Im2mesh: A Python Library to Reconstruct 3D Meshes from Scattered Data and 2D Segmentations, Application to Patient-Specific Neuroblastoma Tumour Image Sequences
The future of personalised medicine lies in the development of increasingly sophisticated digital twins, where the patient-specific data is fed into predictive computational models that support the decisions of clinicians on the best therapies or course actions to treat the patient’s afflictions. Th...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 12; číslo 22; s. 11557 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.11.2022
|
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The future of personalised medicine lies in the development of increasingly sophisticated digital twins, where the patient-specific data is fed into predictive computational models that support the decisions of clinicians on the best therapies or course actions to treat the patient’s afflictions. The development of these personalised models from image data requires a segmentation of the geometry of interest, an estimation of intermediate or missing slices, a reconstruction of the surface and generation of a volumetric mesh and the mapping of the relevant data into the reconstructed three-dimensional volume. There exist a wide number of tools, including both classical and artificial intelligence methodologies, that help to overcome the difficulties in each stage, usually relying on the combination of different software in a multistep process. In this work, we develop an all-in-one approach wrapped in a Python library called im2mesh that automatizes the whole workflow, which starts reading a clinical image and ends generating a 3D finite element mesh with the interpolated patient data. In this work, we apply this workflow to an example of a patient-specific neuroblastoma tumour. The main advantages of our tool are its straightforward use and its easy integration into broader pipelines. |
|---|---|
| AbstractList | The future of personalised medicine lies in the development of increasingly sophisticated digital twins, where the patient-specific data is fed into predictive computational models that support the decisions of clinicians on the best therapies or course actions to treat the patient’s afflictions. The development of these personalised models from image data requires a segmentation of the geometry of interest, an estimation of intermediate or missing slices, a reconstruction of the surface and generation of a volumetric mesh and the mapping of the relevant data into the reconstructed three-dimensional volume. There exist a wide number of tools, including both classical and artificial intelligence methodologies, that help to overcome the difficulties in each stage, usually relying on the combination of different software in a multistep process. In this work, we develop an all-in-one approach wrapped in a Python library called im2mesh that automatizes the whole workflow, which starts reading a clinical image and ends generating a 3D finite element mesh with the interpolated patient data. In this work, we apply this workflow to an example of a patient-specific neuroblastoma tumour. The main advantages of our tool are its straightforward use and its easy integration into broader pipelines. |
| Author | Sainz-DeMena, Diego García-Aznar, José Manuel Borau, Carlos Pérez, María Ángeles |
| Author_xml | – sequence: 1 givenname: Diego orcidid: 0000-0001-7452-0437 surname: Sainz-DeMena fullname: Sainz-DeMena, Diego – sequence: 2 givenname: José Manuel orcidid: 0000-0002-9864-7683 surname: García-Aznar fullname: García-Aznar, José Manuel – sequence: 3 givenname: María Ángeles orcidid: 0000-0002-2901-4188 surname: Pérez fullname: Pérez, María Ángeles – sequence: 4 givenname: Carlos orcidid: 0000-0002-3784-1140 surname: Borau fullname: Borau, Carlos |
| BookMark | eNptUctuFDEQtFCQCCE3PsAS1wz4uZ7htsryWGmBiA1nq-2xN17NjAfbc8jn8Kc4WZAihC_dbleVu7pforMpTg6h15S85bwj72CeKWOMUinVM3TOiFo1XFB19iR_gS5zPpJ6OspbSs7Rr-3IRpfv3uM1vrkvd3HCu2ASpHtcIv7ubJxySYstmG_wlwp0GfsUR7y3UIpLrscbKIBh6jHb4L07jG4qUELlXeH1PA_BPt4e5G5qVl-b_exs8MHir25J0QyQSxwB3y5jXBLejnBwVenn4ibr8iv03MOQ3eWfeIF-fPxwe_252X37tL1e7xrLV6o0wlgqoNrn0vqOCEmd9MZwQ3sGihovJPdEKMuFE54b74iyTHkgvWwVFfwCbU-6fYSjnlMY6xB0hKAfCzEdNKQS7OA0NZKbrgXT1j9bKVrKPO9W1BJuZNfbqvXmpDWnWG3koo_V2VTb10zxTjCqSFtR7ISyKeacnNc2nEZXEoRBU6IfNqufbraSrv4h_W31v_DfW8-m7g |
| CitedBy_id | crossref_primary_10_1016_j_cmpb_2025_108931 crossref_primary_10_3390_jcm14020324 crossref_primary_10_3390_polym17070948 crossref_primary_10_1002_cnm_3760 crossref_primary_10_3390_cancers15071986 crossref_primary_10_1038_s41746_025_01890_x crossref_primary_10_3389_fphys_2024_1421591 crossref_primary_10_1016_j_cmpb_2023_107742 crossref_primary_10_1007_s00366_024_01964_6 crossref_primary_10_1371_journal_pcbi_1012648 |
| Cites_doi | 10.1145/2487228.2487237 10.1016/B978-0-12-823299-6.00001-8 10.1049/ipr2.12419 10.1101/2021.03.03.433731 10.1186/s41747-021-00214-4 10.1007/s00276-012-0985-0 10.1088/1361-6560/aac040 10.1007/s00330-021-08431-6 10.1007/s10278-013-9622-7 10.1038/s41592-019-0686-2 10.1109/ISBI.2019.8759500 10.1109/TBME.2008.921158 10.1111/1467-8659.00334 10.1016/j.fertnstert.2018.05.006 10.1109/ISBI.2018.8363819 10.1109/AIPR52630.2021.9762167 10.1118/1.4898202 10.1016/j.ymeth.2020.02.010 10.1101/2022.09.26.509452 10.1593/tlo.13130 10.1145/258734.258849 10.1590/0100-3984.2019.0049 10.3389/fphys.2018.01246 10.1007/978-3-540-40899-4_19 10.2172/901967 10.1145/1278780.1278807 10.1111/ene.14294 10.1016/j.mri.2012.05.001 10.1016/j.nicl.2018.08.032 10.1002/nme.2579 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app122211557 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_1b53b98ab8c14854812f3961c03b59dc 10_3390_app122211557 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c367t-4bc14a21135cf90451e5fbb3b1d2a71bf453f047c34e4f3bfe07c27fa0d587143 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000887104700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:04:21 EDT 2025 Mon Jun 30 07:32:09 EDT 2025 Sat Nov 29 07:19:11 EST 2025 Tue Nov 18 20:56:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-4bc14a21135cf90451e5fbb3b1d2a71bf453f047c34e4f3bfe07c27fa0d587143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2901-4188 0000-0002-3784-1140 0000-0002-9864-7683 0000-0001-7452-0437 |
| OpenAccessLink | https://www.proquest.com/docview/2739421708?pq-origsite=%requestingapplication% |
| PQID | 2739421708 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1b53b98ab8c14854812f3961c03b59dc proquest_journals_2739421708 crossref_citationtrail_10_3390_app122211557 crossref_primary_10_3390_app122211557 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Ronneberger (ref_17) 2015; 9 Amorim (ref_35) 2012; 30 Clark (ref_40) 2013; 26 Khalifa (ref_33) 2014; 41 Grignon (ref_3) 2012; 34 ref_14 ref_36 ref_13 Albu (ref_18) 2008; 55 ref_31 Angeli (ref_10) 2018; 20 ref_19 Ladenstein (ref_21) 2020; 4 ref_39 Santos (ref_2) 2019; 52 ref_38 ref_15 Vollmer (ref_29) 1999; 18 ref_37 Atuegwu (ref_32) 2013; 6 Kazhdan (ref_27) 2013; 32 Hadjicharalambous (ref_6) 2020; 185 Geuzaine (ref_30) 2009; 79 Scapicchio (ref_22) 2021; 5 Goetz (ref_1) 2018; 109 Virtanen (ref_34) 2020; 17 Bradski (ref_23) 2000; 25 ref_25 Jarrett (ref_11) 2018; 63 Wang (ref_16) 2020; 16 Schenk (ref_24) 2000; 1935 Sturchio (ref_4) 2020; 27 ref_28 (ref_5) 2018; 9 Fedorov (ref_20) 2012; 30 ref_26 ref_9 ref_8 Gabelloni (ref_12) 2022; 32 ref_7 |
| References_xml | – volume: 32 start-page: 1 year: 2013 ident: ref_27 article-title: Screened poisson surface reconstruction publication-title: ACM Trans. Graph. doi: 10.1145/2487228.2487237 – volume: 30 start-page: 687 year: 2012 ident: ref_35 article-title: InVesalius—An open-sourceimaging application publication-title: World J. Urol. – ident: ref_13 doi: 10.1016/B978-0-12-823299-6.00001-8 – volume: 16 start-page: 1243 year: 2020 ident: ref_16 article-title: Medical image segmentation using deep learning: A survey publication-title: IET Image Process. doi: 10.1049/ipr2.12419 – ident: ref_9 – ident: ref_8 doi: 10.1101/2021.03.03.433731 – volume: 5 start-page: 1 year: 2021 ident: ref_22 article-title: DICOM-MIABIS integration model for biobanks: A use case of the EU PRIMAGE project publication-title: Eur. Radiol. Exp. doi: 10.1186/s41747-021-00214-4 – volume: 34 start-page: 675 year: 2012 ident: ref_3 article-title: Recent advances in medical imaging: Anatomical and clinical applications publication-title: Surg. Radiol. Anat. doi: 10.1007/s00276-012-0985-0 – volume: 63 start-page: 105015 year: 2018 ident: ref_11 article-title: Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: Theory and preliminary clinical results publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aac040 – volume: 32 start-page: 3173 year: 2022 ident: ref_12 article-title: Bridging gaps between images and data: A systematic update on imaging biobanks publication-title: Eur. Radiol. doi: 10.1007/s00330-021-08431-6 – volume: 4 start-page: 1 year: 2020 ident: ref_21 article-title: PRIMAGE project: Predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers publication-title: Eur. Radiol. Exp. – ident: ref_39 – ident: ref_37 – volume: 26 start-page: 1045 year: 2013 ident: ref_40 article-title: The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository publication-title: J. Digit. Imaging doi: 10.1007/s10278-013-9622-7 – volume: 17 start-page: 261 year: 2020 ident: ref_34 article-title: SciPy 1.0 Contributors. SciPy 1.0 Fundamental Algorithms for Scientific Computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – ident: ref_15 doi: 10.1109/ISBI.2019.8759500 – volume: 55 start-page: 2022 year: 2008 ident: ref_18 article-title: A Morphology-Based Approach for Interslice Interpolation of Anatomical Slices from Volumetric Images publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.921158 – volume: 18 start-page: 131 year: 1999 ident: ref_29 article-title: Improved Laplacian Smoothing of Noisy Surface Meshes publication-title: Comput. Graph. Forum doi: 10.1111/1467-8659.00334 – volume: 109 start-page: 952 year: 2018 ident: ref_1 article-title: Personalized medicine: Motivation, challenges, and progress publication-title: Fertil. Steril. doi: 10.1016/j.fertnstert.2018.05.006 – ident: ref_25 – ident: ref_14 doi: 10.1109/ISBI.2018.8363819 – volume: 25 start-page: 120 year: 2000 ident: ref_23 article-title: The OpenCV library publication-title: Dr. Dobb’s J. – ident: ref_19 doi: 10.1109/AIPR52630.2021.9762167 – volume: 41 start-page: 124301 year: 2014 ident: ref_33 article-title: Models and methods for analyzing DCE-MRI: A review publication-title: Med. Phys. doi: 10.1118/1.4898202 – volume: 185 start-page: 82 year: 2020 ident: ref_6 article-title: From tumour perfusion to drug delivery and clinical translation of in silico cancer models publication-title: Methods doi: 10.1016/j.ymeth.2020.02.010 – ident: ref_7 doi: 10.1101/2022.09.26.509452 – volume: 6 start-page: 256 year: 2013 ident: ref_32 article-title: Parameterizing the Logistic Model of Tumor Growth by DW-MRI and DCE-MRI Data to Predict Treatment Response and Changes in Breast Cancer Cellularity during Neoadjuvant Chemotherapy publication-title: Transl. Oncol. doi: 10.1593/tlo.13130 – ident: ref_28 doi: 10.1145/258734.258849 – volume: 52 start-page: 387 year: 2019 ident: ref_2 article-title: Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: Advances in imaging towards to precision medicine publication-title: Radiol. Bras. doi: 10.1590/0100-3984.2019.0049 – ident: ref_38 – ident: ref_36 – volume: 9 start-page: 1246 year: 2018 ident: ref_5 article-title: Integration of in vitro and in silico models using Bayesian optimization with an application to stochastic modeling of mesenchymal 3D cell migration publication-title: Front. Physiol. doi: 10.3389/fphys.2018.01246 – volume: 1935 start-page: 186 year: 2000 ident: ref_24 article-title: Efficient semiautomatic segmentation of 3D objects in medical images publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-540-40899-4_19 – ident: ref_31 doi: 10.2172/901967 – ident: ref_26 doi: 10.1145/1278780.1278807 – volume: 27 start-page: 1461 year: 2020 ident: ref_4 article-title: How have advances in genetic technology modified movement disorder nosology? publication-title: Eur. J. Neurol. doi: 10.1111/ene.14294 – volume: 30 start-page: 1323 year: 2012 ident: ref_20 article-title: 3D Slicer as an image computing platform for the Quantitative Imaging Network publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2012.05.001 – volume: 9 start-page: 16591 year: 2015 ident: ref_17 article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation publication-title: IEEE Access – volume: 20 start-page: 664 year: 2018 ident: ref_10 article-title: Towards patient-specific modeling of brain tumor growth and formation of secondary nodes guided by DTI-MRI publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2018.08.032 – volume: 79 start-page: 1309 year: 2009 ident: ref_30 article-title: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.2579 |
| SSID | ssj0000913810 |
| Score | 2.3266885 |
| Snippet | The future of personalised medicine lies in the development of increasingly sophisticated digital twins, where the patient-specific data is fed into predictive... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 11557 |
| SubjectTerms | Algorithms Artificial intelligence Cancer Decision making Decision support systems Geometry Growth models Magnetic resonance imaging medical image Medical imaging mesh generation Neuroblastoma patient-specific computational modelling Precision medicine python library slice interpolation Software Tomography |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9VAEF6k9KAHsVXxaVvmUEHR4Ca7yWZ7e-2zWNDyoFV6C_uzFkyeNKngn9P_tLObbQ2IeOk1THaTndmZb9idbwjZpUznztsi41aLjOfUZ8pKzHkqJU0lCl1H3oJvn8XxcX12JpeTVl_hTthIDzwu3Idcl0zLWunaIHJHfJ0XnskqNzhLKa0J3hdRzySZij5Y5oG6arzpzjCvD-fBOcZCBEAhEk1iUKTq_8sTx_By-IQ8TrgQ5uP3bJAHrtskjyZsgZtkI-3DHt4ksui3T8n1UVu0rv--B3NY_g5EAJBKEWBYQUguE0UssAV8QUF8PZSUwImJzJrOwkINClRnoVjAiTtvUzVS17-H-Z_j7TDcciRhzWLTen9hIFJ7aATgw6pVcHrV4m_AUYs-CkdKd7Sfka-HH08PPmWp7UJmWCWGjGtcaYUrxUrjZeCfcaXXGpVqCyVy7XnJPOXCMO64Z9o7KkwhvKK2rEM79edkrVt17gUBRo22jlbOesUFNTU1XFcB01UOU-NqRt7dKqIxiZM8tMb40WBuEtTWTNU2I6_vpH-OXBz_kNsPOr2TCQza8QHaVZPsqvmfXc3I1q1FNGlb9w1iPckxiaP1y_uY4xV5WIRqiljauEXW0BzcNlk3v4aL_nInWvQN6IT6mg priority: 102 providerName: Directory of Open Access Journals |
| Title | Im2mesh: A Python Library to Reconstruct 3D Meshes from Scattered Data and 2D Segmentations, Application to Patient-Specific Neuroblastoma Tumour Image Sequences |
| URI | https://www.proquest.com/docview/2739421708 https://doaj.org/article/1b53b98ab8c14854812f3961c03b59dc |
| Volume | 12 |
| WOSCitedRecordID | wos000887104700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgywEOQAuIhVL5ABIIIpzYeXFBW7YVK9FVxBZUTpGfBYkkSxOQ-Dn8U2a83u1KCC4ckzhWnBnPyzPfEPKYcRVbZ5JIGJVHImYukqYEnyeTpc7yRBUet-Dju3w-L87OyioE3PqQVrmWiV5Qm05jjPwlqNlSgP3MitfLbxF2jcLT1dBC4yrZQaQyMSI7h0fz6v0myoKol0XMVhnvHPx7PBeOQSeCIYQaaUsXecj-PySyVzPHt_73A2-Tm8HApJMVR-ySK7bdIze2YAf3yG7Y0D19GlCnn90hv2ZN0tj-8ys6odVPRBSgoaaBDh1FLzVgzVI-pScwEF7H2hS60B6i0xo6lYOksjU0mdKFPW9CWVPbv6CTy3NynK5aoblGi6X1OYHUY4QosOSHrpH09HsDy6CzBoQdzBSSve-SD8dHp2_eRqF_Q6R5lg-RUDoWEn41T7UrEcjGpk4p4A6TyDxWTqTcMZFrLqxwXDnLcp3kTjKTFtiX_R4ZtV1r7xPKmVbGsswaJ0XOdMG0UBkah5kFHzsbk-drStY6gJtjj42vNTg5SPd6m-5j8mQzerkC9fjLuENkis0YhOL2N7qL8zrs7DpWKVdlIVUBqy3AAYwTx8ss1rAN0tLoMdlf80sd5ENfXzLLg38_fkiuJ1hw4asf98kICG0fkWv6x_ClvzgI7H7gIwlwVc1Oqk-_AfTyDWE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKiwQcgBYQCwV8oBIIIhzb-UNCaMu26qrb1Yrdot6CfwsS2SxNAPVxeAGekXHibFdCcOuBazKxYvvzjMee-Qahp4TJ0FhNA65lEvCQ2EDoDHyeWGQqTqhMG96CD6NkPE5PTrLJGvrV5cK4sMpOJzaKWpfKnZG_AjObcdg_k_Tt4mvgqka529WuhEYLi0Nz_gNcturNcADzu0Pp_t7s3UHgqwoEisVJHXCpQi7A72GRspmjVzGRlRL-WVORhNLyiFnCE8W44ZZJa0iiaGIF0VHqqoVDu1fQBmc8gXW1sbs3nrxfnuo4ls00JG2EPWMZcffQIdhg2Hg5C7hi-5oSAX9YgMas7d_63wbkNrrpN9C43yJ-E62Z-Ra6sUKruIU2vcKq8DPPqv38Dvo5LGhhqk-vcR9Pzh1jAvY5G7gusfPCPZcuZgN8BILwucu9wVPVUJAajQeiFljMNaYDPDWnhU_bmlcvcf8iDsA1N2nZaoPpwjQxj7jhQJHgqdRlIfDsWwHdwMMClDm05IPZ76LjSxm4e2h9Xs7NfYQZUVIbEhttBU-ISoniMnab39iwlMU99KJDTq48eburIfIlByfO4SxfxVkP7SylFy1pyV_kdh0IlzKOarx5UJ6d5l5z5aGMmMxSIVPobQoObkgty-JQwTKPMq16aLvDZ-71X5VfgPPBv18_QdcOZkejfDQcHz5E16lLLmkyPbfROky6eYSuqu_15-rssV9qGH28bDD_BjsGZ5M |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGhhA8ABsgCgP8wCQQRPMtNySECqEi2lZF6pjGU_B1IJG2LAW0n8Pf4NdxnLpdJQRve-A1cazY_nwu9jnfQegx4YpaZ1gkjEojQYmLpMnB50lkrpOUqazjLTjaT4fD7Pg4r9bQr0UujA-rXMjETlCbifZn5LugZnMB9jPJdl0Ii6iKwavp18hXkPI3rYtyGnOI7NmzH-C-tS_LAtZ6h7HB28M376JQYSDSPElnkVCaCgk-EI-1yz3Vio2dUvD_hsmUKidi7ohINRdWOK6cJalmqZPExJmvHA79XkIbYJIL2GMbVXlQfVie8HjGzYySebQ95znxd9IU9DEYYV4brujBrlzAH9qgU3GDG__z5NxE14NhjfvznbCJ1ux4C11boVvcQptBkLX4SWDbfnoL_Swb1tj20wvcx9WZZ1LAIZcDzybYe-eBYxfzAh9AQ_jc5-Tgke6oSa3BhZxJLMcGswKP7EkT0rnG7XPcP48P8N1VcxbbaDS1XSwk7rhRFHgws0kj8eG3BoaBywaEPPQUgtxvo_cXMnF30Pp4MrZ3EeZEK2NJYo2TIiU6I1qoxBvFieUZT3ro2QJFtQ6k7r62yJcanDuPuXoVcz20s2w9nZOZ_KXdaw_IZRtPQd49mJye1EGi1VTFXOWZVBmMNgPHlzLH84Rq2P5xbnQPbS-wWge52NbnQL3379eP0BVAcL1fDvfuo6vM55xQFrF8G63DmtsH6LL-Pvvcnj4Muw6jjxeN5d_OMXCQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Im2mesh%3A+A+Python+Library+to+Reconstruct+3D+Meshes+from+Scattered+Data+and+2D+Segmentations%2C+Application+to+Patient-Specific+Neuroblastoma+Tumour+Image+Sequences&rft.jtitle=Applied+sciences&rft.au=Sainz-DeMena%2C+Diego&rft.au=Garc%C3%ADa-Aznar%2C+Jos%C3%A9+Manuel&rft.au=Mar%C3%ADa+%C3%81ngeles+P%C3%A9rez&rft.au=Borau%2C+Carlos&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=22&rft.spage=11557&rft_id=info:doi/10.3390%2Fapp122211557&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |