A dynamic agricultural prediction system for large-scale drought assessment on the Sunway TaihuLight supercomputer
•Further acceleration of crop models and high-performance computing for large-scale crop modeling.•Combination of Bayesian inference and Bayesian model average to improve predictive accuracy.•Real-time simulation and prediction based on observational and scenario forces.•Risk analysis of yield losse...
Saved in:
| Published in: | Computers and electronics in agriculture Vol. 154; pp. 400 - 410 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.11.2018
Elsevier BV |
| Subjects: | |
| ISSN: | 0168-1699, 1872-7107 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Further acceleration of crop models and high-performance computing for large-scale crop modeling.•Combination of Bayesian inference and Bayesian model average to improve predictive accuracy.•Real-time simulation and prediction based on observational and scenario forces.•Risk analysis of yield losses in multiple scales and its spatial dependency.
Crop models are widely used to evaluate the response of crop growth to drought. However, over large geographic regions, the most advanced models are often restricted by available computing resource. This limits capacity to undertake uncertainty analysis and prohibits the use of models in real-time ensemble forecasting systems. This study addresses these concerns by presenting an integrated system for the dynamic prediction and assessment of agricultural yield using the top-ranked Sunway TaihuLight supercomputer platform. This system enables parallelization and acceleration for the existing AquaCrop, DNDC (DeNitrification and DeComposition) and SWAP (Soil Water Atmosphere Plant) models, thus facilitating multi-model ensemble and parameter optimization and subsequent drought risk analysis in multiple regions and at multiple scales. The high computing capability also opens up the possibility of real-time simulation during droughts, providing the basis for more effective drought management. Initial testing with varying core group numbers shows that computation time can be reduced by between 2.6 and 3.6 times. Based on the powerful computing capacity, a county-level model parameter optimization (2043 counties for 1996–2007) by Bayesian inference and multi-model ensemble using BMA (Bayesian Model Average) method were performed, demonstrating the enhancements in predictive accuracy that can be achieved. An application of this system is presented predicting the impacts of the drought of May–July 2017 on maize yield in North and Northeast China. The spatial variability in yield losses is presented demonstrating new capability to provide high resolution information with associated uncertainty estimates. |
|---|---|
| AbstractList | •Further acceleration of crop models and high-performance computing for large-scale crop modeling.•Combination of Bayesian inference and Bayesian model average to improve predictive accuracy.•Real-time simulation and prediction based on observational and scenario forces.•Risk analysis of yield losses in multiple scales and its spatial dependency.
Crop models are widely used to evaluate the response of crop growth to drought. However, over large geographic regions, the most advanced models are often restricted by available computing resource. This limits capacity to undertake uncertainty analysis and prohibits the use of models in real-time ensemble forecasting systems. This study addresses these concerns by presenting an integrated system for the dynamic prediction and assessment of agricultural yield using the top-ranked Sunway TaihuLight supercomputer platform. This system enables parallelization and acceleration for the existing AquaCrop, DNDC (DeNitrification and DeComposition) and SWAP (Soil Water Atmosphere Plant) models, thus facilitating multi-model ensemble and parameter optimization and subsequent drought risk analysis in multiple regions and at multiple scales. The high computing capability also opens up the possibility of real-time simulation during droughts, providing the basis for more effective drought management. Initial testing with varying core group numbers shows that computation time can be reduced by between 2.6 and 3.6 times. Based on the powerful computing capacity, a county-level model parameter optimization (2043 counties for 1996–2007) by Bayesian inference and multi-model ensemble using BMA (Bayesian Model Average) method were performed, demonstrating the enhancements in predictive accuracy that can be achieved. An application of this system is presented predicting the impacts of the drought of May–July 2017 on maize yield in North and Northeast China. The spatial variability in yield losses is presented demonstrating new capability to provide high resolution information with associated uncertainty estimates. Crop models are widely used to evaluate the response of crop growth to drought. However, over large geographic regions, the most advanced models are often restricted by available computing resource. This limits capacity to undertake uncertainty analysis and prohibits the use of models in real-time ensemble forecasting systems. This study addresses these concerns by presenting an integrated system for the dynamic prediction and assessment of agricultural yield using the top-ranked Sunway TaihuLight supercomputer platform. This system enables parallelization and acceleration for the existing AquaCrop, DNDC (DeNitrification and DeComposition) and SWAP (Soil Water Atmosphere Plant) models, thus facilitating multi-model ensemble and parameter optimization and subsequent drought risk analysis in multiple regions and at multiple scales. The high computing capability also opens up the possibility of real-time simulation during droughts, providing the basis for more effective drought management. Initial testing with varying core group numbers shows that computation time can be reduced by between 2.6 and 3.6 times. Based on the powerful computing capacity, a county-level model parameter optimization (2043 counties for 1996–2007) by Bayesian inference and multi-model ensemble using BMA (Bayesian Model Average) method were performed, demonstrating the enhancements in predictive accuracy that can be achieved. An application of this system is presented predicting the impacts of the drought of May–July 2017 on maize yield in North and Northeast China. The spatial variability in yield losses is presented demonstrating new capability to provide high resolution information with associated uncertainty estimates. |
| Author | Zorn, Conrad Zhang, Wenyuan Huang, Xiao Fang, Jiarui Yu, Chaoqing Huang, Guorui Hall, Jim Huang, Xiaomeng Ni, Shaoqiang |
| Author_xml | – sequence: 1 givenname: Xiao surname: Huang fullname: Huang, Xiao organization: Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China – sequence: 2 givenname: Chaoqing surname: Yu fullname: Yu, Chaoqing email: chaoqingyu@yahoo.com organization: Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China – sequence: 3 givenname: Jiarui surname: Fang fullname: Fang, Jiarui organization: Department of Computer Science and Technology, Tsinghua University, Beijing, China – sequence: 4 givenname: Guorui surname: Huang fullname: Huang, Guorui organization: Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China – sequence: 5 givenname: Shaoqiang surname: Ni fullname: Ni, Shaoqiang organization: Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China – sequence: 6 givenname: Jim orcidid: 0000-0002-2024-9191 surname: Hall fullname: Hall, Jim organization: Environmental Change Institute, University of Oxford, Oxford, UK – sequence: 7 givenname: Conrad surname: Zorn fullname: Zorn, Conrad organization: Environmental Change Institute, University of Oxford, Oxford, UK – sequence: 8 givenname: Xiaomeng surname: Huang fullname: Huang, Xiaomeng organization: Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China – sequence: 9 givenname: Wenyuan surname: Zhang fullname: Zhang, Wenyuan organization: Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China |
| BookMark | eNqFkU2r1DAUhoNcwblX_4GLgBs3rfnoJB0XwuXiFwy48LoOaXo6k6Ft6kmizL83pa7uQlfhwPO-nJznltzMYQZCXnNWc8bVu0vtwrTYUy0Yb2umayb0M7LjrRaV5kzfkF3B2oqrw-EFuY3xwsp8aPWO4D3tr7OdvKP2hN7lMWW0I10Qeu-SDzON15hgokNAOlo8QRWdHYH2GPLpnKiNEWKcYE60wOkM9Huef9srfbT-nI9-ZWJeANcdcwJ8SZ4Pdozw6u97R358-vj48KU6fvv89eH-WDmpdKqagbGuE2Jwve56IZp9K6FTnW6c3Gt-cHov-oKoQdpGMKEEL7hS5WtSuV7JO_J2610w_MwQk5l8dDCOdoaQoxFc8lbtWyEL-uYJegkZ57LdRknB1Vr4fqMchhgRBuN8suuNElo_Gs7MqsNczKbDrDoM06boKOHmSXhBP1m8_i_2YYtBudQvD2ii8zC7YgfBJdMH_--CP1nsqfw |
| CitedBy_id | crossref_primary_10_1007_s11069_022_05506_5 crossref_primary_10_1016_j_compag_2019_105054 crossref_primary_10_1016_j_compag_2025_110054 crossref_primary_10_1016_j_fcr_2021_108250 crossref_primary_10_1007_s10668_022_02713_9 crossref_primary_10_1016_j_envsoft_2020_104807 crossref_primary_10_1016_j_anucene_2020_107761 |
| Cites_doi | 10.1016/j.agrformet.2012.09.011 10.1016/j.fcr.2017.06.011 10.1111/risa.12761 10.1515/IJNSNS.2009.10.3.273 10.1016/j.envsoft.2012.08.007 10.1016/j.agrformet.2008.08.015 10.1073/pnas.0701890104 10.1016/j.compag.2013.08.004 10.1126/science.1152339 10.1080/19475705.2015.1016555 10.1007/s00477-003-0127-7 10.1016/j.agee.2005.06.005 10.2134/agronj2008.0139s 10.1016/j.envsoft.2014.12.013 10.3354/cr033027 10.2135/cropsci2002.1943 10.1016/j.agrformet.2007.05.004 10.1109/IPDPS.2017.20 10.1126/science.1209290 10.1002/cpe.728 10.1007/s11432-016-5588-7 10.1016/j.agrformet.2008.11.004 10.1073/pnas.1222463110 10.1016/j.envsoft.2014.08.004 10.1029/92JD00509 10.1016/j.agsy.2007.07.009 10.1002/1099-1085(20000815/30)14:11/12<1993::AID-HYP50>3.0.CO;2-# 10.3354/cr011019 10.1002/2013MS000293 10.1093/aob/mcj033 10.1016/j.envsoft.2013.10.022 10.1109/JSTARS.2015.2403135 10.1016/j.agrformet.2008.04.002 10.2134/agronj2008.0029xs 10.1016/j.agsy.2010.08.007 10.1016/j.envsoft.2014.12.003 10.1007/s11027-007-9103-8 10.5194/hess-13-2299-2009 10.1175/MWR2906.1 10.1016/j.envsoft.2014.04.008 10.1061/(ASCE)1084-0699(1999)4:4(297) 10.1111/gcb.12768 10.1016/j.advwatres.2010.02.010 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Nov 2018 |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Nov 2018 |
| DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| DOI | 10.1016/j.compag.2018.07.027 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1872-7107 |
| EndPage | 410 |
| ExternalDocumentID | 10_1016_j_compag_2018_07_027 S0168169918304204 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGQPQ AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-4f00bb22fcd7bd224583eb6b74c35719c752d00b6f3a4202621bb26600136cd63 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449246200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-1699 |
| IngestDate | Sun Sep 28 01:29:19 EDT 2025 Sun Nov 09 07:01:25 EST 2025 Sat Nov 29 03:16:24 EST 2025 Tue Nov 18 22:16:23 EST 2025 Fri Feb 23 02:17:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Supercomputer Accuracy Drought Risk analysis Dynamic prediction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-4f00bb22fcd7bd224583eb6b74c35719c752d00b6f3a4202621bb26600136cd63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2024-9191 |
| PQID | 2131832166 |
| PQPubID | 2045491 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2131865823 proquest_journals_2131832166 crossref_citationtrail_10_1016_j_compag_2018_07_027 crossref_primary_10_1016_j_compag_2018_07_027 elsevier_sciencedirect_doi_10_1016_j_compag_2018_07_027 |
| PublicationCentury | 2000 |
| PublicationDate | November 2018 2018-11-00 20181101 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computers and electronics in agriculture |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Ewert, Rötter, Bindi, Webber, Trnka, Kersebaum, Olesen, van Ittersum, Janssen, Rivington (b0065) 2015; 72 Dumont, Leemans, Mansouri, Bodson, Destain, Destain (b0055) 2014; 52 Gaupp, Pflug, Hochrainer Stigler, Hall, Dadson (b0095) 2017; 37 Martre, Wallach, Asseng, Ewert, Jones, Rötter, Boote, Ruane, Thorburn, Cammarano (b0185) 2015; 21 Kroes, J.G., Van Dam, J.C., Groenendijk, P., Hendriks, R., Jacobs, C., 2009. SWAP version 3.2. Theory description and user manual. Alterra. Oleson, K.W., Lawrence, D.M., Gordon, B., Flanner, M.G., Kluzek, E., Peter, J., Levis, S., Swenson, S.C., Thornton, E., Feddema, J., 2010. Technical description of version 4.0 of the Community Land Model (CLM). Lawrence, Oleson, Flanner, Thornton, Swenson, Lawrence, Zeng, Yang, Levis, Sakaguchi (b0165) 2011; 3 Rosenzweig, Elliott, Deryng, Ruane, Müller, Arneth, Boote, Folberth, Glotter, Khabarov (b0215) 2014; 111 Zhao, Bryan, King, Luo, Wang, Bende-Michl, Song, Yu (b0285) 2013; 41 Guo, Ma, Zhan, Li, Dingkuhn, Luquet, De Reffye (b0100) 2006; 97 Qiao, Zhao, Yin, Huang, Liu, Shu, Wang, Song, Li, Liu (b0205) 2016 Baigorria, Jones, O Brien (b0020) 2008; 148 Bonaccorso, Cancelliere, Rossi (b0035) 2003; 17 Yu, Huang, Chen, Huang, Ni, Wright, Hall, Ciais, Zhang, Xiao, Sun, Wang, Yu (b0275) 2018 Hansen, Challinor, Ines, Wheeler, Moron (b0105) 2006; 33 Rosenzweig, Tubiello (b0225) 2007; 12 Fang, J., Fu, H., Zhao, W., Chen, B., Zheng, W., Yang, G., 2017. swDNN: a library for accelerating deep learning applications on Sunway TaihuLight. In: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 615–624. Box, Tiao (b0040) 2011 Huang, Huang, Yu, Ni, Yu (b0130) 2017; 211 Jakku, Thorburn (b0140) 2010; 103 Launay, Guerif (b0160) 2005; 111 Holzworth, Snow, Janssen, Athanasiadis, Donatelli, Hoogenboom, White, Thorburn (b0115) 2015; 72 De Wit, Van Diepen (b0045) 2007; 146 Van Ittersum, Ewert, Heckelei, Wery, Olsson, Andersen, Bezlepkina, Brouwer, Donatelli, Flichman (b0255) 2008; 96 Li, Li, Qian (b0170) 2017 Shangguan, Dai, Duan, Liu, Yuan (b0230) 2014; 6 Howden, Soussana, Tubiello, Chhetri, Dunlop, Meinke (b0120) 2007; 104 Raftery, Gneiting, Balabdaoui, Polakowski (b0210) 2005; 133 Zhao, Fu, Fang, Zheng, Gan, Yang (b0290) 2018; 15 Skakun, Kussul, Shelestov, Kussul (b0235) 2016; 7 Bloom (b0030) 2011; 333 Heng, Hsiao, Evett, Howell, Steduto (b0110) 2009; 101 Vital, Gaurut, Lardy, Viovy, Soussana, Bellocchi, Martin (b0265) 2013; 98 Dongarra, Luszczek, Petitet (b0050) 2003; 15 Fernández, Salas (b0075) 1999; 4 Fu, Liao, Yang, Wang, Song, Huang, Yang, Xue, Liu, Qiao (b0090) 2016; 59 Huang, Ma, Su, Zhang, Huang, Fan, Wu (b0125) 2015; 8 Rosenzweig, Jones, Hatfield, Ruane, Boote, Thorburn, Antle, Nelson, Porter, Janssen (b0220) 2013; 170 Báez-González, Chen, Tiscareño-López, Srinivasan (b0015) 2002; 42 Steduto, Hsiao, Raes, Fereres (b0245) 2009; 101 Adams, Hurd, Lenhart, Leary (b0005) 1998; 11 Nelsen (b0195) 1999 Jiang, Yang, Ao, Yin, Ma, Sun, Liu, Lin, Zhang (b0145) 2017 Kroes, Wesseling, Van Dam (b0155) 2000; 14 Li, Frolking, Frolking (b0175) 1992; 97 Bárdossy, Pegram (b0025) 2009; 13 Elliott, Kelly, Chryssanthacopoulos, Glotter, Jhunjhnuwala, Best, Wilde, Foster (b0060) 2014; 62 Fu, Liao, Ding, Duan, Gan, Liang, Wang, Yang, Zheng, Liu (b0085) 2017 Yu, Li, Xin, Chen, Zhang, Zhang, Li, Clinton, Huang, Yue (b0280) 2014; 62 Neale, R.B., Chen, C., Gettelman, A., Lauritzen, P.H., Park, S., Williamson, D.L., Conley, A.J., Garcia, R., Kinnison, D., Lamarque, J., 2010. Description of the NCAR community atmosphere model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+ STR. Vrugt, Ter Braak, Diks, Robinson, Hyman, Higdon (b0270) 2009; 10 Vedenov, D., 2008. Application of copulas to estimation of joint crop yield distributions. In: American Agricultural Economics Association Annual Meeting, Orlando, FL, pp. 27–29. Sklar (b0240) 1959; 8 Field (b0080) 2012 AghaKouchak, Bárdossy, Habib (b0010) 2010; 33 Lobell, Burke, Tebaldi, Mastrandrea, Falcon, Naylor (b0180) 2008; 319 Tao, Yokozawa, Zhang (b0250) 2009; 149 Iizumi, Yokozawa, Nishimori (b0135) 2009; 149 Qiao (10.1016/j.compag.2018.07.027_b0205) 2016 Zhao (10.1016/j.compag.2018.07.027_b0285) 2013; 41 Rosenzweig (10.1016/j.compag.2018.07.027_b0215) 2014; 111 Lawrence (10.1016/j.compag.2018.07.027_b0165) 2011; 3 Adams (10.1016/j.compag.2018.07.027_b0005) 1998; 11 Li (10.1016/j.compag.2018.07.027_b0175) 1992; 97 Vrugt (10.1016/j.compag.2018.07.027_b0270) 2009; 10 Ewert (10.1016/j.compag.2018.07.027_b0065) 2015; 72 Elliott (10.1016/j.compag.2018.07.027_b0060) 2014; 62 Nelsen (10.1016/j.compag.2018.07.027_b0195) 1999 Iizumi (10.1016/j.compag.2018.07.027_b0135) 2009; 149 Yu (10.1016/j.compag.2018.07.027_b0275) 2018 Li (10.1016/j.compag.2018.07.027_b0170) 2017 Vital (10.1016/j.compag.2018.07.027_b0265) 2013; 98 Baigorria (10.1016/j.compag.2018.07.027_b0020) 2008; 148 Dongarra (10.1016/j.compag.2018.07.027_b0050) 2003; 15 Launay (10.1016/j.compag.2018.07.027_b0160) 2005; 111 Bonaccorso (10.1016/j.compag.2018.07.027_b0035) 2003; 17 Jakku (10.1016/j.compag.2018.07.027_b0140) 2010; 103 10.1016/j.compag.2018.07.027_b0150 Yu (10.1016/j.compag.2018.07.027_b0280) 2014; 62 10.1016/j.compag.2018.07.027_b0190 10.1016/j.compag.2018.07.027_b0070 Rosenzweig (10.1016/j.compag.2018.07.027_b0220) 2013; 170 Hansen (10.1016/j.compag.2018.07.027_b0105) 2006; 33 Heng (10.1016/j.compag.2018.07.027_b0110) 2009; 101 AghaKouchak (10.1016/j.compag.2018.07.027_b0010) 2010; 33 Rosenzweig (10.1016/j.compag.2018.07.027_b0225) 2007; 12 Van Ittersum (10.1016/j.compag.2018.07.027_b0255) 2008; 96 Sklar (10.1016/j.compag.2018.07.027_b0240) 1959; 8 Zhao (10.1016/j.compag.2018.07.027_b0290) 2018; 15 Fu (10.1016/j.compag.2018.07.027_b0090) 2016; 59 Raftery (10.1016/j.compag.2018.07.027_b0210) 2005; 133 Holzworth (10.1016/j.compag.2018.07.027_b0115) 2015; 72 De Wit (10.1016/j.compag.2018.07.027_b0045) 2007; 146 Jiang (10.1016/j.compag.2018.07.027_b0145) 2017 10.1016/j.compag.2018.07.027_b0260 Dumont (10.1016/j.compag.2018.07.027_b0055) 2014; 52 Skakun (10.1016/j.compag.2018.07.027_b0235) 2016; 7 Steduto (10.1016/j.compag.2018.07.027_b0245) 2009; 101 Tao (10.1016/j.compag.2018.07.027_b0250) 2009; 149 Bloom (10.1016/j.compag.2018.07.027_b0030) 2011; 333 Shangguan (10.1016/j.compag.2018.07.027_b0230) 2014; 6 Martre (10.1016/j.compag.2018.07.027_b0185) 2015; 21 Kroes (10.1016/j.compag.2018.07.027_b0155) 2000; 14 Báez-González (10.1016/j.compag.2018.07.027_b0015) 2002; 42 Fernández (10.1016/j.compag.2018.07.027_b0075) 1999; 4 Bárdossy (10.1016/j.compag.2018.07.027_b0025) 2009; 13 Howden (10.1016/j.compag.2018.07.027_b0120) 2007; 104 Lobell (10.1016/j.compag.2018.07.027_b0180) 2008; 319 Huang (10.1016/j.compag.2018.07.027_b0125) 2015; 8 Field (10.1016/j.compag.2018.07.027_b0080) 2012 Gaupp (10.1016/j.compag.2018.07.027_b0095) 2017; 37 Guo (10.1016/j.compag.2018.07.027_b0100) 2006; 97 10.1016/j.compag.2018.07.027_b0200 Fu (10.1016/j.compag.2018.07.027_b0085) 2017 Box (10.1016/j.compag.2018.07.027_b0040) 2011 Huang (10.1016/j.compag.2018.07.027_b0130) 2017; 211 |
| References_xml | – volume: 97 start-page: 217 year: 2006 end-page: 230 ident: b0100 article-title: Parameter optimization and field validation of the functional–structural model GREENLAB for maize publication-title: Ann. Bot.-Lond. – volume: 8 start-page: 229 year: 1959 end-page: 231 ident: b0240 article-title: Fonctions de repartition an dimensions et leurs marges publication-title: Publ. Inst. Statist. Univ. Paris – volume: 98 start-page: 131 year: 2013 end-page: 135 ident: b0265 article-title: High-performance computing for climate change impact studies with the Pasture Simulation model publication-title: Comput. Electron. Agric. – reference: Kroes, J.G., Van Dam, J.C., Groenendijk, P., Hendriks, R., Jacobs, C., 2009. SWAP version 3.2. Theory description and user manual. Alterra. – volume: 211 start-page: 114 year: 2017 end-page: 124 ident: b0130 article-title: A multiple crop model ensemble for improving broad-scale yield prediction using Bayesian model averaging publication-title: Field Crops Res. – volume: 148 start-page: 1353 year: 2008 end-page: 1361 ident: b0020 article-title: Potential predictability of crop yield using an ensemble climate forecast by a regional circulation model publication-title: AGR Forest Meteorol. – volume: 15 start-page: 803 year: 2003 end-page: 820 ident: b0050 article-title: The LINPACK benchmark: past, present and future publication-title: Concurr. Comput. Pract. Exp. – volume: 62 start-page: 454 year: 2014 end-page: 464 ident: b0280 article-title: Dynamic assessment of the impact of drought on agricultural yield and scale-dependent return periods over large geographic regions publication-title: Environ. Modell. Softw. – volume: 42 start-page: 1943 year: 2002 end-page: 1949 ident: b0015 article-title: Using satellite and field data with crop growth modeling to monitor and estimate corn yield in Mexico publication-title: Crop Sci. – volume: 13 start-page: 2299 year: 2009 ident: b0025 article-title: Copula based multisite model for daily precipitation simulation publication-title: Hydrol. Earth Syst. Sci. – volume: 103 start-page: 675 year: 2010 end-page: 682 ident: b0140 article-title: A conceptual framework for guiding the participatory development of agricultural decision support systems publication-title: Agric. Syst. – volume: 333 start-page: 562 year: 2011 end-page: 569 ident: b0030 article-title: 7 billion and counting publication-title: Science – volume: 133 start-page: 1155 year: 2005 end-page: 1174 ident: b0210 article-title: Using Bayesian model averaging to calibrate forecast ensembles publication-title: Mon. Weather Rev. – reference: Fang, J., Fu, H., Zhao, W., Chen, B., Zheng, W., Yang, G., 2017. swDNN: a library for accelerating deep learning applications on Sunway TaihuLight. In: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 615–624. – volume: 15 start-page: 1 year: 2018 end-page: 26 ident: b0290 article-title: Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer publication-title: ACM Trans. Archit. Code Optim. – volume: 7 start-page: 901 year: 2016 end-page: 917 ident: b0235 article-title: The use of satellite data for agriculture drought risk quantification in Ukraine publication-title: Geomat. Nat. Hazards Risk – reference: Vedenov, D., 2008. Application of copulas to estimation of joint crop yield distributions. In: American Agricultural Economics Association Annual Meeting, Orlando, FL, pp. 27–29. – volume: 3 year: 2011 ident: b0165 article-title: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model publication-title: J. Adv. Model. Earth Syst. – year: 2011 ident: b0040 article-title: Bayesian Inference in Statistical Analysis – volume: 149 start-page: 333 year: 2009 end-page: 348 ident: b0135 article-title: Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: application of a Bayesian approach publication-title: AGR Forest Meteorol. – start-page: 1 year: 2017 ident: b0085 article-title: Redesigning CAM-SE for peta-scale climate modeling performance and ultra-high resolution on Sunway TaihuLight publication-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis – volume: 111 start-page: 321 year: 2005 end-page: 339 ident: b0160 article-title: Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications publication-title: Agric. Ecosyst. Environ. – volume: 72 start-page: 276 year: 2015 end-page: 286 ident: b0115 article-title: Agricultural production systems modelling and software: current status and future prospects publication-title: Environ. Modell. Softw. – volume: 101 start-page: 488 year: 2009 end-page: 498 ident: b0110 article-title: Validating the FAO AquaCrop model for irrigated and water deficient field maize publication-title: Agron. J. – volume: 111 start-page: 3268 year: 2014 end-page: 3273 ident: b0215 article-title: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison publication-title: Proc. Nat. Acad. Sci. – start-page: 422 year: 2017 end-page: 431 ident: b0145 article-title: Towards highly efficient DGEMM on the emerging SW26010 many-core processor publication-title: 2017 46th International Conference on Parallel Processing (ICPP) – volume: 33 start-page: 27 year: 2006 end-page: 41 ident: b0105 article-title: Translating climate forecasts into agricultural terms: advances and challenges publication-title: Clim. Res. – volume: 96 start-page: 150 year: 2008 end-page: 165 ident: b0255 article-title: Integrated assessment of agricultural systems–a component-based framework for the European Union (SEAMLESS) publication-title: Agric. Syst. – volume: 10 start-page: 273 year: 2009 end-page: 290 ident: b0270 article-title: Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling publication-title: Int. J. Nonlin. Sci. Num. – volume: 41 start-page: 231 year: 2013 end-page: 238 ident: b0285 article-title: Large-scale, high-resolution agricultural systems modeling using a hybrid approach combining grid computing and parallel processing publication-title: Environ. Modell. Softw. – volume: 146 start-page: 38 year: 2007 end-page: 56 ident: b0045 article-title: Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts publication-title: AGR Forest Meteorol. – volume: 8 start-page: 4060 year: 2015 end-page: 4071 ident: b0125 article-title: Jointly assimilating MODIS LAI and ET products into the SWAP model for winter wheat yield estimation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 33 start-page: 624 year: 2010 end-page: 634 ident: b0010 article-title: Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula publication-title: Adv. Water Resour. – volume: 37 start-page: 2212 year: 2017 end-page: 2228 ident: b0095 article-title: Dependency of crop production between global breadbaskets: a copula approach for the assessment of global and regional risk pools publication-title: Risk Anal. – volume: 72 start-page: 287 year: 2015 end-page: 303 ident: b0065 article-title: Crop modelling for integrated assessment of risk to food production from climate change publication-title: Environ. Modell. Softw. – start-page: 119 year: 2017 end-page: 126 ident: b0170 article-title: PFSI. sw: A programming framework for sea ice model algorithms based on Sunway many-core processor publication-title: 2017 IEEE 28th International Conference on Application-specific Systems, Architectures and Processors (ASAP) – volume: 59 start-page: 72001 year: 2016 ident: b0090 article-title: The Sunway TaihuLight supercomputer: system and applications publication-title: Sci. China Inform. Sci. – reference: Neale, R.B., Chen, C., Gettelman, A., Lauritzen, P.H., Park, S., Williamson, D.L., Conley, A.J., Garcia, R., Kinnison, D., Lamarque, J., 2010. Description of the NCAR community atmosphere model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+ STR. – volume: 97 start-page: 9759 year: 1992 end-page: 9776 ident: b0175 article-title: A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity publication-title: J. Geophys. Res. Atmosp. – volume: 101 start-page: 426 year: 2009 end-page: 437 ident: b0245 article-title: AquaCrop—the FAO crop model to simulate yield response to water: I. Concepts and underlying principles publication-title: Agron. J. – start-page: 46 year: 2016 end-page: 56 ident: b0205 article-title: A highly effective global surface wave numerical simulation with ultra-high resolution publication-title: SC16: International Conference for High Performance Computing, Networking, Storage and Analysis – start-page: 1 year: 1999 end-page: 4 ident: b0195 article-title: Introduction. An Introduction to Copulas – volume: 6 start-page: 249 year: 2014 end-page: 263 ident: b0230 article-title: A global soil data set for earth system modeling publication-title: J. Adv. Model. Earth Syst. – volume: 17 start-page: 157 year: 2003 end-page: 174 ident: b0035 article-title: An analytical formulation of return period of drought severity publication-title: Stoch. Environ. Res. Risk A – volume: 149 start-page: 831 year: 2009 end-page: 850 ident: b0250 article-title: Modelling the impacts of weather and climate variability on crop productivity over a large area: a new process-based model development, optimization, and uncertainties analysis publication-title: AGR Forest Meteorol. – reference: Oleson, K.W., Lawrence, D.M., Gordon, B., Flanner, M.G., Kluzek, E., Peter, J., Levis, S., Swenson, S.C., Thornton, E., Feddema, J., 2010. Technical description of version 4.0 of the Community Land Model (CLM). – volume: 14 start-page: 1993 year: 2000 end-page: 2002 ident: b0155 article-title: Integrated modelling of the soil–water–atmosphere–plant system using the model SWAP 2·0 an overview of theory and an application publication-title: Hydrol. Process. – volume: 4 start-page: 297 year: 1999 end-page: 307 ident: b0075 article-title: Return period and risk of hydrologic events. I: mathematical formulation publication-title: J. Hydrol. Eng. – year: 2012 ident: b0080 article-title: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change – volume: 170 start-page: 166 year: 2013 end-page: 182 ident: b0220 article-title: The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies publication-title: AGR Forest Meteorol. – volume: 12 start-page: 855 year: 2007 end-page: 873 ident: b0225 article-title: Adaptation and mitigation strategies in agriculture: an analysis of potential synergies publication-title: Mitig. Adapt. Strat. Global – volume: 104 start-page: 19691 year: 2007 end-page: 19696 ident: b0120 article-title: Adapting agriculture to climate change publication-title: Proc. Nat. Acad. Sci. – volume: 62 start-page: 509 year: 2014 end-page: 516 ident: b0060 article-title: The parallel system for integrating impact models and sectors (pSIMS) publication-title: Environ. Modell. Softw. – volume: 52 start-page: 121 year: 2014 end-page: 135 ident: b0055 article-title: Parameter identification of the STICS crop model, using an accelerated formal MCMC approach publication-title: Environ. Modell. Softw. – volume: 21 start-page: 911 year: 2015 end-page: 925 ident: b0185 article-title: Multimodel ensembles of wheat growth: many models are better than one publication-title: Global Change Biol. – year: 2018 ident: b0275 article-title: Assessing the Impacts of Extreme Agricultural Droughts in China Under Climate and Socioeconomic Changes – volume: 11 start-page: 19 year: 1998 end-page: 30 ident: b0005 article-title: Effects of global climate change on agriculture: an interpretative review publication-title: Clim. Res. – volume: 319 start-page: 607 year: 2008 end-page: 610 ident: b0180 article-title: Prioritizing climate change adaptation needs for food security in 2030 publication-title: Science – volume: 170 start-page: 166 year: 2013 ident: 10.1016/j.compag.2018.07.027_b0220 article-title: The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies publication-title: AGR Forest Meteorol. doi: 10.1016/j.agrformet.2012.09.011 – volume: 211 start-page: 114 year: 2017 ident: 10.1016/j.compag.2018.07.027_b0130 article-title: A multiple crop model ensemble for improving broad-scale yield prediction using Bayesian model averaging publication-title: Field Crops Res. doi: 10.1016/j.fcr.2017.06.011 – year: 2012 ident: 10.1016/j.compag.2018.07.027_b0080 – volume: 37 start-page: 2212 issue: 11 year: 2017 ident: 10.1016/j.compag.2018.07.027_b0095 article-title: Dependency of crop production between global breadbaskets: a copula approach for the assessment of global and regional risk pools publication-title: Risk Anal. doi: 10.1111/risa.12761 – volume: 10 start-page: 273 year: 2009 ident: 10.1016/j.compag.2018.07.027_b0270 article-title: Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling publication-title: Int. J. Nonlin. Sci. Num. doi: 10.1515/IJNSNS.2009.10.3.273 – volume: 41 start-page: 231 year: 2013 ident: 10.1016/j.compag.2018.07.027_b0285 article-title: Large-scale, high-resolution agricultural systems modeling using a hybrid approach combining grid computing and parallel processing publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2012.08.007 – volume: 149 start-page: 333 year: 2009 ident: 10.1016/j.compag.2018.07.027_b0135 article-title: Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: application of a Bayesian approach publication-title: AGR Forest Meteorol. doi: 10.1016/j.agrformet.2008.08.015 – ident: 10.1016/j.compag.2018.07.027_b0200 – volume: 104 start-page: 19691 year: 2007 ident: 10.1016/j.compag.2018.07.027_b0120 article-title: Adapting agriculture to climate change publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.0701890104 – ident: 10.1016/j.compag.2018.07.027_b0190 – volume: 8 start-page: 229 year: 1959 ident: 10.1016/j.compag.2018.07.027_b0240 article-title: Fonctions de repartition an dimensions et leurs marges publication-title: Publ. Inst. Statist. Univ. Paris – volume: 98 start-page: 131 year: 2013 ident: 10.1016/j.compag.2018.07.027_b0265 article-title: High-performance computing for climate change impact studies with the Pasture Simulation model publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2013.08.004 – volume: 319 start-page: 607 year: 2008 ident: 10.1016/j.compag.2018.07.027_b0180 article-title: Prioritizing climate change adaptation needs for food security in 2030 publication-title: Science doi: 10.1126/science.1152339 – start-page: 1 year: 1999 ident: 10.1016/j.compag.2018.07.027_b0195 – volume: 7 start-page: 901 year: 2016 ident: 10.1016/j.compag.2018.07.027_b0235 article-title: The use of satellite data for agriculture drought risk quantification in Ukraine publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2015.1016555 – volume: 17 start-page: 157 year: 2003 ident: 10.1016/j.compag.2018.07.027_b0035 article-title: An analytical formulation of return period of drought severity publication-title: Stoch. Environ. Res. Risk A doi: 10.1007/s00477-003-0127-7 – volume: 111 start-page: 321 year: 2005 ident: 10.1016/j.compag.2018.07.027_b0160 article-title: Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2005.06.005 – volume: 101 start-page: 426 year: 2009 ident: 10.1016/j.compag.2018.07.027_b0245 article-title: AquaCrop—the FAO crop model to simulate yield response to water: I. Concepts and underlying principles publication-title: Agron. J. doi: 10.2134/agronj2008.0139s – volume: 72 start-page: 276 year: 2015 ident: 10.1016/j.compag.2018.07.027_b0115 article-title: Agricultural production systems modelling and software: current status and future prospects publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2014.12.013 – volume: 33 start-page: 27 year: 2006 ident: 10.1016/j.compag.2018.07.027_b0105 article-title: Translating climate forecasts into agricultural terms: advances and challenges publication-title: Clim. Res. doi: 10.3354/cr033027 – volume: 42 start-page: 1943 year: 2002 ident: 10.1016/j.compag.2018.07.027_b0015 article-title: Using satellite and field data with crop growth modeling to monitor and estimate corn yield in Mexico publication-title: Crop Sci. doi: 10.2135/cropsci2002.1943 – volume: 146 start-page: 38 year: 2007 ident: 10.1016/j.compag.2018.07.027_b0045 article-title: Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts publication-title: AGR Forest Meteorol. doi: 10.1016/j.agrformet.2007.05.004 – ident: 10.1016/j.compag.2018.07.027_b0070 doi: 10.1109/IPDPS.2017.20 – volume: 3 year: 2011 ident: 10.1016/j.compag.2018.07.027_b0165 article-title: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model publication-title: J. Adv. Model. Earth Syst. – volume: 333 start-page: 562 year: 2011 ident: 10.1016/j.compag.2018.07.027_b0030 article-title: 7 billion and counting publication-title: Science doi: 10.1126/science.1209290 – volume: 15 start-page: 803 year: 2003 ident: 10.1016/j.compag.2018.07.027_b0050 article-title: The LINPACK benchmark: past, present and future publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.728 – volume: 59 start-page: 72001 year: 2016 ident: 10.1016/j.compag.2018.07.027_b0090 article-title: The Sunway TaihuLight supercomputer: system and applications publication-title: Sci. China Inform. Sci. doi: 10.1007/s11432-016-5588-7 – volume: 149 start-page: 831 year: 2009 ident: 10.1016/j.compag.2018.07.027_b0250 article-title: Modelling the impacts of weather and climate variability on crop productivity over a large area: a new process-based model development, optimization, and uncertainties analysis publication-title: AGR Forest Meteorol. doi: 10.1016/j.agrformet.2008.11.004 – volume: 111 start-page: 3268 year: 2014 ident: 10.1016/j.compag.2018.07.027_b0215 article-title: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.1222463110 – volume: 62 start-page: 454 year: 2014 ident: 10.1016/j.compag.2018.07.027_b0280 article-title: Dynamic assessment of the impact of drought on agricultural yield and scale-dependent return periods over large geographic regions publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2014.08.004 – year: 2011 ident: 10.1016/j.compag.2018.07.027_b0040 – volume: 97 start-page: 9759 year: 1992 ident: 10.1016/j.compag.2018.07.027_b0175 article-title: A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity publication-title: J. Geophys. Res. Atmosp. doi: 10.1029/92JD00509 – volume: 96 start-page: 150 year: 2008 ident: 10.1016/j.compag.2018.07.027_b0255 article-title: Integrated assessment of agricultural systems–a component-based framework for the European Union (SEAMLESS) publication-title: Agric. Syst. doi: 10.1016/j.agsy.2007.07.009 – volume: 14 start-page: 1993 year: 2000 ident: 10.1016/j.compag.2018.07.027_b0155 article-title: Integrated modelling of the soil–water–atmosphere–plant system using the model SWAP 2·0 an overview of theory and an application publication-title: Hydrol. Process. doi: 10.1002/1099-1085(20000815/30)14:11/12<1993::AID-HYP50>3.0.CO;2-# – volume: 11 start-page: 19 year: 1998 ident: 10.1016/j.compag.2018.07.027_b0005 article-title: Effects of global climate change on agriculture: an interpretative review publication-title: Clim. Res. doi: 10.3354/cr011019 – ident: 10.1016/j.compag.2018.07.027_b0150 – volume: 6 start-page: 249 year: 2014 ident: 10.1016/j.compag.2018.07.027_b0230 article-title: A global soil data set for earth system modeling publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2013MS000293 – start-page: 1 year: 2017 ident: 10.1016/j.compag.2018.07.027_b0085 article-title: Redesigning CAM-SE for peta-scale climate modeling performance and ultra-high resolution on Sunway TaihuLight – volume: 97 start-page: 217 year: 2006 ident: 10.1016/j.compag.2018.07.027_b0100 article-title: Parameter optimization and field validation of the functional–structural model GREENLAB for maize publication-title: Ann. Bot.-Lond. doi: 10.1093/aob/mcj033 – volume: 52 start-page: 121 year: 2014 ident: 10.1016/j.compag.2018.07.027_b0055 article-title: Parameter identification of the STICS crop model, using an accelerated formal MCMC approach publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2013.10.022 – volume: 8 start-page: 4060 issue: 8 year: 2015 ident: 10.1016/j.compag.2018.07.027_b0125 article-title: Jointly assimilating MODIS LAI and ET products into the SWAP model for winter wheat yield estimation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2403135 – volume: 148 start-page: 1353 year: 2008 ident: 10.1016/j.compag.2018.07.027_b0020 article-title: Potential predictability of crop yield using an ensemble climate forecast by a regional circulation model publication-title: AGR Forest Meteorol. doi: 10.1016/j.agrformet.2008.04.002 – start-page: 422 year: 2017 ident: 10.1016/j.compag.2018.07.027_b0145 article-title: Towards highly efficient DGEMM on the emerging SW26010 many-core processor – volume: 101 start-page: 488 year: 2009 ident: 10.1016/j.compag.2018.07.027_b0110 article-title: Validating the FAO AquaCrop model for irrigated and water deficient field maize publication-title: Agron. J. doi: 10.2134/agronj2008.0029xs – volume: 103 start-page: 675 year: 2010 ident: 10.1016/j.compag.2018.07.027_b0140 article-title: A conceptual framework for guiding the participatory development of agricultural decision support systems publication-title: Agric. Syst. doi: 10.1016/j.agsy.2010.08.007 – volume: 15 start-page: 1 year: 2018 ident: 10.1016/j.compag.2018.07.027_b0290 article-title: Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer publication-title: ACM Trans. Archit. Code Optim. – volume: 72 start-page: 287 year: 2015 ident: 10.1016/j.compag.2018.07.027_b0065 article-title: Crop modelling for integrated assessment of risk to food production from climate change publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2014.12.003 – start-page: 46 year: 2016 ident: 10.1016/j.compag.2018.07.027_b0205 article-title: A highly effective global surface wave numerical simulation with ultra-high resolution – volume: 12 start-page: 855 year: 2007 ident: 10.1016/j.compag.2018.07.027_b0225 article-title: Adaptation and mitigation strategies in agriculture: an analysis of potential synergies publication-title: Mitig. Adapt. Strat. Global doi: 10.1007/s11027-007-9103-8 – volume: 13 start-page: 2299 year: 2009 ident: 10.1016/j.compag.2018.07.027_b0025 article-title: Copula based multisite model for daily precipitation simulation publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-13-2299-2009 – volume: 133 start-page: 1155 year: 2005 ident: 10.1016/j.compag.2018.07.027_b0210 article-title: Using Bayesian model averaging to calibrate forecast ensembles publication-title: Mon. Weather Rev. doi: 10.1175/MWR2906.1 – volume: 62 start-page: 509 year: 2014 ident: 10.1016/j.compag.2018.07.027_b0060 article-title: The parallel system for integrating impact models and sectors (pSIMS) publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2014.04.008 – volume: 4 start-page: 297 year: 1999 ident: 10.1016/j.compag.2018.07.027_b0075 article-title: Return period and risk of hydrologic events. I: mathematical formulation publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(1999)4:4(297) – volume: 21 start-page: 911 year: 2015 ident: 10.1016/j.compag.2018.07.027_b0185 article-title: Multimodel ensembles of wheat growth: many models are better than one publication-title: Global Change Biol. doi: 10.1111/gcb.12768 – start-page: 119 year: 2017 ident: 10.1016/j.compag.2018.07.027_b0170 article-title: PFSI. sw: A programming framework for sea ice model algorithms based on Sunway many-core processor – year: 2018 ident: 10.1016/j.compag.2018.07.027_b0275 – volume: 33 start-page: 624 year: 2010 ident: 10.1016/j.compag.2018.07.027_b0010 article-title: Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2010.02.010 – ident: 10.1016/j.compag.2018.07.027_b0260 |
| SSID | ssj0016987 |
| Score | 2.2638257 |
| Snippet | •Further acceleration of crop models and high-performance computing for large-scale crop modeling.•Combination of Bayesian inference and Bayesian model average... Crop models are widely used to evaluate the response of crop growth to drought. However, over large geographic regions, the most advanced models are often... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 400 |
| SubjectTerms | Accuracy Agricultural management Agricultural production Atmospheric models Bayesian analysis Bayesian theory China Computer simulation computers corn Crop growth crop models crop yield denitrification Drought Dynamic prediction Impact prediction Optimization Parallel processing Parameters prediction Real time Risk analysis Soil water Statistical inference Supercomputer Supercomputers uncertainty Uncertainty analysis Zea mays |
| Title | A dynamic agricultural prediction system for large-scale drought assessment on the Sunway TaihuLight supercomputer |
| URI | https://dx.doi.org/10.1016/j.compag.2018.07.027 https://www.proquest.com/docview/2131832166 https://www.proquest.com/docview/2131865823 |
| Volume | 154 |
| WOSCitedRecordID | wos000449246200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgc4IJ5iYUFGQlwirxInsdNjhbo8VBUOXSk3y3HSpasqzabNsr-G38r4kcdSoV0OXKLKmSSW5-t4bM_Mh9D7jOnsAMYIlzEj4BFLktAoJExFcVCwPMqkYS2Z8fk8SdPx99HoV5sLc7XmZZlcX4-r_6pqaANl69TZf1B391JogN-gdLiC2uF6J8VPvNyyzHvyvO4ra1S1PpIx2rbVm02A4VoHgpMtKKrwcsPYo5ln2mKd7iQBrEv5U6eLyNWPZqZX8962qYpaOUaIoYPbskTY0s89yY4Ju-07NICT27BOV3LTmaDGRQJsLtuZ1dSLdNHDK1k3q70XfGo2bbPbxQgSl8432Nhk0MYsWVJnmePIq07AypDIxb5aKxv5_mDCdvf25gK7LXFxYoL5z3UUX2LqtNpaBDdLb8-_idOz2UwspuniQ3VJNCuZPr13FC330CHl8RgM_-HkyzT92p1TsXFiE_Jd79vkTBNBuP_hvzk_f7gBxrdZPEaP3KIETyyYnqBRUT5FDye9tp6heoIdrPAQVriHFbawwgArPIAVdrDCPawwCAOssIUV7mGFb8DqOTo7nS4-fiaOr4OokPEdiZa-n2WULlXOsxx8wzgJi4xlPFJhzIOx4jHNQYQtQxlRWPzTAMQZM3UDVc7CF-ig3JTFS4TBLc4lXfIwixQ49EHi80Lp1XUhQ5ol7AiF7UAK5YrZa06VtWijFi-EHX6hh1_4XMDwHyHSPVXZYi63yPNWR8I5pNbRFICxW548blUqnG3YChqYCTRg0P133W0w5_qMTpbFpnEysCqg4as7yLxGD_o_0zE62NVN8QbdV1e71bZ-68D6G9qmxyM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+agricultural+prediction+system+for+large-scale+drought+assessment+on+the+Sunway+TaihuLight+supercomputer&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Huang%2C+Xiao&rft.au=Yu%2C+Chaoqing&rft.au=Fang%2C+Jiarui&rft.au=Huang%2C+Guorui&rft.date=2018-11-01&rft.issn=0168-1699&rft.volume=154+p.400-410&rft.spage=400&rft.epage=410&rft_id=info:doi/10.1016%2Fj.compag.2018.07.027&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |