Im2mesh: A Python Library to Reconstruct 3D Meshes from Scattered Data and 2D Segmentations, Application to Patient-Specific Neuroblastoma Tumour Image Sequences

The future of personalised medicine lies in the development of increasingly sophisticated digital twins, where the patient-specific data is fed into predictive computational models that support the decisions of clinicians on the best therapies or course actions to treat the patient’s afflictions. Th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 12; číslo 22; s. 11557
Hlavní autori: Sainz-DeMena, Diego, García-Aznar, José Manuel, Pérez, María Ángeles, Borau, Carlos
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.11.2022
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The future of personalised medicine lies in the development of increasingly sophisticated digital twins, where the patient-specific data is fed into predictive computational models that support the decisions of clinicians on the best therapies or course actions to treat the patient’s afflictions. The development of these personalised models from image data requires a segmentation of the geometry of interest, an estimation of intermediate or missing slices, a reconstruction of the surface and generation of a volumetric mesh and the mapping of the relevant data into the reconstructed three-dimensional volume. There exist a wide number of tools, including both classical and artificial intelligence methodologies, that help to overcome the difficulties in each stage, usually relying on the combination of different software in a multistep process. In this work, we develop an all-in-one approach wrapped in a Python library called im2mesh that automatizes the whole workflow, which starts reading a clinical image and ends generating a 3D finite element mesh with the interpolated patient data. In this work, we apply this workflow to an example of a patient-specific neuroblastoma tumour. The main advantages of our tool are its straightforward use and its easy integration into broader pipelines.
AbstractList The future of personalised medicine lies in the development of increasingly sophisticated digital twins, where the patient-specific data is fed into predictive computational models that support the decisions of clinicians on the best therapies or course actions to treat the patient’s afflictions. The development of these personalised models from image data requires a segmentation of the geometry of interest, an estimation of intermediate or missing slices, a reconstruction of the surface and generation of a volumetric mesh and the mapping of the relevant data into the reconstructed three-dimensional volume. There exist a wide number of tools, including both classical and artificial intelligence methodologies, that help to overcome the difficulties in each stage, usually relying on the combination of different software in a multistep process. In this work, we develop an all-in-one approach wrapped in a Python library called im2mesh that automatizes the whole workflow, which starts reading a clinical image and ends generating a 3D finite element mesh with the interpolated patient data. In this work, we apply this workflow to an example of a patient-specific neuroblastoma tumour. The main advantages of our tool are its straightforward use and its easy integration into broader pipelines.
Author Sainz-DeMena, Diego
García-Aznar, José Manuel
Borau, Carlos
Pérez, María Ángeles
Author_xml – sequence: 1
  givenname: Diego
  orcidid: 0000-0001-7452-0437
  surname: Sainz-DeMena
  fullname: Sainz-DeMena, Diego
– sequence: 2
  givenname: José Manuel
  orcidid: 0000-0002-9864-7683
  surname: García-Aznar
  fullname: García-Aznar, José Manuel
– sequence: 3
  givenname: María Ángeles
  orcidid: 0000-0002-2901-4188
  surname: Pérez
  fullname: Pérez, María Ángeles
– sequence: 4
  givenname: Carlos
  orcidid: 0000-0002-3784-1140
  surname: Borau
  fullname: Borau, Carlos
BookMark eNptUctuFDEQtFCQCCE3PsAS1wz4uZ7htsryWGmBiA1nq-2xN17NjAfbc8jn8Kc4WZAihC_dbleVu7pforMpTg6h15S85bwj72CeKWOMUinVM3TOiFo1XFB19iR_gS5zPpJ6OspbSs7Rr-3IRpfv3uM1vrkvd3HCu2ASpHtcIv7ubJxySYstmG_wlwp0GfsUR7y3UIpLrscbKIBh6jHb4L07jG4qUELlXeH1PA_BPt4e5G5qVl-b_exs8MHir25J0QyQSxwB3y5jXBLejnBwVenn4ibr8iv03MOQ3eWfeIF-fPxwe_252X37tL1e7xrLV6o0wlgqoNrn0vqOCEmd9MZwQ3sGihovJPdEKMuFE54b74iyTHkgvWwVFfwCbU-6fYSjnlMY6xB0hKAfCzEdNKQS7OA0NZKbrgXT1j9bKVrKPO9W1BJuZNfbqvXmpDWnWG3koo_V2VTb10zxTjCqSFtR7ISyKeacnNc2nEZXEoRBU6IfNqufbraSrv4h_W31v_DfW8-m7g
CitedBy_id crossref_primary_10_1016_j_cmpb_2025_108931
crossref_primary_10_3390_jcm14020324
crossref_primary_10_3390_polym17070948
crossref_primary_10_1002_cnm_3760
crossref_primary_10_3390_cancers15071986
crossref_primary_10_1038_s41746_025_01890_x
crossref_primary_10_3389_fphys_2024_1421591
crossref_primary_10_1016_j_cmpb_2023_107742
crossref_primary_10_1007_s00366_024_01964_6
crossref_primary_10_1371_journal_pcbi_1012648
Cites_doi 10.1145/2487228.2487237
10.1016/B978-0-12-823299-6.00001-8
10.1049/ipr2.12419
10.1101/2021.03.03.433731
10.1186/s41747-021-00214-4
10.1007/s00276-012-0985-0
10.1088/1361-6560/aac040
10.1007/s00330-021-08431-6
10.1007/s10278-013-9622-7
10.1038/s41592-019-0686-2
10.1109/ISBI.2019.8759500
10.1109/TBME.2008.921158
10.1111/1467-8659.00334
10.1016/j.fertnstert.2018.05.006
10.1109/ISBI.2018.8363819
10.1109/AIPR52630.2021.9762167
10.1118/1.4898202
10.1016/j.ymeth.2020.02.010
10.1101/2022.09.26.509452
10.1593/tlo.13130
10.1145/258734.258849
10.1590/0100-3984.2019.0049
10.3389/fphys.2018.01246
10.1007/978-3-540-40899-4_19
10.2172/901967
10.1145/1278780.1278807
10.1111/ene.14294
10.1016/j.mri.2012.05.001
10.1016/j.nicl.2018.08.032
10.1002/nme.2579
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app122211557
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_1b53b98ab8c14854812f3961c03b59dc
10_3390_app122211557
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c367t-4bc14a21135cf90451e5fbb3b1d2a71bf453f047c34e4f3bfe07c27fa0d587143
IEDL.DBID DOA
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000887104700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:04:21 EDT 2025
Mon Jun 30 07:32:09 EDT 2025
Sat Nov 29 07:19:11 EST 2025
Tue Nov 18 20:56:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-4bc14a21135cf90451e5fbb3b1d2a71bf453f047c34e4f3bfe07c27fa0d587143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2901-4188
0000-0002-3784-1140
0000-0002-9864-7683
0000-0001-7452-0437
OpenAccessLink https://doaj.org/article/1b53b98ab8c14854812f3961c03b59dc
PQID 2739421708
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_1b53b98ab8c14854812f3961c03b59dc
proquest_journals_2739421708
crossref_citationtrail_10_3390_app122211557
crossref_primary_10_3390_app122211557
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ronneberger (ref_17) 2015; 9
Amorim (ref_35) 2012; 30
Clark (ref_40) 2013; 26
Khalifa (ref_33) 2014; 41
Grignon (ref_3) 2012; 34
ref_14
ref_36
ref_13
Albu (ref_18) 2008; 55
ref_31
Angeli (ref_10) 2018; 20
ref_19
Ladenstein (ref_21) 2020; 4
ref_39
Santos (ref_2) 2019; 52
ref_38
ref_15
Vollmer (ref_29) 1999; 18
ref_37
Atuegwu (ref_32) 2013; 6
Kazhdan (ref_27) 2013; 32
Hadjicharalambous (ref_6) 2020; 185
Geuzaine (ref_30) 2009; 79
Scapicchio (ref_22) 2021; 5
Goetz (ref_1) 2018; 109
Virtanen (ref_34) 2020; 17
Bradski (ref_23) 2000; 25
ref_25
Jarrett (ref_11) 2018; 63
Wang (ref_16) 2020; 16
Schenk (ref_24) 2000; 1935
Sturchio (ref_4) 2020; 27
ref_28
(ref_5) 2018; 9
Fedorov (ref_20) 2012; 30
ref_26
ref_9
ref_8
Gabelloni (ref_12) 2022; 32
ref_7
References_xml – volume: 32
  start-page: 1
  year: 2013
  ident: ref_27
  article-title: Screened poisson surface reconstruction
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2487228.2487237
– volume: 30
  start-page: 687
  year: 2012
  ident: ref_35
  article-title: InVesalius—An open-sourceimaging application
  publication-title: World J. Urol.
– ident: ref_13
  doi: 10.1016/B978-0-12-823299-6.00001-8
– volume: 16
  start-page: 1243
  year: 2020
  ident: ref_16
  article-title: Medical image segmentation using deep learning: A survey
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12419
– ident: ref_9
– ident: ref_8
  doi: 10.1101/2021.03.03.433731
– volume: 5
  start-page: 1
  year: 2021
  ident: ref_22
  article-title: DICOM-MIABIS integration model for biobanks: A use case of the EU PRIMAGE project
  publication-title: Eur. Radiol. Exp.
  doi: 10.1186/s41747-021-00214-4
– volume: 34
  start-page: 675
  year: 2012
  ident: ref_3
  article-title: Recent advances in medical imaging: Anatomical and clinical applications
  publication-title: Surg. Radiol. Anat.
  doi: 10.1007/s00276-012-0985-0
– volume: 63
  start-page: 105015
  year: 2018
  ident: ref_11
  article-title: Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: Theory and preliminary clinical results
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aac040
– volume: 32
  start-page: 3173
  year: 2022
  ident: ref_12
  article-title: Bridging gaps between images and data: A systematic update on imaging biobanks
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-021-08431-6
– volume: 4
  start-page: 1
  year: 2020
  ident: ref_21
  article-title: PRIMAGE project: Predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers
  publication-title: Eur. Radiol. Exp.
– ident: ref_39
– ident: ref_37
– volume: 26
  start-page: 1045
  year: 2013
  ident: ref_40
  article-title: The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 17
  start-page: 261
  year: 2020
  ident: ref_34
  article-title: SciPy 1.0 Contributors. SciPy 1.0 Fundamental Algorithms for Scientific Computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– ident: ref_15
  doi: 10.1109/ISBI.2019.8759500
– volume: 55
  start-page: 2022
  year: 2008
  ident: ref_18
  article-title: A Morphology-Based Approach for Interslice Interpolation of Anatomical Slices from Volumetric Images
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.921158
– volume: 18
  start-page: 131
  year: 1999
  ident: ref_29
  article-title: Improved Laplacian Smoothing of Noisy Surface Meshes
  publication-title: Comput. Graph. Forum
  doi: 10.1111/1467-8659.00334
– volume: 109
  start-page: 952
  year: 2018
  ident: ref_1
  article-title: Personalized medicine: Motivation, challenges, and progress
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2018.05.006
– ident: ref_25
– ident: ref_14
  doi: 10.1109/ISBI.2018.8363819
– volume: 25
  start-page: 120
  year: 2000
  ident: ref_23
  article-title: The OpenCV library
  publication-title: Dr. Dobb’s J.
– ident: ref_19
  doi: 10.1109/AIPR52630.2021.9762167
– volume: 41
  start-page: 124301
  year: 2014
  ident: ref_33
  article-title: Models and methods for analyzing DCE-MRI: A review
  publication-title: Med. Phys.
  doi: 10.1118/1.4898202
– volume: 185
  start-page: 82
  year: 2020
  ident: ref_6
  article-title: From tumour perfusion to drug delivery and clinical translation of in silico cancer models
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.02.010
– ident: ref_7
  doi: 10.1101/2022.09.26.509452
– volume: 6
  start-page: 256
  year: 2013
  ident: ref_32
  article-title: Parameterizing the Logistic Model of Tumor Growth by DW-MRI and DCE-MRI Data to Predict Treatment Response and Changes in Breast Cancer Cellularity during Neoadjuvant Chemotherapy
  publication-title: Transl. Oncol.
  doi: 10.1593/tlo.13130
– ident: ref_28
  doi: 10.1145/258734.258849
– volume: 52
  start-page: 387
  year: 2019
  ident: ref_2
  article-title: Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: Advances in imaging towards to precision medicine
  publication-title: Radiol. Bras.
  doi: 10.1590/0100-3984.2019.0049
– ident: ref_38
– ident: ref_36
– volume: 9
  start-page: 1246
  year: 2018
  ident: ref_5
  article-title: Integration of in vitro and in silico models using Bayesian optimization with an application to stochastic modeling of mesenchymal 3D cell migration
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.01246
– volume: 1935
  start-page: 186
  year: 2000
  ident: ref_24
  article-title: Efficient semiautomatic segmentation of 3D objects in medical images
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-40899-4_19
– ident: ref_31
  doi: 10.2172/901967
– ident: ref_26
  doi: 10.1145/1278780.1278807
– volume: 27
  start-page: 1461
  year: 2020
  ident: ref_4
  article-title: How have advances in genetic technology modified movement disorder nosology?
  publication-title: Eur. J. Neurol.
  doi: 10.1111/ene.14294
– volume: 30
  start-page: 1323
  year: 2012
  ident: ref_20
  article-title: 3D Slicer as an image computing platform for the Quantitative Imaging Network
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.05.001
– volume: 9
  start-page: 16591
  year: 2015
  ident: ref_17
  article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
  publication-title: IEEE Access
– volume: 20
  start-page: 664
  year: 2018
  ident: ref_10
  article-title: Towards patient-specific modeling of brain tumor growth and formation of secondary nodes guided by DTI-MRI
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2018.08.032
– volume: 79
  start-page: 1309
  year: 2009
  ident: ref_30
  article-title: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.2579
SSID ssj0000913810
Score 2.3266885
Snippet The future of personalised medicine lies in the development of increasingly sophisticated digital twins, where the patient-specific data is fed into predictive...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 11557
SubjectTerms Algorithms
Artificial intelligence
Cancer
Decision making
Decision support systems
Geometry
Growth models
Magnetic resonance imaging
medical image
Medical imaging
mesh generation
Neuroblastoma
patient-specific computational modelling
Precision medicine
python library
slice interpolation
Software
Tomography
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELeg44E9ABugFQa6B5BAEBHHduPwgjq6iUlQVXRIe4tsxx5IpClLQOLj8E25S92uEoIXXpOLE-fO98e--x1jT4xVekRZjbmTWSILpxPjizwxVgd0gH2am75Q-H0-nerz82IWN9zamFa51om9oq4aR3vkr9DMFhL951S_WX5LqGsUna7GFhrX2Q4hlckB2zk6ns4-bnZZCPVS83SV8S4wvqdzYY42ER0hskhbtqiH7P9DI_dm5uT2_37gHXYrOpgwXknEHrvmF_tsdwt2cJ_txQXdwrOIOv38Lvt1Wme1bz-_hjHMfhKiAMSaBugaoCg1Ys2CmMAHJMTHqTYF5q6H6PQVTExnwCwqyCYw9xd1LGtatC9hfHVOTsPNVmiuyXzp-5xA6DFCLHryXVMbOPte4zTgtEZlhyPFZO977NPJ8dnbd0ns35A4Mcq7RFrHpcFfLZQLBQHZeBWsFZZXmcm5DVKJkMrcCellEDagZLgsDyatlKa-7PfZYNEs_AGD3CmrhLK28pkMxUgjKQ8Vxzco5102ZC_WnCxdBDenHhtfSwxyiO_lNt-H7OmGerkC9fgL3REJxYaGoLj7C83lRRlXdsnxw2yhUbhxthoDQJ4FUYy4S4VVReWG7HAtL2XUD215JSwP_n37IbuZUcFFX_14yAbIaP-I3XA_ui_t5eMo7r8BLkULaw
  priority: 102
  providerName: ProQuest
Title Im2mesh: A Python Library to Reconstruct 3D Meshes from Scattered Data and 2D Segmentations, Application to Patient-Specific Neuroblastoma Tumour Image Sequences
URI https://www.proquest.com/docview/2739421708
https://doaj.org/article/1b53b98ab8c14854812f3961c03b59dc
Volume 12
WOSCitedRecordID wos000887104700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9UwFA8yfdAHcVPx6hznQUHRYpM0N41vd94NL7hLcRPmU0nSZA5s71ir4Mfxm3qSZrMg4ouPLSdJm3Ny_pBzfoeQZ9qIch6yGqUtWFYoW2baKZlpU3p0gF0udSwU_iDX6_L0VFWTVl8hJ2yEBx437g01ghtV4liLnjv615R5rubU5twI1digfdHrmQRTUQcrGqCrxkx3jnF9uA-maAvRAQqWaGKDIlT_H5o4mpfDe-Ru8gthMX7PNrnhuh1yZ4IWuEO20zns4UUCi355n_xctax1_Ze3sIDqRwACgFSKAMMGQnCZIGKBL-EICXF4KCmBYxuRNV0DSz1o0F0DbAnH7qxN1Uhd_xoWv6-3w3TVCMKaxab1_txChPYw6IAPm1bDybcWfwNWLeoonCnlaD8gnw4PTt69z1LbhczyuRyywuBOa9wpLqxXAX_GCW8MN7RhWlLjC8F9XkjLC1d4bjwy1DLpdd6IMrRTf0i2uk3nHhGQViD7hDGNY4VX8xJJqW8oriCss2xGXl0xorYJkzy0xvhaY2wS2FZP2TYjz6-pL0Ysjr_Q7QeeXtMEBO34AuWqTnJV_0uuZmT3SiLqdKz7Gn09VWAQl5eP_8caT8htFqopYmnjLtlCcXBPyS37fTjvL_fIzf2DdfVxL0o2PlWro-rzL6jJ_pc
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFLbGhsS4ADZAFAb4gkkgiEj8UydICHV006p1VUWLtLtgO_aGRJKyBNAehxfgGTlOnK4SgrtdcJucOHHy-fw453wHoWdS8bjvshqFZiRgiY4DaRIRSBVbcIBNKGRTKDwWk0l8cpJM19CvrhbGpVV2OrFR1Fmp3R75azCzCQP_OYzfLb4GrmuU-7vatdBoYXFkLn5AyFa9HQ3h--4ScrA_f38Y-K4CgaZ9UQdM6YhJiHso1zZx9CqGW6WoijIiRaQs49SGTGjKDLNUWXheTYSVYcZj1y0cxr2GNhhlAtbVxt7-ZPphuavjWDbjKGwz7ClNQvcfOgIbDI6Xs4Artq9pEfCHBWjM2sHt_-2F3EG3vAONBy3it9CaKbbRzRVaxW205RVWhZ97Vu0Xd9HPUU5yU529wQM8vXCMCdjXbOC6xC4K91y6mA7xMQjC5a72Bs90Q0FqMjyUtcSyyDAZ4pk5zX3ZVlG9woPLPAA33LRlqw1mC9PkPOKGA0VBpFKXucTzbzlMA49yUOYwkk9mv4c-XsmLu4_Wi7IwDxAWmitOuVKZIcwm_RhEI5tFcAeujSY99LJDTqo9ebvrIfIlhSDO4SxdxVkP7S6lFy1pyV_k9hwIlzKOarw5UJ6fpl5zpRE8mEpiWLww2xgC3IhYmvQjHVLFk0z30E6Hz9Trvyq9BOfDf59-im4czo_H6Xg0OXqENokrLmkqPXfQOnx08xhd19_rz9X5E7_UMPp01WD-DXzZaEQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKixAcgBZQFwr4QCUQRE1sZ-MgIbQQVkRtV5G2SOUUbMdukUiyNAHUx-E1eDrGibNdCcGtB67JxHHiz_OTzHyD0BMhQz62WY2RYsRjseKe0HHkCckNOMDaj0RXKHwQzWb8-DjO1tCvoRbGplUOOrFT1EWt7DfyPTCzMQP_2ed7xqVFZMn09eKrZztI2T-tQzuNHiL7-vwHhG_NqzSBtd4lZPru6O17z3UY8BQdR63HpAqYgBiIhsrElmpFh0ZKKoOCiCiQhoXU-CxSlGlmqDQwd0UiI_wi5LZzOIx7BW2AS85gj21k6WH2cfmFxzJu8sDvs-0pjX37TzoAewxOmLWGK3awaxfwhzXoTNz01v_8cm6jm86xxpN-J2yiNV1toRsrdItbaNMpsgY_dWzbz-6gn2lJSt2cvsQTnJ1bJgXsajlwW2MbnTuOXUwTfAiCcLmtycFz1VGT6gInohVYVAUmCZ7rk9KVc1XNCzy5yA-ww2U9i603X-guFxJ33CgSIpi2LgU--lbCY-C0BCUPI7kk97vow6W8uHtovaorvY1wpEIZ0lDKQhNm4jEH0cAUAdwhVFqREXo-oChXjtTd9hb5kkNwZzGXr2JuhHaX0ouezOQvcm8sIJcyloK8O1CfneROo-UBTEzGHDY1PC2HwDcghsbjQPlUhnGhRmhnwGru9GKTXwD1_r9PP0bXAMH5QTrbf4CuE1tz0hWA7qB1WHP9EF1V39vPzdkjt-sw-nTZWP4NDGFxNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Im2mesh%3A+A+Python+Library+to+Reconstruct+3D+Meshes+from+Scattered+Data+and+2D+Segmentations%2C+Application+to+Patient-Specific+Neuroblastoma+Tumour+Image+Sequences&rft.jtitle=Applied+sciences&rft.au=Diego+Sainz-DeMena&rft.au=Jos%C3%A9+Manuel+Garc%C3%ADa-Aznar&rft.au=Mar%C3%ADa+%C3%81ngeles+P%C3%A9rez&rft.au=Carlos+Borau&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=22&rft.spage=11557&rft_id=info:doi/10.3390%2Fapp122211557&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1b53b98ab8c14854812f3961c03b59dc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon