A dynamic agricultural prediction system for large-scale drought assessment on the Sunway TaihuLight supercomputer

•Further acceleration of crop models and high-performance computing for large-scale crop modeling.•Combination of Bayesian inference and Bayesian model average to improve predictive accuracy.•Real-time simulation and prediction based on observational and scenario forces.•Risk analysis of yield losse...

Full description

Saved in:
Bibliographic Details
Published in:Computers and electronics in agriculture Vol. 154; pp. 400 - 410
Main Authors: Huang, Xiao, Yu, Chaoqing, Fang, Jiarui, Huang, Guorui, Ni, Shaoqiang, Hall, Jim, Zorn, Conrad, Huang, Xiaomeng, Zhang, Wenyuan
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.11.2018
Elsevier BV
Subjects:
ISSN:0168-1699, 1872-7107
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Further acceleration of crop models and high-performance computing for large-scale crop modeling.•Combination of Bayesian inference and Bayesian model average to improve predictive accuracy.•Real-time simulation and prediction based on observational and scenario forces.•Risk analysis of yield losses in multiple scales and its spatial dependency. Crop models are widely used to evaluate the response of crop growth to drought. However, over large geographic regions, the most advanced models are often restricted by available computing resource. This limits capacity to undertake uncertainty analysis and prohibits the use of models in real-time ensemble forecasting systems. This study addresses these concerns by presenting an integrated system for the dynamic prediction and assessment of agricultural yield using the top-ranked Sunway TaihuLight supercomputer platform. This system enables parallelization and acceleration for the existing AquaCrop, DNDC (DeNitrification and DeComposition) and SWAP (Soil Water Atmosphere Plant) models, thus facilitating multi-model ensemble and parameter optimization and subsequent drought risk analysis in multiple regions and at multiple scales. The high computing capability also opens up the possibility of real-time simulation during droughts, providing the basis for more effective drought management. Initial testing with varying core group numbers shows that computation time can be reduced by between 2.6 and 3.6 times. Based on the powerful computing capacity, a county-level model parameter optimization (2043 counties for 1996–2007) by Bayesian inference and multi-model ensemble using BMA (Bayesian Model Average) method were performed, demonstrating the enhancements in predictive accuracy that can be achieved. An application of this system is presented predicting the impacts of the drought of May–July 2017 on maize yield in North and Northeast China. The spatial variability in yield losses is presented demonstrating new capability to provide high resolution information with associated uncertainty estimates.
AbstractList •Further acceleration of crop models and high-performance computing for large-scale crop modeling.•Combination of Bayesian inference and Bayesian model average to improve predictive accuracy.•Real-time simulation and prediction based on observational and scenario forces.•Risk analysis of yield losses in multiple scales and its spatial dependency. Crop models are widely used to evaluate the response of crop growth to drought. However, over large geographic regions, the most advanced models are often restricted by available computing resource. This limits capacity to undertake uncertainty analysis and prohibits the use of models in real-time ensemble forecasting systems. This study addresses these concerns by presenting an integrated system for the dynamic prediction and assessment of agricultural yield using the top-ranked Sunway TaihuLight supercomputer platform. This system enables parallelization and acceleration for the existing AquaCrop, DNDC (DeNitrification and DeComposition) and SWAP (Soil Water Atmosphere Plant) models, thus facilitating multi-model ensemble and parameter optimization and subsequent drought risk analysis in multiple regions and at multiple scales. The high computing capability also opens up the possibility of real-time simulation during droughts, providing the basis for more effective drought management. Initial testing with varying core group numbers shows that computation time can be reduced by between 2.6 and 3.6 times. Based on the powerful computing capacity, a county-level model parameter optimization (2043 counties for 1996–2007) by Bayesian inference and multi-model ensemble using BMA (Bayesian Model Average) method were performed, demonstrating the enhancements in predictive accuracy that can be achieved. An application of this system is presented predicting the impacts of the drought of May–July 2017 on maize yield in North and Northeast China. The spatial variability in yield losses is presented demonstrating new capability to provide high resolution information with associated uncertainty estimates.
Crop models are widely used to evaluate the response of crop growth to drought. However, over large geographic regions, the most advanced models are often restricted by available computing resource. This limits capacity to undertake uncertainty analysis and prohibits the use of models in real-time ensemble forecasting systems. This study addresses these concerns by presenting an integrated system for the dynamic prediction and assessment of agricultural yield using the top-ranked Sunway TaihuLight supercomputer platform. This system enables parallelization and acceleration for the existing AquaCrop, DNDC (DeNitrification and DeComposition) and SWAP (Soil Water Atmosphere Plant) models, thus facilitating multi-model ensemble and parameter optimization and subsequent drought risk analysis in multiple regions and at multiple scales. The high computing capability also opens up the possibility of real-time simulation during droughts, providing the basis for more effective drought management. Initial testing with varying core group numbers shows that computation time can be reduced by between 2.6 and 3.6 times. Based on the powerful computing capacity, a county-level model parameter optimization (2043 counties for 1996–2007) by Bayesian inference and multi-model ensemble using BMA (Bayesian Model Average) method were performed, demonstrating the enhancements in predictive accuracy that can be achieved. An application of this system is presented predicting the impacts of the drought of May–July 2017 on maize yield in North and Northeast China. The spatial variability in yield losses is presented demonstrating new capability to provide high resolution information with associated uncertainty estimates.
Author Zorn, Conrad
Zhang, Wenyuan
Huang, Xiao
Fang, Jiarui
Yu, Chaoqing
Huang, Guorui
Hall, Jim
Huang, Xiaomeng
Ni, Shaoqiang
Author_xml – sequence: 1
  givenname: Xiao
  surname: Huang
  fullname: Huang, Xiao
  organization: Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Chaoqing
  surname: Yu
  fullname: Yu, Chaoqing
  email: chaoqingyu@yahoo.com
  organization: Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Jiarui
  surname: Fang
  fullname: Fang, Jiarui
  organization: Department of Computer Science and Technology, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Guorui
  surname: Huang
  fullname: Huang, Guorui
  organization: Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Shaoqiang
  surname: Ni
  fullname: Ni, Shaoqiang
  organization: Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
– sequence: 6
  givenname: Jim
  orcidid: 0000-0002-2024-9191
  surname: Hall
  fullname: Hall, Jim
  organization: Environmental Change Institute, University of Oxford, Oxford, UK
– sequence: 7
  givenname: Conrad
  surname: Zorn
  fullname: Zorn, Conrad
  organization: Environmental Change Institute, University of Oxford, Oxford, UK
– sequence: 8
  givenname: Xiaomeng
  surname: Huang
  fullname: Huang, Xiaomeng
  organization: Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
– sequence: 9
  givenname: Wenyuan
  surname: Zhang
  fullname: Zhang, Wenyuan
  organization: Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
BookMark eNqFkU2r1DAUhoNcwblX_4GLgBs3rfnoJB0XwuXiFwy48LoOaXo6k6Ft6kmizL83pa7uQlfhwPO-nJznltzMYQZCXnNWc8bVu0vtwrTYUy0Yb2umayb0M7LjrRaV5kzfkF3B2oqrw-EFuY3xwsp8aPWO4D3tr7OdvKP2hN7lMWW0I10Qeu-SDzON15hgokNAOlo8QRWdHYH2GPLpnKiNEWKcYE60wOkM9Huef9srfbT-nI9-ZWJeANcdcwJ8SZ4Pdozw6u97R358-vj48KU6fvv89eH-WDmpdKqagbGuE2Jwve56IZp9K6FTnW6c3Gt-cHov-oKoQdpGMKEEL7hS5WtSuV7JO_J2610w_MwQk5l8dDCOdoaQoxFc8lbtWyEL-uYJegkZ57LdRknB1Vr4fqMchhgRBuN8suuNElo_Gs7MqsNczKbDrDoM06boKOHmSXhBP1m8_i_2YYtBudQvD2ii8zC7YgfBJdMH_--CP1nsqfw
CitedBy_id crossref_primary_10_1007_s11069_022_05506_5
crossref_primary_10_1016_j_compag_2019_105054
crossref_primary_10_1016_j_compag_2025_110054
crossref_primary_10_1016_j_fcr_2021_108250
crossref_primary_10_1007_s10668_022_02713_9
crossref_primary_10_1016_j_envsoft_2020_104807
crossref_primary_10_1016_j_anucene_2020_107761
Cites_doi 10.1016/j.agrformet.2012.09.011
10.1016/j.fcr.2017.06.011
10.1111/risa.12761
10.1515/IJNSNS.2009.10.3.273
10.1016/j.envsoft.2012.08.007
10.1016/j.agrformet.2008.08.015
10.1073/pnas.0701890104
10.1016/j.compag.2013.08.004
10.1126/science.1152339
10.1080/19475705.2015.1016555
10.1007/s00477-003-0127-7
10.1016/j.agee.2005.06.005
10.2134/agronj2008.0139s
10.1016/j.envsoft.2014.12.013
10.3354/cr033027
10.2135/cropsci2002.1943
10.1016/j.agrformet.2007.05.004
10.1109/IPDPS.2017.20
10.1126/science.1209290
10.1002/cpe.728
10.1007/s11432-016-5588-7
10.1016/j.agrformet.2008.11.004
10.1073/pnas.1222463110
10.1016/j.envsoft.2014.08.004
10.1029/92JD00509
10.1016/j.agsy.2007.07.009
10.1002/1099-1085(20000815/30)14:11/12<1993::AID-HYP50>3.0.CO;2-#
10.3354/cr011019
10.1002/2013MS000293
10.1093/aob/mcj033
10.1016/j.envsoft.2013.10.022
10.1109/JSTARS.2015.2403135
10.1016/j.agrformet.2008.04.002
10.2134/agronj2008.0029xs
10.1016/j.agsy.2010.08.007
10.1016/j.envsoft.2014.12.003
10.1007/s11027-007-9103-8
10.5194/hess-13-2299-2009
10.1175/MWR2906.1
10.1016/j.envsoft.2014.04.008
10.1061/(ASCE)1084-0699(1999)4:4(297)
10.1111/gcb.12768
10.1016/j.advwatres.2010.02.010
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Nov 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 2018
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2018.07.027
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
EndPage 410
ExternalDocumentID 10_1016_j_compag_2018_07_027
S0168169918304204
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c367t-4f00bb22fcd7bd224583eb6b74c35719c752d00b6f3a4202621bb26600136cd63
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449246200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1699
IngestDate Sun Sep 28 01:29:19 EDT 2025
Sun Nov 09 07:01:25 EST 2025
Sat Nov 29 03:16:24 EST 2025
Tue Nov 18 22:16:23 EST 2025
Fri Feb 23 02:17:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Supercomputer
Accuracy
Drought
Risk analysis
Dynamic prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-4f00bb22fcd7bd224583eb6b74c35719c752d00b6f3a4202621bb26600136cd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2024-9191
PQID 2131832166
PQPubID 2045491
PageCount 11
ParticipantIDs proquest_miscellaneous_2131865823
proquest_journals_2131832166
crossref_citationtrail_10_1016_j_compag_2018_07_027
crossref_primary_10_1016_j_compag_2018_07_027
elsevier_sciencedirect_doi_10_1016_j_compag_2018_07_027
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Ewert, Rötter, Bindi, Webber, Trnka, Kersebaum, Olesen, van Ittersum, Janssen, Rivington (b0065) 2015; 72
Dumont, Leemans, Mansouri, Bodson, Destain, Destain (b0055) 2014; 52
Gaupp, Pflug, Hochrainer Stigler, Hall, Dadson (b0095) 2017; 37
Martre, Wallach, Asseng, Ewert, Jones, Rötter, Boote, Ruane, Thorburn, Cammarano (b0185) 2015; 21
Kroes, J.G., Van Dam, J.C., Groenendijk, P., Hendriks, R., Jacobs, C., 2009. SWAP version 3.2. Theory description and user manual. Alterra.
Oleson, K.W., Lawrence, D.M., Gordon, B., Flanner, M.G., Kluzek, E., Peter, J., Levis, S., Swenson, S.C., Thornton, E., Feddema, J., 2010. Technical description of version 4.0 of the Community Land Model (CLM).
Lawrence, Oleson, Flanner, Thornton, Swenson, Lawrence, Zeng, Yang, Levis, Sakaguchi (b0165) 2011; 3
Rosenzweig, Elliott, Deryng, Ruane, Müller, Arneth, Boote, Folberth, Glotter, Khabarov (b0215) 2014; 111
Zhao, Bryan, King, Luo, Wang, Bende-Michl, Song, Yu (b0285) 2013; 41
Guo, Ma, Zhan, Li, Dingkuhn, Luquet, De Reffye (b0100) 2006; 97
Qiao, Zhao, Yin, Huang, Liu, Shu, Wang, Song, Li, Liu (b0205) 2016
Baigorria, Jones, O Brien (b0020) 2008; 148
Bonaccorso, Cancelliere, Rossi (b0035) 2003; 17
Yu, Huang, Chen, Huang, Ni, Wright, Hall, Ciais, Zhang, Xiao, Sun, Wang, Yu (b0275) 2018
Hansen, Challinor, Ines, Wheeler, Moron (b0105) 2006; 33
Rosenzweig, Tubiello (b0225) 2007; 12
Fang, J., Fu, H., Zhao, W., Chen, B., Zheng, W., Yang, G., 2017. swDNN: a library for accelerating deep learning applications on Sunway TaihuLight. In: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 615–624.
Box, Tiao (b0040) 2011
Huang, Huang, Yu, Ni, Yu (b0130) 2017; 211
Jakku, Thorburn (b0140) 2010; 103
Launay, Guerif (b0160) 2005; 111
Holzworth, Snow, Janssen, Athanasiadis, Donatelli, Hoogenboom, White, Thorburn (b0115) 2015; 72
De Wit, Van Diepen (b0045) 2007; 146
Van Ittersum, Ewert, Heckelei, Wery, Olsson, Andersen, Bezlepkina, Brouwer, Donatelli, Flichman (b0255) 2008; 96
Li, Li, Qian (b0170) 2017
Shangguan, Dai, Duan, Liu, Yuan (b0230) 2014; 6
Howden, Soussana, Tubiello, Chhetri, Dunlop, Meinke (b0120) 2007; 104
Raftery, Gneiting, Balabdaoui, Polakowski (b0210) 2005; 133
Zhao, Fu, Fang, Zheng, Gan, Yang (b0290) 2018; 15
Skakun, Kussul, Shelestov, Kussul (b0235) 2016; 7
Bloom (b0030) 2011; 333
Heng, Hsiao, Evett, Howell, Steduto (b0110) 2009; 101
Vital, Gaurut, Lardy, Viovy, Soussana, Bellocchi, Martin (b0265) 2013; 98
Dongarra, Luszczek, Petitet (b0050) 2003; 15
Fernández, Salas (b0075) 1999; 4
Fu, Liao, Yang, Wang, Song, Huang, Yang, Xue, Liu, Qiao (b0090) 2016; 59
Huang, Ma, Su, Zhang, Huang, Fan, Wu (b0125) 2015; 8
Rosenzweig, Jones, Hatfield, Ruane, Boote, Thorburn, Antle, Nelson, Porter, Janssen (b0220) 2013; 170
Báez-González, Chen, Tiscareño-López, Srinivasan (b0015) 2002; 42
Steduto, Hsiao, Raes, Fereres (b0245) 2009; 101
Adams, Hurd, Lenhart, Leary (b0005) 1998; 11
Nelsen (b0195) 1999
Jiang, Yang, Ao, Yin, Ma, Sun, Liu, Lin, Zhang (b0145) 2017
Kroes, Wesseling, Van Dam (b0155) 2000; 14
Li, Frolking, Frolking (b0175) 1992; 97
Bárdossy, Pegram (b0025) 2009; 13
Elliott, Kelly, Chryssanthacopoulos, Glotter, Jhunjhnuwala, Best, Wilde, Foster (b0060) 2014; 62
Fu, Liao, Ding, Duan, Gan, Liang, Wang, Yang, Zheng, Liu (b0085) 2017
Yu, Li, Xin, Chen, Zhang, Zhang, Li, Clinton, Huang, Yue (b0280) 2014; 62
Neale, R.B., Chen, C., Gettelman, A., Lauritzen, P.H., Park, S., Williamson, D.L., Conley, A.J., Garcia, R., Kinnison, D., Lamarque, J., 2010. Description of the NCAR community atmosphere model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+ STR.
Vrugt, Ter Braak, Diks, Robinson, Hyman, Higdon (b0270) 2009; 10
Vedenov, D., 2008. Application of copulas to estimation of joint crop yield distributions. In: American Agricultural Economics Association Annual Meeting, Orlando, FL, pp. 27–29.
Sklar (b0240) 1959; 8
Field (b0080) 2012
AghaKouchak, Bárdossy, Habib (b0010) 2010; 33
Lobell, Burke, Tebaldi, Mastrandrea, Falcon, Naylor (b0180) 2008; 319
Tao, Yokozawa, Zhang (b0250) 2009; 149
Iizumi, Yokozawa, Nishimori (b0135) 2009; 149
Qiao (10.1016/j.compag.2018.07.027_b0205) 2016
Zhao (10.1016/j.compag.2018.07.027_b0285) 2013; 41
Rosenzweig (10.1016/j.compag.2018.07.027_b0215) 2014; 111
Lawrence (10.1016/j.compag.2018.07.027_b0165) 2011; 3
Adams (10.1016/j.compag.2018.07.027_b0005) 1998; 11
Li (10.1016/j.compag.2018.07.027_b0175) 1992; 97
Vrugt (10.1016/j.compag.2018.07.027_b0270) 2009; 10
Ewert (10.1016/j.compag.2018.07.027_b0065) 2015; 72
Elliott (10.1016/j.compag.2018.07.027_b0060) 2014; 62
Nelsen (10.1016/j.compag.2018.07.027_b0195) 1999
Iizumi (10.1016/j.compag.2018.07.027_b0135) 2009; 149
Yu (10.1016/j.compag.2018.07.027_b0275) 2018
Li (10.1016/j.compag.2018.07.027_b0170) 2017
Vital (10.1016/j.compag.2018.07.027_b0265) 2013; 98
Baigorria (10.1016/j.compag.2018.07.027_b0020) 2008; 148
Dongarra (10.1016/j.compag.2018.07.027_b0050) 2003; 15
Launay (10.1016/j.compag.2018.07.027_b0160) 2005; 111
Bonaccorso (10.1016/j.compag.2018.07.027_b0035) 2003; 17
Jakku (10.1016/j.compag.2018.07.027_b0140) 2010; 103
10.1016/j.compag.2018.07.027_b0150
Yu (10.1016/j.compag.2018.07.027_b0280) 2014; 62
10.1016/j.compag.2018.07.027_b0190
10.1016/j.compag.2018.07.027_b0070
Rosenzweig (10.1016/j.compag.2018.07.027_b0220) 2013; 170
Hansen (10.1016/j.compag.2018.07.027_b0105) 2006; 33
Heng (10.1016/j.compag.2018.07.027_b0110) 2009; 101
AghaKouchak (10.1016/j.compag.2018.07.027_b0010) 2010; 33
Rosenzweig (10.1016/j.compag.2018.07.027_b0225) 2007; 12
Van Ittersum (10.1016/j.compag.2018.07.027_b0255) 2008; 96
Sklar (10.1016/j.compag.2018.07.027_b0240) 1959; 8
Zhao (10.1016/j.compag.2018.07.027_b0290) 2018; 15
Fu (10.1016/j.compag.2018.07.027_b0090) 2016; 59
Raftery (10.1016/j.compag.2018.07.027_b0210) 2005; 133
Holzworth (10.1016/j.compag.2018.07.027_b0115) 2015; 72
De Wit (10.1016/j.compag.2018.07.027_b0045) 2007; 146
Jiang (10.1016/j.compag.2018.07.027_b0145) 2017
10.1016/j.compag.2018.07.027_b0260
Dumont (10.1016/j.compag.2018.07.027_b0055) 2014; 52
Skakun (10.1016/j.compag.2018.07.027_b0235) 2016; 7
Steduto (10.1016/j.compag.2018.07.027_b0245) 2009; 101
Tao (10.1016/j.compag.2018.07.027_b0250) 2009; 149
Bloom (10.1016/j.compag.2018.07.027_b0030) 2011; 333
Shangguan (10.1016/j.compag.2018.07.027_b0230) 2014; 6
Martre (10.1016/j.compag.2018.07.027_b0185) 2015; 21
Kroes (10.1016/j.compag.2018.07.027_b0155) 2000; 14
Báez-González (10.1016/j.compag.2018.07.027_b0015) 2002; 42
Fernández (10.1016/j.compag.2018.07.027_b0075) 1999; 4
Bárdossy (10.1016/j.compag.2018.07.027_b0025) 2009; 13
Howden (10.1016/j.compag.2018.07.027_b0120) 2007; 104
Lobell (10.1016/j.compag.2018.07.027_b0180) 2008; 319
Huang (10.1016/j.compag.2018.07.027_b0125) 2015; 8
Field (10.1016/j.compag.2018.07.027_b0080) 2012
Gaupp (10.1016/j.compag.2018.07.027_b0095) 2017; 37
Guo (10.1016/j.compag.2018.07.027_b0100) 2006; 97
10.1016/j.compag.2018.07.027_b0200
Fu (10.1016/j.compag.2018.07.027_b0085) 2017
Box (10.1016/j.compag.2018.07.027_b0040) 2011
Huang (10.1016/j.compag.2018.07.027_b0130) 2017; 211
References_xml – volume: 97
  start-page: 217
  year: 2006
  end-page: 230
  ident: b0100
  article-title: Parameter optimization and field validation of the functional–structural model GREENLAB for maize
  publication-title: Ann. Bot.-Lond.
– volume: 8
  start-page: 229
  year: 1959
  end-page: 231
  ident: b0240
  article-title: Fonctions de repartition an dimensions et leurs marges
  publication-title: Publ. Inst. Statist. Univ. Paris
– volume: 98
  start-page: 131
  year: 2013
  end-page: 135
  ident: b0265
  article-title: High-performance computing for climate change impact studies with the Pasture Simulation model
  publication-title: Comput. Electron. Agric.
– reference: Kroes, J.G., Van Dam, J.C., Groenendijk, P., Hendriks, R., Jacobs, C., 2009. SWAP version 3.2. Theory description and user manual. Alterra.
– volume: 211
  start-page: 114
  year: 2017
  end-page: 124
  ident: b0130
  article-title: A multiple crop model ensemble for improving broad-scale yield prediction using Bayesian model averaging
  publication-title: Field Crops Res.
– volume: 148
  start-page: 1353
  year: 2008
  end-page: 1361
  ident: b0020
  article-title: Potential predictability of crop yield using an ensemble climate forecast by a regional circulation model
  publication-title: AGR Forest Meteorol.
– volume: 15
  start-page: 803
  year: 2003
  end-page: 820
  ident: b0050
  article-title: The LINPACK benchmark: past, present and future
  publication-title: Concurr. Comput. Pract. Exp.
– volume: 62
  start-page: 454
  year: 2014
  end-page: 464
  ident: b0280
  article-title: Dynamic assessment of the impact of drought on agricultural yield and scale-dependent return periods over large geographic regions
  publication-title: Environ. Modell. Softw.
– volume: 42
  start-page: 1943
  year: 2002
  end-page: 1949
  ident: b0015
  article-title: Using satellite and field data with crop growth modeling to monitor and estimate corn yield in Mexico
  publication-title: Crop Sci.
– volume: 13
  start-page: 2299
  year: 2009
  ident: b0025
  article-title: Copula based multisite model for daily precipitation simulation
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 103
  start-page: 675
  year: 2010
  end-page: 682
  ident: b0140
  article-title: A conceptual framework for guiding the participatory development of agricultural decision support systems
  publication-title: Agric. Syst.
– volume: 333
  start-page: 562
  year: 2011
  end-page: 569
  ident: b0030
  article-title: 7 billion and counting
  publication-title: Science
– volume: 133
  start-page: 1155
  year: 2005
  end-page: 1174
  ident: b0210
  article-title: Using Bayesian model averaging to calibrate forecast ensembles
  publication-title: Mon. Weather Rev.
– reference: Fang, J., Fu, H., Zhao, W., Chen, B., Zheng, W., Yang, G., 2017. swDNN: a library for accelerating deep learning applications on Sunway TaihuLight. In: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 615–624.
– volume: 15
  start-page: 1
  year: 2018
  end-page: 26
  ident: b0290
  article-title: Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer
  publication-title: ACM Trans. Archit. Code Optim.
– volume: 7
  start-page: 901
  year: 2016
  end-page: 917
  ident: b0235
  article-title: The use of satellite data for agriculture drought risk quantification in Ukraine
  publication-title: Geomat. Nat. Hazards Risk
– reference: Vedenov, D., 2008. Application of copulas to estimation of joint crop yield distributions. In: American Agricultural Economics Association Annual Meeting, Orlando, FL, pp. 27–29.
– volume: 3
  year: 2011
  ident: b0165
  article-title: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model
  publication-title: J. Adv. Model. Earth Syst.
– year: 2011
  ident: b0040
  article-title: Bayesian Inference in Statistical Analysis
– volume: 149
  start-page: 333
  year: 2009
  end-page: 348
  ident: b0135
  article-title: Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: application of a Bayesian approach
  publication-title: AGR Forest Meteorol.
– start-page: 1
  year: 2017
  ident: b0085
  article-title: Redesigning CAM-SE for peta-scale climate modeling performance and ultra-high resolution on Sunway TaihuLight
  publication-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
– volume: 111
  start-page: 321
  year: 2005
  end-page: 339
  ident: b0160
  article-title: Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications
  publication-title: Agric. Ecosyst. Environ.
– volume: 72
  start-page: 276
  year: 2015
  end-page: 286
  ident: b0115
  article-title: Agricultural production systems modelling and software: current status and future prospects
  publication-title: Environ. Modell. Softw.
– volume: 101
  start-page: 488
  year: 2009
  end-page: 498
  ident: b0110
  article-title: Validating the FAO AquaCrop model for irrigated and water deficient field maize
  publication-title: Agron. J.
– volume: 111
  start-page: 3268
  year: 2014
  end-page: 3273
  ident: b0215
  article-title: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison
  publication-title: Proc. Nat. Acad. Sci.
– start-page: 422
  year: 2017
  end-page: 431
  ident: b0145
  article-title: Towards highly efficient DGEMM on the emerging SW26010 many-core processor
  publication-title: 2017 46th International Conference on Parallel Processing (ICPP)
– volume: 33
  start-page: 27
  year: 2006
  end-page: 41
  ident: b0105
  article-title: Translating climate forecasts into agricultural terms: advances and challenges
  publication-title: Clim. Res.
– volume: 96
  start-page: 150
  year: 2008
  end-page: 165
  ident: b0255
  article-title: Integrated assessment of agricultural systems–a component-based framework for the European Union (SEAMLESS)
  publication-title: Agric. Syst.
– volume: 10
  start-page: 273
  year: 2009
  end-page: 290
  ident: b0270
  article-title: Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling
  publication-title: Int. J. Nonlin. Sci. Num.
– volume: 41
  start-page: 231
  year: 2013
  end-page: 238
  ident: b0285
  article-title: Large-scale, high-resolution agricultural systems modeling using a hybrid approach combining grid computing and parallel processing
  publication-title: Environ. Modell. Softw.
– volume: 146
  start-page: 38
  year: 2007
  end-page: 56
  ident: b0045
  article-title: Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts
  publication-title: AGR Forest Meteorol.
– volume: 8
  start-page: 4060
  year: 2015
  end-page: 4071
  ident: b0125
  article-title: Jointly assimilating MODIS LAI and ET products into the SWAP model for winter wheat yield estimation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 33
  start-page: 624
  year: 2010
  end-page: 634
  ident: b0010
  article-title: Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula
  publication-title: Adv. Water Resour.
– volume: 37
  start-page: 2212
  year: 2017
  end-page: 2228
  ident: b0095
  article-title: Dependency of crop production between global breadbaskets: a copula approach for the assessment of global and regional risk pools
  publication-title: Risk Anal.
– volume: 72
  start-page: 287
  year: 2015
  end-page: 303
  ident: b0065
  article-title: Crop modelling for integrated assessment of risk to food production from climate change
  publication-title: Environ. Modell. Softw.
– start-page: 119
  year: 2017
  end-page: 126
  ident: b0170
  article-title: PFSI. sw: A programming framework for sea ice model algorithms based on Sunway many-core processor
  publication-title: 2017 IEEE 28th International Conference on Application-specific Systems, Architectures and Processors (ASAP)
– volume: 59
  start-page: 72001
  year: 2016
  ident: b0090
  article-title: The Sunway TaihuLight supercomputer: system and applications
  publication-title: Sci. China Inform. Sci.
– reference: Neale, R.B., Chen, C., Gettelman, A., Lauritzen, P.H., Park, S., Williamson, D.L., Conley, A.J., Garcia, R., Kinnison, D., Lamarque, J., 2010. Description of the NCAR community atmosphere model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+ STR.
– volume: 97
  start-page: 9759
  year: 1992
  end-page: 9776
  ident: b0175
  article-title: A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity
  publication-title: J. Geophys. Res. Atmosp.
– volume: 101
  start-page: 426
  year: 2009
  end-page: 437
  ident: b0245
  article-title: AquaCrop—the FAO crop model to simulate yield response to water: I. Concepts and underlying principles
  publication-title: Agron. J.
– start-page: 46
  year: 2016
  end-page: 56
  ident: b0205
  article-title: A highly effective global surface wave numerical simulation with ultra-high resolution
  publication-title: SC16: International Conference for High Performance Computing, Networking, Storage and Analysis
– start-page: 1
  year: 1999
  end-page: 4
  ident: b0195
  article-title: Introduction. An Introduction to Copulas
– volume: 6
  start-page: 249
  year: 2014
  end-page: 263
  ident: b0230
  article-title: A global soil data set for earth system modeling
  publication-title: J. Adv. Model. Earth Syst.
– volume: 17
  start-page: 157
  year: 2003
  end-page: 174
  ident: b0035
  article-title: An analytical formulation of return period of drought severity
  publication-title: Stoch. Environ. Res. Risk A
– volume: 149
  start-page: 831
  year: 2009
  end-page: 850
  ident: b0250
  article-title: Modelling the impacts of weather and climate variability on crop productivity over a large area: a new process-based model development, optimization, and uncertainties analysis
  publication-title: AGR Forest Meteorol.
– reference: Oleson, K.W., Lawrence, D.M., Gordon, B., Flanner, M.G., Kluzek, E., Peter, J., Levis, S., Swenson, S.C., Thornton, E., Feddema, J., 2010. Technical description of version 4.0 of the Community Land Model (CLM).
– volume: 14
  start-page: 1993
  year: 2000
  end-page: 2002
  ident: b0155
  article-title: Integrated modelling of the soil–water–atmosphere–plant system using the model SWAP 2·0 an overview of theory and an application
  publication-title: Hydrol. Process.
– volume: 4
  start-page: 297
  year: 1999
  end-page: 307
  ident: b0075
  article-title: Return period and risk of hydrologic events. I: mathematical formulation
  publication-title: J. Hydrol. Eng.
– year: 2012
  ident: b0080
  article-title: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change
– volume: 170
  start-page: 166
  year: 2013
  end-page: 182
  ident: b0220
  article-title: The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies
  publication-title: AGR Forest Meteorol.
– volume: 12
  start-page: 855
  year: 2007
  end-page: 873
  ident: b0225
  article-title: Adaptation and mitigation strategies in agriculture: an analysis of potential synergies
  publication-title: Mitig. Adapt. Strat. Global
– volume: 104
  start-page: 19691
  year: 2007
  end-page: 19696
  ident: b0120
  article-title: Adapting agriculture to climate change
  publication-title: Proc. Nat. Acad. Sci.
– volume: 62
  start-page: 509
  year: 2014
  end-page: 516
  ident: b0060
  article-title: The parallel system for integrating impact models and sectors (pSIMS)
  publication-title: Environ. Modell. Softw.
– volume: 52
  start-page: 121
  year: 2014
  end-page: 135
  ident: b0055
  article-title: Parameter identification of the STICS crop model, using an accelerated formal MCMC approach
  publication-title: Environ. Modell. Softw.
– volume: 21
  start-page: 911
  year: 2015
  end-page: 925
  ident: b0185
  article-title: Multimodel ensembles of wheat growth: many models are better than one
  publication-title: Global Change Biol.
– year: 2018
  ident: b0275
  article-title: Assessing the Impacts of Extreme Agricultural Droughts in China Under Climate and Socioeconomic Changes
– volume: 11
  start-page: 19
  year: 1998
  end-page: 30
  ident: b0005
  article-title: Effects of global climate change on agriculture: an interpretative review
  publication-title: Clim. Res.
– volume: 319
  start-page: 607
  year: 2008
  end-page: 610
  ident: b0180
  article-title: Prioritizing climate change adaptation needs for food security in 2030
  publication-title: Science
– volume: 170
  start-page: 166
  year: 2013
  ident: 10.1016/j.compag.2018.07.027_b0220
  article-title: The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies
  publication-title: AGR Forest Meteorol.
  doi: 10.1016/j.agrformet.2012.09.011
– volume: 211
  start-page: 114
  year: 2017
  ident: 10.1016/j.compag.2018.07.027_b0130
  article-title: A multiple crop model ensemble for improving broad-scale yield prediction using Bayesian model averaging
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2017.06.011
– year: 2012
  ident: 10.1016/j.compag.2018.07.027_b0080
– volume: 37
  start-page: 2212
  issue: 11
  year: 2017
  ident: 10.1016/j.compag.2018.07.027_b0095
  article-title: Dependency of crop production between global breadbaskets: a copula approach for the assessment of global and regional risk pools
  publication-title: Risk Anal.
  doi: 10.1111/risa.12761
– volume: 10
  start-page: 273
  year: 2009
  ident: 10.1016/j.compag.2018.07.027_b0270
  article-title: Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling
  publication-title: Int. J. Nonlin. Sci. Num.
  doi: 10.1515/IJNSNS.2009.10.3.273
– volume: 41
  start-page: 231
  year: 2013
  ident: 10.1016/j.compag.2018.07.027_b0285
  article-title: Large-scale, high-resolution agricultural systems modeling using a hybrid approach combining grid computing and parallel processing
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2012.08.007
– volume: 149
  start-page: 333
  year: 2009
  ident: 10.1016/j.compag.2018.07.027_b0135
  article-title: Parameter estimation and uncertainty analysis of a large-scale crop model for paddy rice: application of a Bayesian approach
  publication-title: AGR Forest Meteorol.
  doi: 10.1016/j.agrformet.2008.08.015
– ident: 10.1016/j.compag.2018.07.027_b0200
– volume: 104
  start-page: 19691
  year: 2007
  ident: 10.1016/j.compag.2018.07.027_b0120
  article-title: Adapting agriculture to climate change
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.0701890104
– ident: 10.1016/j.compag.2018.07.027_b0190
– volume: 8
  start-page: 229
  year: 1959
  ident: 10.1016/j.compag.2018.07.027_b0240
  article-title: Fonctions de repartition an dimensions et leurs marges
  publication-title: Publ. Inst. Statist. Univ. Paris
– volume: 98
  start-page: 131
  year: 2013
  ident: 10.1016/j.compag.2018.07.027_b0265
  article-title: High-performance computing for climate change impact studies with the Pasture Simulation model
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2013.08.004
– volume: 319
  start-page: 607
  year: 2008
  ident: 10.1016/j.compag.2018.07.027_b0180
  article-title: Prioritizing climate change adaptation needs for food security in 2030
  publication-title: Science
  doi: 10.1126/science.1152339
– start-page: 1
  year: 1999
  ident: 10.1016/j.compag.2018.07.027_b0195
– volume: 7
  start-page: 901
  year: 2016
  ident: 10.1016/j.compag.2018.07.027_b0235
  article-title: The use of satellite data for agriculture drought risk quantification in Ukraine
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2015.1016555
– volume: 17
  start-page: 157
  year: 2003
  ident: 10.1016/j.compag.2018.07.027_b0035
  article-title: An analytical formulation of return period of drought severity
  publication-title: Stoch. Environ. Res. Risk A
  doi: 10.1007/s00477-003-0127-7
– volume: 111
  start-page: 321
  year: 2005
  ident: 10.1016/j.compag.2018.07.027_b0160
  article-title: Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2005.06.005
– volume: 101
  start-page: 426
  year: 2009
  ident: 10.1016/j.compag.2018.07.027_b0245
  article-title: AquaCrop—the FAO crop model to simulate yield response to water: I. Concepts and underlying principles
  publication-title: Agron. J.
  doi: 10.2134/agronj2008.0139s
– volume: 72
  start-page: 276
  year: 2015
  ident: 10.1016/j.compag.2018.07.027_b0115
  article-title: Agricultural production systems modelling and software: current status and future prospects
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2014.12.013
– volume: 33
  start-page: 27
  year: 2006
  ident: 10.1016/j.compag.2018.07.027_b0105
  article-title: Translating climate forecasts into agricultural terms: advances and challenges
  publication-title: Clim. Res.
  doi: 10.3354/cr033027
– volume: 42
  start-page: 1943
  year: 2002
  ident: 10.1016/j.compag.2018.07.027_b0015
  article-title: Using satellite and field data with crop growth modeling to monitor and estimate corn yield in Mexico
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2002.1943
– volume: 146
  start-page: 38
  year: 2007
  ident: 10.1016/j.compag.2018.07.027_b0045
  article-title: Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts
  publication-title: AGR Forest Meteorol.
  doi: 10.1016/j.agrformet.2007.05.004
– ident: 10.1016/j.compag.2018.07.027_b0070
  doi: 10.1109/IPDPS.2017.20
– volume: 3
  year: 2011
  ident: 10.1016/j.compag.2018.07.027_b0165
  article-title: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model
  publication-title: J. Adv. Model. Earth Syst.
– volume: 333
  start-page: 562
  year: 2011
  ident: 10.1016/j.compag.2018.07.027_b0030
  article-title: 7 billion and counting
  publication-title: Science
  doi: 10.1126/science.1209290
– volume: 15
  start-page: 803
  year: 2003
  ident: 10.1016/j.compag.2018.07.027_b0050
  article-title: The LINPACK benchmark: past, present and future
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.728
– volume: 59
  start-page: 72001
  year: 2016
  ident: 10.1016/j.compag.2018.07.027_b0090
  article-title: The Sunway TaihuLight supercomputer: system and applications
  publication-title: Sci. China Inform. Sci.
  doi: 10.1007/s11432-016-5588-7
– volume: 149
  start-page: 831
  year: 2009
  ident: 10.1016/j.compag.2018.07.027_b0250
  article-title: Modelling the impacts of weather and climate variability on crop productivity over a large area: a new process-based model development, optimization, and uncertainties analysis
  publication-title: AGR Forest Meteorol.
  doi: 10.1016/j.agrformet.2008.11.004
– volume: 111
  start-page: 3268
  year: 2014
  ident: 10.1016/j.compag.2018.07.027_b0215
  article-title: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.1222463110
– volume: 62
  start-page: 454
  year: 2014
  ident: 10.1016/j.compag.2018.07.027_b0280
  article-title: Dynamic assessment of the impact of drought on agricultural yield and scale-dependent return periods over large geographic regions
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2014.08.004
– year: 2011
  ident: 10.1016/j.compag.2018.07.027_b0040
– volume: 97
  start-page: 9759
  year: 1992
  ident: 10.1016/j.compag.2018.07.027_b0175
  article-title: A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity
  publication-title: J. Geophys. Res. Atmosp.
  doi: 10.1029/92JD00509
– volume: 96
  start-page: 150
  year: 2008
  ident: 10.1016/j.compag.2018.07.027_b0255
  article-title: Integrated assessment of agricultural systems–a component-based framework for the European Union (SEAMLESS)
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2007.07.009
– volume: 14
  start-page: 1993
  year: 2000
  ident: 10.1016/j.compag.2018.07.027_b0155
  article-title: Integrated modelling of the soil–water–atmosphere–plant system using the model SWAP 2·0 an overview of theory and an application
  publication-title: Hydrol. Process.
  doi: 10.1002/1099-1085(20000815/30)14:11/12<1993::AID-HYP50>3.0.CO;2-#
– volume: 11
  start-page: 19
  year: 1998
  ident: 10.1016/j.compag.2018.07.027_b0005
  article-title: Effects of global climate change on agriculture: an interpretative review
  publication-title: Clim. Res.
  doi: 10.3354/cr011019
– ident: 10.1016/j.compag.2018.07.027_b0150
– volume: 6
  start-page: 249
  year: 2014
  ident: 10.1016/j.compag.2018.07.027_b0230
  article-title: A global soil data set for earth system modeling
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1002/2013MS000293
– start-page: 1
  year: 2017
  ident: 10.1016/j.compag.2018.07.027_b0085
  article-title: Redesigning CAM-SE for peta-scale climate modeling performance and ultra-high resolution on Sunway TaihuLight
– volume: 97
  start-page: 217
  year: 2006
  ident: 10.1016/j.compag.2018.07.027_b0100
  article-title: Parameter optimization and field validation of the functional–structural model GREENLAB for maize
  publication-title: Ann. Bot.-Lond.
  doi: 10.1093/aob/mcj033
– volume: 52
  start-page: 121
  year: 2014
  ident: 10.1016/j.compag.2018.07.027_b0055
  article-title: Parameter identification of the STICS crop model, using an accelerated formal MCMC approach
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2013.10.022
– volume: 8
  start-page: 4060
  issue: 8
  year: 2015
  ident: 10.1016/j.compag.2018.07.027_b0125
  article-title: Jointly assimilating MODIS LAI and ET products into the SWAP model for winter wheat yield estimation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2403135
– volume: 148
  start-page: 1353
  year: 2008
  ident: 10.1016/j.compag.2018.07.027_b0020
  article-title: Potential predictability of crop yield using an ensemble climate forecast by a regional circulation model
  publication-title: AGR Forest Meteorol.
  doi: 10.1016/j.agrformet.2008.04.002
– start-page: 422
  year: 2017
  ident: 10.1016/j.compag.2018.07.027_b0145
  article-title: Towards highly efficient DGEMM on the emerging SW26010 many-core processor
– volume: 101
  start-page: 488
  year: 2009
  ident: 10.1016/j.compag.2018.07.027_b0110
  article-title: Validating the FAO AquaCrop model for irrigated and water deficient field maize
  publication-title: Agron. J.
  doi: 10.2134/agronj2008.0029xs
– volume: 103
  start-page: 675
  year: 2010
  ident: 10.1016/j.compag.2018.07.027_b0140
  article-title: A conceptual framework for guiding the participatory development of agricultural decision support systems
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2010.08.007
– volume: 15
  start-page: 1
  year: 2018
  ident: 10.1016/j.compag.2018.07.027_b0290
  article-title: Optimizing Convolutional Neural Networks on the Sunway TaihuLight Supercomputer
  publication-title: ACM Trans. Archit. Code Optim.
– volume: 72
  start-page: 287
  year: 2015
  ident: 10.1016/j.compag.2018.07.027_b0065
  article-title: Crop modelling for integrated assessment of risk to food production from climate change
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2014.12.003
– start-page: 46
  year: 2016
  ident: 10.1016/j.compag.2018.07.027_b0205
  article-title: A highly effective global surface wave numerical simulation with ultra-high resolution
– volume: 12
  start-page: 855
  year: 2007
  ident: 10.1016/j.compag.2018.07.027_b0225
  article-title: Adaptation and mitigation strategies in agriculture: an analysis of potential synergies
  publication-title: Mitig. Adapt. Strat. Global
  doi: 10.1007/s11027-007-9103-8
– volume: 13
  start-page: 2299
  year: 2009
  ident: 10.1016/j.compag.2018.07.027_b0025
  article-title: Copula based multisite model for daily precipitation simulation
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-13-2299-2009
– volume: 133
  start-page: 1155
  year: 2005
  ident: 10.1016/j.compag.2018.07.027_b0210
  article-title: Using Bayesian model averaging to calibrate forecast ensembles
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR2906.1
– volume: 62
  start-page: 509
  year: 2014
  ident: 10.1016/j.compag.2018.07.027_b0060
  article-title: The parallel system for integrating impact models and sectors (pSIMS)
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2014.04.008
– volume: 4
  start-page: 297
  year: 1999
  ident: 10.1016/j.compag.2018.07.027_b0075
  article-title: Return period and risk of hydrologic events. I: mathematical formulation
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(1999)4:4(297)
– volume: 21
  start-page: 911
  year: 2015
  ident: 10.1016/j.compag.2018.07.027_b0185
  article-title: Multimodel ensembles of wheat growth: many models are better than one
  publication-title: Global Change Biol.
  doi: 10.1111/gcb.12768
– start-page: 119
  year: 2017
  ident: 10.1016/j.compag.2018.07.027_b0170
  article-title: PFSI. sw: A programming framework for sea ice model algorithms based on Sunway many-core processor
– year: 2018
  ident: 10.1016/j.compag.2018.07.027_b0275
– volume: 33
  start-page: 624
  year: 2010
  ident: 10.1016/j.compag.2018.07.027_b0010
  article-title: Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2010.02.010
– ident: 10.1016/j.compag.2018.07.027_b0260
SSID ssj0016987
Score 2.2638257
Snippet •Further acceleration of crop models and high-performance computing for large-scale crop modeling.•Combination of Bayesian inference and Bayesian model average...
Crop models are widely used to evaluate the response of crop growth to drought. However, over large geographic regions, the most advanced models are often...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 400
SubjectTerms Accuracy
Agricultural management
Agricultural production
Atmospheric models
Bayesian analysis
Bayesian theory
China
Computer simulation
computers
corn
Crop growth
crop models
crop yield
denitrification
Drought
Dynamic prediction
Impact prediction
Optimization
Parallel processing
Parameters
prediction
Real time
Risk analysis
Soil water
Statistical inference
Supercomputer
Supercomputers
uncertainty
Uncertainty analysis
Zea mays
Title A dynamic agricultural prediction system for large-scale drought assessment on the Sunway TaihuLight supercomputer
URI https://dx.doi.org/10.1016/j.compag.2018.07.027
https://www.proquest.com/docview/2131832166
https://www.proquest.com/docview/2131865823
Volume 154
WOSCitedRecordID wos000449246200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgc4IJ5iYUFGQlwirxInsdNjhbo8VBUOXSk3y3HSpasqzabNsr-G38r4kcdSoV0OXKLKmSSW5-t4bM_Mh9D7jOnsAMYIlzEj4BFLktAoJExFcVCwPMqkYS2Z8fk8SdPx99HoV5sLc7XmZZlcX4-r_6pqaANl69TZf1B391JogN-gdLiC2uF6J8VPvNyyzHvyvO4ra1S1PpIx2rbVm02A4VoHgpMtKKrwcsPYo5ln2mKd7iQBrEv5U6eLyNWPZqZX8962qYpaOUaIoYPbskTY0s89yY4Ju-07NICT27BOV3LTmaDGRQJsLtuZ1dSLdNHDK1k3q70XfGo2bbPbxQgSl8432Nhk0MYsWVJnmePIq07AypDIxb5aKxv5_mDCdvf25gK7LXFxYoL5z3UUX2LqtNpaBDdLb8-_idOz2UwspuniQ3VJNCuZPr13FC330CHl8RgM_-HkyzT92p1TsXFiE_Jd79vkTBNBuP_hvzk_f7gBxrdZPEaP3KIETyyYnqBRUT5FDye9tp6heoIdrPAQVriHFbawwgArPIAVdrDCPawwCAOssIUV7mGFb8DqOTo7nS4-fiaOr4OokPEdiZa-n2WULlXOsxx8wzgJi4xlPFJhzIOx4jHNQYQtQxlRWPzTAMQZM3UDVc7CF-ig3JTFS4TBLc4lXfIwixQ49EHi80Lp1XUhQ5ol7AiF7UAK5YrZa06VtWijFi-EHX6hh1_4XMDwHyHSPVXZYi63yPNWR8I5pNbRFICxW548blUqnG3YChqYCTRg0P133W0w5_qMTpbFpnEysCqg4as7yLxGD_o_0zE62NVN8QbdV1e71bZ-68D6G9qmxyM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+agricultural+prediction+system+for+large-scale+drought+assessment+on+the+Sunway+TaihuLight+supercomputer&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Huang%2C+Xiao&rft.au=Yu%2C+Chaoqing&rft.au=Fang%2C+Jiarui&rft.au=Huang%2C+Guorui&rft.date=2018-11-01&rft.issn=0168-1699&rft.volume=154+p.400-410&rft.spage=400&rft.epage=410&rft_id=info:doi/10.1016%2Fj.compag.2018.07.027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon