org/10.1007/978-3-642-33709-3_36.
– reference: Celikel, F.G., Karacali, I., 1995. Effect of preharvest factors on flower quality and longevity of cut carnations, in: Acta Hort. (ISHS) 405. pp. 156–163. https://doi.org/10.17660/ActaHortic.1995.405.19.
– start-page: 21
  year: 2010
  end-page: 29
  ident: b0060
  article-title: Texture Features and KNN in Classification of Flower Images
  publication-title: Int. J. Comput. Appl.
– volume: 128
  start-page: 172
  year: 2016
  end-page: 180
  ident: b0095
  article-title: A novel tree trunk detection method for oil-palm plantation navigation
  publication-title: Comput. Electron. Agric.
– reference: Guyer, G.E, M., D.L., G., M.M., S., 1993. Application of machine vision to shape analysis in leaf and plant identification. Trans. ASAE.
– reference: Nilsback, M.E., Zisserman, A., 2008. Automated flower classification over a large number of classes, in: Proceedings - 6th Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2008. pp. 722–729. https://doi.org/10.1109/ICVGIP.2008.47.
– year: 2015
  ident: b0245
  article-title: Anthurium in vitro: a review
  publication-title: Sci. Hortic. (Amsterdam).
– volume: 25
  start-page: 1369
  year: 2014
  end-page: 1383
  ident: b0270
  article-title: Automatic plant identification from photographs
  publication-title: Mach. Vis. Appl.
– volume: 33
  start-page: 1783
  year: 2000
  end-page: 1791
  ident: b0165
  article-title: Facial feature extraction and pose determination
  publication-title: Pattern Recognit.
– volume: 139
  start-page: 67
  year: 2018
  end-page: 74
  ident: b0235
  article-title: Curvature-based pattern recognition for cultivar classification of Anthurium flowers
  publication-title: Postharvest Biol. Technol.
– reference: Cuevas, J., Chua, A., Sybingco, E., Bakar, E.A., 2017. Identification of river hydromorphological features using Viola-Jones Algorithm, in: IEEE Region 10 Annual International Conference, Proceedings/TENCON. pp. 2300–2306. https://doi.org/10.1109/TENCON.2016.7848439.
– volume: 591
  start-page: 77
  year: 2015
  end-page: 91
  ident: b0080
  article-title: Learning-based leaf image recognition frameworks
  publication-title: Stud. Comput. Intell.
– reference: Tadashi Higaki, J.S.L., 1995. Anthurium culture in Hawaii. https://doi.org/http://hdl.handle.net/10125/5482.
– volume: 121
  start-page: 331
  year: 2016
  end-page: 346
  ident: b0055
  article-title: Predicting sensorial attribute scores of ornamental plants assessed in 3D through rotation on video by image analysis: A study on the morphology of virtual rose bushes
  publication-title: Comput. Electron. Agric.
– volume: 76
  start-page: 23077
  year: 2017
  end-page: 23097
  ident: b0050
  article-title: Eye detection based on the Viola-Jones method and corners points
  publication-title: Multimed. Tools Appl.
– volume: 19
  start-page: 79
  year: 2006
  end-page: 101
  ident: b0280
  article-title: An OOPR-based rose variety recognition system
  publication-title: Eng. Appl. Artif. Intell.
– reference: Sharma, B., Thota, R., Vydyanathan, N., Kale, A., 2009. Towards a robust, real-time face processing system using CUDA-enabled GPUs. 2009 Int. Conf. High Perform. Comput. 368–377. https://doi.org/10.1109/HIPC.2009.5433189.
– volume: 99
  start-page: 9
  year: 2018
  end-page: 16
  ident: b0120
  article-title: Detection of citrus fruit and tree trunks in natural environments using a multi-elliptical boundary model
  publication-title: Comput. Ind.
– volume: 73
  start-page: 677
  year: 2013
  end-page: 685
  ident: b0160
  article-title: Software-based dynamic-warp scheduling approach for load-balancing the Viola-Jones face detection algorithm on GPUs
  publication-title: J. Parallel Distrib. Comput.
– reference: Belhumeur, P.N., Chen, D., Feiner, S., Jacobs, D.W., Kress, W.J., Ling, H., Lopez, I., Ramamoorthi, R., Sheorey, S., White, S., Zhang, L., 2008. Searching the world’s Herbaria: A system for visual identification of plant species, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 116–129. https://doi.org/10.1007/978-3-540-88693-8-9.
– volume: 104
  start-page: 161
  year: 2009
  end-page: 168
  ident: b0195
  article-title: Image analysis and statistical modelling for measurement and quality assessment of ornamental horticulture crops in glasshouses
  publication-title: Biosyst. Eng.
– volume: 209
  start-page: 1
  year: 2016
  end-page: 13
  ident: b0145
  article-title: Use of digital images to disclose canopy architecture in olive tree
  publication-title: Sci. Hortic. (Amsterdam)
– start-page: 1802
  year: 2015
  end-page: 1808
  ident: b0200
  article-title: Image processing based detection of fungal diseases in plants
  publication-title: Procedia Comput. Sci.
– volume: 69
  start-page: 82
  year: 2016
  end-page: 87
  ident: b0085
  article-title: Extended fast compressive tracking with weighted multi-frame template matching for fast motion tracking
  publication-title: Pattern Recognit. Lett.
– volume: 108
  start-page: 58
  year: 2014
  end-page: 70
  ident: b0290
  article-title: Disease detection of Cercospora Leaf Spot in sugar beet by robust template matching
  publication-title: Comput. Electron. Agric.
– volume: 127
  start-page: 754
  year: 2016
  end-page: 762
  ident: b0020
  article-title: Multi-template matching algorithm for cucumber recognition in natural environment
  publication-title: Comput. Electron. Agric.
– volume: 4
  start-page: 86
  year: 2013
  end-page: 91
  ident: b0030
  article-title: A review on plant recognition and classification
  publication-title: Int. J. Eng. Trends Technol.
– volume: 42
  start-page: 147
  year: 2000
  end-page: 152
  ident: b0265
  article-title: Application of artificial neural networks in image recognition and classification of crop and weeds
  publication-title: Can. Agric. Eng.
– volume: 7
  start-page: 5324
  year: 2017
  end-page: 5328
  ident: b0135
  article-title: Plant leaf disease detection using deep learning and convolutional neural network
  publication-title: Int. J. Eng. Sci. Comput.
– volume: 120
  start-page: 391
  year: 2009
  end-page: 398
  ident: b0140
  article-title: Using architectural analysis to compare the shape of two hybrid tea rose genotypes
  publication-title: Sci. Hortic. (Amsterdam)
– reference: Mathworks, 2017. Statistics and Machine Learning Toolbox TM User’s Guide R2017a. MatLab 1–9214.
– reference: Timmermans, A.J.M., 1998. Computer vision system for on-line sorting of pot plants based on learning techniques, in: Acta Horticulturae. pp. 91–98. https://doi.org/10.17660/ActaHortic.1998.421.8.
– volume: 123
  start-page: 20
  year: 2015
  end-page: 25
  ident: b0070
  article-title: A review and a comparative study of various plant recognition and classification techniques using leaf images
  publication-title: Int. J. Comput. Appl.
– reference: Schneiderman, H., Kanade, T., 2000. A statistical method for 3D object detection applied to faces and cars, in: CVPR. https://doi.org/10.1109/CVPR.2000.855895.
– volume: 119
  start-page: 92
  year: 2015
  end-page: 104
  ident: b0015
  article-title: Grapevine flower estimation by applying artificial vision techniques on images with uncontrolled scene and multi-model analysis
  publication-title: Comput. Electron. Agric.
– volume: 118
  start-page: 85
  year: 2015
  end-page: 91
  ident: b0090
  article-title: Fast visual recognition of Scots pine boards using template matching
  publication-title: Comput. Electron. Agric.
– volume: 8
  start-page: 173
  year: 2007
  end-page: 185
  ident: b0210
  article-title: Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data
  publication-title: Precis. Agric.
– reference: Kohsel, L., 2001. New unsupervised approach for solving classification problems with computer vision, in: Acta Horticulturae. p. 361–375. https://doi.org/10.17660/ActaHortic.2001.562.43.
– reference: Zhang, B., Huang, W., Li, J., Zhao, C., Fan, S., Wu, J., Liu, C., 2014. Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Res. Int. https://doi.org/10.1016/j.foodres.2014.03.012.
– volume: 61
  start-page: 98
  year: 2017
  end-page: 114
  ident: b0115
  article-title: Automatic recognition of flower species in the natural environment
  publication-title: Image Vis. Comput.
– start-page: 69
  year: 2005
  end-page: 80
  ident: b0110
  article-title: Vision-based urban navigation procedures for verbally instructed robots
  publication-title: Robotics and Autonomous Systems.
– reference: Alionte, E., Lazar, C., 2015. A practical implementation of face detection by using Matlab cascade object detector, in: 2015 19th International Conference on System Theory, Control and Computing, ICSTCC 2015 - Joint Conference SINTES 19, SACCS 15, SIMSIS 19. pp. 785–790. https://doi.org/10.1109/ICSTCC.2015.7321390.
– reference: Pandolfi, C., Messina, G., Mugnai, S., Azzarello, E., Masi, E., Dixon, K., Mancuso, S., 2009. Discrimination and identification of morphotypes of Banksia integrifolia (Proteaceae) by an Artificial Neural Network (ANN), based on morphological and fractal parameters of leaves and flowers. Tax. 58(3), 925-933. https://doi.org/10.1002/tax.583020.
– volume: 28
  start-page: 1049
  year: 2010
  end-page: 1062
  ident: b0170
  article-title: Delving deeper into the whorl of flower segmentation
  publication-title: Image Vis. Comput.
– reference: Lobban, F., Jones, S., 2008. Implementing clinical guidelines (or not?), Psychology and Psychotherapy: Theory, Research and Practice. https://doi.org/10.1348/147608308X371778.
– reference: Rikken, M., 2010. The European market for fair and sustainable flowers and plants. Trade for Development Centre, Belgian Development Agency, Belgium.
– volume: 15
  start-page: 41
  year: 1996
  end-page: 55
  ident: b0255
  article-title: Computer vision system for on-line sorting of pot plants using an artificial neural network classifier
  publication-title: Comput. Electron. Agric.
– volume: 6
  start-page: 200
  year: 2017
  end-page: 210
  ident: b0150
  article-title: Face detection with a Viola-Jones based hybrid network
  publication-title: IET Biometrics
– ident: 10.1016/j.compag.2020.105460_b0155
  doi: 10.1117/12.406527
– volume: 139
  start-page: 67
  year: 2018
  ident: 10.1016/j.compag.2020.105460_b0235
  article-title: Curvature-based pattern recognition for cultivar classification of Anthurium flowers
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2018.01.013
– ident: 10.1016/j.compag.2020.105460_b0010
  doi: 10.1109/ICSTCC.2015.7321390
– ident: 10.1016/j.compag.2020.105460_b0190
  doi: 10.1002/tax.583020
– volume: 5
  start-page: 764
  year: 2004
  ident: 10.1016/j.compag.2020.105460_b0075
  article-title: A flower image retrieval method based on ROI feature
  publication-title: J. Zhejiang Univ. Sci.
  doi: 10.1631/jzus.2004.0764
– ident: 10.1016/j.compag.2020.105460_b0035
  doi: 10.17660/ActaHortic.1995.405.19
– ident: 10.1016/j.compag.2020.105460_b0130
– volume: 591
  start-page: 77
  year: 2015
  ident: 10.1016/j.compag.2020.105460_b0080
  article-title: Learning-based leaf image recognition frameworks
  publication-title: Stud. Comput. Intell.
  doi: 10.1007/978-3-319-14654-6_5
– year: 2015
  ident: 10.1016/j.compag.2020.105460_b0245
  article-title: Anthurium in vitro: a review
  publication-title: Sci. Hortic. (Amsterdam).
  doi: 10.1016/j.scienta.2014.11.024
– ident: 10.1016/j.compag.2020.105460_b0225
  doi: 10.1109/CVPR.2000.855895
– volume: 4
  start-page: 86
  year: 2013
  ident: 10.1016/j.compag.2020.105460_b0030
  article-title: A review on plant recognition and classification
  publication-title: Int. J. Eng. Trends Technol.
– volume: 108
  start-page: 58
  year: 2014
  ident: 10.1016/j.compag.2020.105460_b0290
  article-title: Disease detection of Cercospora Leaf Spot in sugar beet by robust template matching
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.07.004
– volume: 2
  start-page: 1216
  year: 2006
  ident: 10.1016/j.compag.2020.105460_b0185
  article-title: 2D cascaded AdaBoost for eye localization
  publication-title: Proc. - Int. Conf. Pattern Recognit.
– ident: 10.1016/j.compag.2020.105460_b0040
  doi: 10.1109/TENCON.2016.7848439
– volume: 69
  start-page: 82
  year: 2016
  ident: 10.1016/j.compag.2020.105460_b0085
  article-title: Extended fast compressive tracking with weighted multi-frame template matching for fast motion tracking
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2015.10.014
– start-page: 21
  year: 2010
  ident: 10.1016/j.compag.2020.105460_b0060
  article-title: Texture Features and KNN in Classification of Flower Images
  publication-title: Int. J. Comput. Appl.
– volume: 42
  start-page: 147
  year: 2000
  ident: 10.1016/j.compag.2020.105460_b0265
  article-title: Application of artificial neural networks in image recognition and classification of crop and weeds
  publication-title: Can. Agric. Eng.
– ident: 10.1016/j.compag.2020.105460_b0180
  doi: 10.1109/CVPR.2006.42
– volume: 209
  start-page: 1
  year: 2016
  ident: 10.1016/j.compag.2020.105460_b0145
  article-title: Use of digital images to disclose canopy architecture in olive tree
  publication-title: Sci. Hortic. (Amsterdam)
  doi: 10.1016/j.scienta.2016.05.021
– volume: 123
  start-page: 410
  year: 2016
  ident: 10.1016/j.compag.2020.105460_b0220
  article-title: A feasibility cachaca type recognition using computer vision and pattern recognition
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.03.020
– ident: 10.1016/j.compag.2020.105460_b0215
– volume: 120
  start-page: 391
  year: 2009
  ident: 10.1016/j.compag.2020.105460_b0140
  article-title: Using architectural analysis to compare the shape of two hybrid tea rose genotypes
  publication-title: Sci. Hortic. (Amsterdam)
  doi: 10.1016/j.scienta.2008.11.039
– ident: 10.1016/j.compag.2020.105460_b0205
  doi: 10.1109/MVA.2015.7153241
– ident: 10.1016/j.compag.2020.105460_b0275
  doi: 10.1016/j.foodres.2014.03.012
– volume: 127
  start-page: 754
  year: 2016
  ident: 10.1016/j.compag.2020.105460_b0020
  article-title: Multi-template matching algorithm for cucumber recognition in natural environment
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.08.001
– volume: 128
  start-page: 172
  year: 2016
  ident: 10.1016/j.compag.2020.105460_b0095
  article-title: A novel tree trunk detection method for oil-palm plantation navigation
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.09.002
– volume: 25
  start-page: 1369
  year: 2014
  ident: 10.1016/j.compag.2020.105460_b0270
  article-title: Automatic plant identification from photographs
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-014-0612-7
– start-page: 69
  year: 2005
  ident: 10.1016/j.compag.2020.105460_b0110
  article-title: Vision-based urban navigation procedures for verbally instructed robots
  publication-title: Robotics and Autonomous Systems.
  doi: 10.1016/j.robot.2004.08.011
– ident: 10.1016/j.compag.2020.105460_b0125
  doi: 10.1348/147608308X371778
– volume: 61
  start-page: 98
  year: 2017
  ident: 10.1016/j.compag.2020.105460_b0115
  article-title: Automatic recognition of flower species in the natural environment
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2017.01.013
– volume: 7
  start-page: 5324
  year: 2017
  ident: 10.1016/j.compag.2020.105460_b0135
  article-title: Plant leaf disease detection using deep learning and convolutional neural network
  publication-title: Int. J. Eng. Sci. Comput.
– volume: 116
  start-page: 65
  year: 2015
  ident: 10.1016/j.compag.2020.105460_b0285
  article-title: Image-based field monitoring of Cercospora leaf spot in sugar beet by robust template matching and pattern recognition
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.05.020
– start-page: 1802
  year: 2015
  ident: 10.1016/j.compag.2020.105460_b0200
  article-title: Image processing based detection of fungal diseases in plants
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.02.137
– volume: 119
  start-page: 92
  year: 2015
  ident: 10.1016/j.compag.2020.105460_b0015
  article-title: Grapevine flower estimation by applying artificial vision techniques on images with uncontrolled scene and multi-model analysis
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.10.009
– volume: 33
  start-page: 1783
  year: 2000
  ident: 10.1016/j.compag.2020.105460_b0165
  article-title: Facial feature extraction and pose determination
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(99)00176-4
– volume: 57
  start-page: 137
  year: 2004
  ident: 10.1016/j.compag.2020.105460_b0260
  article-title: Robust real-time face detection
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000013087.49260.fb
– volume: 105
  start-page: 269
  year: 2005
  ident: 10.1016/j.compag.2020.105460_b0045
  article-title: Nutrient solution effects on the development and yield of Anthurium andreanum Lind. in tropical soilless conditions
  publication-title: Sci. Hortic. (Amsterdam)
  doi: 10.1016/j.scienta.2005.01.022
– ident: 10.1016/j.compag.2020.105460_b0025
  doi: 10.1007/978-3-540-88693-8_9
– volume: 123
  start-page: 20
  year: 2015
  ident: 10.1016/j.compag.2020.105460_b0070
  article-title: A review and a comparative study of various plant recognition and classification techniques using leaf images
  publication-title: Int. J. Comput. Appl.
– ident: 10.1016/j.compag.2020.105460_b0065
– volume: 28
  start-page: 1049
  year: 2010
  ident: 10.1016/j.compag.2020.105460_b0170
  article-title: Delving deeper into the whorl of flower segmentation
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2009.10.001
– volume: 104
  start-page: 161
  year: 2009
  ident: 10.1016/j.compag.2020.105460_b0195
  article-title: Image analysis and statistical modelling for measurement and quality assessment of ornamental horticulture crops in glasshouses
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2009.06.015
– volume: 73
  start-page: 677
  year: 2013
  ident: 10.1016/j.compag.2020.105460_b0160
  article-title: Software-based dynamic-warp scheduling approach for load-balancing the Viola-Jones face detection algorithm on GPUs
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2013.01.012
– volume: 15
  start-page: 41
  year: 1996
  ident: 10.1016/j.compag.2020.105460_b0255
  article-title: Computer vision system for on-line sorting of pot plants using an artificial neural network classifier
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/0168-1699(95)00056-9
– volume: 121
  start-page: 331
  year: 2016
  ident: 10.1016/j.compag.2020.105460_b0055
  article-title: Predicting sensorial attribute scores of ornamental plants assessed in 3D through rotation on video by image analysis: A study on the morphology of virtual rose bushes
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.01.001
– volume: 99
  start-page: 9
  year: 2018
  ident: 10.1016/j.compag.2020.105460_b0120
  article-title: Detection of citrus fruit and tree trunks in natural environments using a multi-elliptical boundary model
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.03.007
– volume: 76
  start-page: 23077
  year: 2017
  ident: 10.1016/j.compag.2020.105460_b0050
  article-title: Eye detection based on the Viola-Jones method and corners points
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-4415-5
– volume: 118
  start-page: 85
  year: 2015
  ident: 10.1016/j.compag.2020.105460_b0090
  article-title: Fast visual recognition of Scots pine boards using template matching
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.08.026
– volume: 6
  start-page: 200
  year: 2017
  ident: 10.1016/j.compag.2020.105460_b0150
  article-title: Face detection with a Viola-Jones based hybrid network
  publication-title: IET Biometrics
  doi: 10.1049/iet-bmt.2016.0037
– ident: 10.1016/j.compag.2020.105460_b0175
  doi: 10.1109/ICVGIP.2008.47
– ident: 10.1016/j.compag.2020.105460_b0105
  doi: 10.1007/978-3-642-33709-3_36
– volume: 8
  start-page: 173
  year: 2007
  ident: 10.1016/j.compag.2020.105460_b0210
  article-title: Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-007-9037-x
– ident: 10.1016/j.compag.2020.105460_b0240
– ident: 10.1016/j.compag.2020.105460_b0100
  doi: 10.17660/ActaHortic.2001.562.43
– ident: 10.1016/j.compag.2020.105460_b0250
  doi: 10.17660/ActaHortic.1998.421.8
– volume: 19
  start-page: 79
  year: 2006
  ident: 10.1016/j.compag.2020.105460_b0280
  article-title: An OOPR-based rose variety recognition system
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2005.05.009
– ident: 10.1016/j.compag.2020.105460_b0005
– ident: 10.1016/j.compag.2020.105460_b0230
  doi: 10.1109/HIPC.2009.5433189
SSID ssj0016987
Score 2.3694642
Snippet •Flowers cultivar identification is a key step for subsequent classification tasks.•Anthurium flowers could be identified based on their spadix.•The...
A hybrid approach was developed for highly accurate and effective identification of Anthurium flower cultivars in a computer vision-based sorting machine....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105460
SubjectTerms Algorithms
Anthurium
Classification
color
Computation time
Computer vision
Cultivars
data collection
Flowers
Grading machines
Identification accuracy
Image classification
Object recognition
spadix
Template matching
Viola-Jones
Title A vision-based hybrid approach for identification of Anthurium flower cultivars
URI https://dx.doi.org/10.1016/j.compag.2020.105460
https://www.proquest.com/docview/2443645416
https://www.proquest.com/docview/2440697142
Volume 174
WOSCitedRecordID wos000540218000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZQlwMcEE9RWJCRuFWJ3MSJ42OEltdhQewi9WYlfixZlbTqY7X8e8aPuMtWaAGJS1SlSRz5c8bf2DPzIfTaGCtoq8pEV5KBg0KJ3SScJiprNeWZAcZPnNgEOz6uZjP-OWi4r52cAOv76vKSL_8r1HAOwLaps38Bd3wonIDfADocAXY4_hHw9cTniyd2glKTbz9sTlasHe7CCjsVYoQiX7Q1BLarbvt9YuZWN83J2HYXTdjrGUoZBAkIX9d5p6DjYmqbs1Wo4xHHyslirjtbYGMJL-6sULoLJ7CKEC6U4F36Jb26-ACe5hCoGlbE9rJi_CJlCZ5p6YWPopX1Yjx7FtsvHpynLuT-LLWNWO1h6lUGrtXCPrGPtk8GQ0SAmsLce5Ax8IlG6KD-cDT7GDeQSl75TPnwKkPWpAvt22_rd6zk2vzsSMfpfXQveAu49ig_QLd0_xDdrXc9_Qh9qvFVvLHHGw94Y8Ab_4o3Xhgc8cYebxzxfoy-vj06ffM-CSoZicxLtkmKjDLNaUMZ11OlNZdFCyycGG540UrTtm0mgeYpRQpDZSkL1gApbTQjpuKmzJ-gUb_o9VOEmSYVBUrNlVFgy3mjrPddKZnluW4YGaN86CUhQwl5q2QyF0Os4LnwfSts3wrft2OUxLuWvoTKDdezAQARaKCndwLGzA13Hg54ifBFrgXwV7vVDo7HGL2Kf4MRtTtjTa8XW3cNKTmb0uzZPzf-HN3ZfSGHaLRZbfULdFtebLr16mUYnz8BgJObMw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+vision-based+hybrid+approach+for+identification+of+Anthurium+flower+cultivars&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Soleimanipour%2C+A.&rft.au=Chegini%2C+G.R.&rft.date=2020-07-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.volume=174&rft_id=info:doi/10.1016%2Fj.compag.2020.105460&rft.externalDocID=S0168169918309232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon