A multi-objective optimization method based on an adaptive meta-model for classroom design with smart electrochromic windows
Electrochromic windows are one of the most promising technologies in smart windows. They offer flexible control of indoor thermal environments, lighting environments and energy. The classroom environment has an important impact on the health of primary and secondary school students, but a comfortabl...
Uloženo v:
| Vydáno v: | Energy (Oxford) Ročník 243; s. 122777 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
15.03.2022
Elsevier BV |
| Témata: | |
| ISSN: | 0360-5442, 1873-6785 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Electrochromic windows are one of the most promising technologies in smart windows. They offer flexible control of indoor thermal environments, lighting environments and energy. The classroom environment has an important impact on the health of primary and secondary school students, but a comfortable indoor environment often requires high energy consumption. This paper presents a multi-objective optimization method for the application of electrochromic window technology to the envelope design of primary and secondary school classrooms. Based on an envelope design method that considers the daylighting windows and viewing windows separately, the feasibility and effect of electrochromic window technology in the classroom are discussed through sensitivity analysis. Then, an adaptive meta-model method is used to improve the model's accuracy and stability. Finally, a multi-objective optimization algorithm is coupled with the optimized meta-model to generate the optimal design scheme set. The proposed multi-objective optimization method is applied to a typical classroom case in Nanjing. The results show that compared with the traditional design scheme, the indicators (TES, TDM and UDINo) of the optimized schemes are improved. Among them, TES decreased by 254 kWh at most, TDM decreased by 119.3 h at most, and UDINo increased by 65.4% at most.
•A multi-objective optimization method based on adaptive meta-model is presented.•Optimization considering daylighting, thermal comfort and energy saving.•The feasibility and effect of electrochromic window in classroom are discussed.•NSGA-II is applied to ANN model training and structure optimization.•The control strategy of electrochromic window in classroom is optimized. |
|---|---|
| AbstractList | Electrochromic windows are one of the most promising technologies in smart windows. They offer flexible control of indoor thermal environments, lighting environments and energy. The classroom environment has an important impact on the health of primary and secondary school students, but a comfortable indoor environment often requires high energy consumption. This paper presents a multi-objective optimization method for the application of electrochromic window technology to the envelope design of primary and secondary school classrooms. Based on an envelope design method that considers the daylighting windows and viewing windows separately, the feasibility and effect of electrochromic window technology in the classroom are discussed through sensitivity analysis. Then, an adaptive meta-model method is used to improve the model's accuracy and stability. Finally, a multi-objective optimization algorithm is coupled with the optimized meta-model to generate the optimal design scheme set. The proposed multi-objective optimization method is applied to a typical classroom case in Nanjing. The results show that compared with the traditional design scheme, the indicators (TES, TDM and UDINo) of the optimized schemes are improved. Among them, TES decreased by 254 kWh at most, TDM decreased by 119.3 h at most, and UDINo increased by 65.4% at most. Electrochromic windows are one of the most promising technologies in smart windows. They offer flexible control of indoor thermal environments, lighting environments and energy. The classroom environment has an important impact on the health of primary and secondary school students, but a comfortable indoor environment often requires high energy consumption. This paper presents a multi-objective optimization method for the application of electrochromic window technology to the envelope design of primary and secondary school classrooms. Based on an envelope design method that considers the daylighting windows and viewing windows separately, the feasibility and effect of electrochromic window technology in the classroom are discussed through sensitivity analysis. Then, an adaptive meta-model method is used to improve the model's accuracy and stability. Finally, a multi-objective optimization algorithm is coupled with the optimized meta-model to generate the optimal design scheme set. The proposed multi-objective optimization method is applied to a typical classroom case in Nanjing. The results show that compared with the traditional design scheme, the indicators (TES, TDM and UDINₒ) of the optimized schemes are improved. Among them, TES decreased by 254 kWh at most, TDM decreased by 119.3 h at most, and UDINₒ increased by 65.4% at most. Electrochromic windows are one of the most promising technologies in smart windows. They offer flexible control of indoor thermal environments, lighting environments and energy. The classroom environment has an important impact on the health of primary and secondary school students, but a comfortable indoor environment often requires high energy consumption. This paper presents a multi-objective optimization method for the application of electrochromic window technology to the envelope design of primary and secondary school classrooms. Based on an envelope design method that considers the daylighting windows and viewing windows separately, the feasibility and effect of electrochromic window technology in the classroom are discussed through sensitivity analysis. Then, an adaptive meta-model method is used to improve the model's accuracy and stability. Finally, a multi-objective optimization algorithm is coupled with the optimized meta-model to generate the optimal design scheme set. The proposed multi-objective optimization method is applied to a typical classroom case in Nanjing. The results show that compared with the traditional design scheme, the indicators (TES, TDM and UDINo) of the optimized schemes are improved. Among them, TES decreased by 254 kWh at most, TDM decreased by 119.3 h at most, and UDINo increased by 65.4% at most. •A multi-objective optimization method based on adaptive meta-model is presented.•Optimization considering daylighting, thermal comfort and energy saving.•The feasibility and effect of electrochromic window in classroom are discussed.•NSGA-II is applied to ANN model training and structure optimization.•The control strategy of electrochromic window in classroom is optimized. |
| ArticleNumber | 122777 |
| Author | Zhu, Faxing Xu, Yizhe Liu, Huifang Jiang, Yanlong Yan, Shanhui Yan, Chengchu Pan, Yan |
| Author_xml | – sequence: 1 givenname: Yizhe surname: Xu fullname: Xu, Yizhe organization: College of Urban Construction, Nanjing Tech University, No.200, North Zhongshan Road, Nanjing, 210009, China – sequence: 2 givenname: Chengchu surname: Yan fullname: Yan, Chengchu email: chengchu.yan@njtech.edu.cn organization: College of Urban Construction, Nanjing Tech University, No.200, North Zhongshan Road, Nanjing, 210009, China – sequence: 3 givenname: Shanhui surname: Yan fullname: Yan, Shanhui organization: Qinhuai Education Financial Assets Management Center, Nanjing, China – sequence: 4 givenname: Huifang surname: Liu fullname: Liu, Huifang organization: College of Urban Construction, Nanjing Tech University, No.200, North Zhongshan Road, Nanjing, 210009, China – sequence: 5 givenname: Yan orcidid: 0000-0002-6962-2997 surname: Pan fullname: Pan, Yan organization: Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong – sequence: 6 givenname: Faxing surname: Zhu fullname: Zhu, Faxing organization: Key Laboratory of Aircraft Environment Control and Life Support, MIIT, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China – sequence: 7 givenname: Yanlong surname: Jiang fullname: Jiang, Yanlong organization: Key Laboratory of Aircraft Environment Control and Life Support, MIIT, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, China |
| BookMark | eNqFkU1r3DAQhkXZQjcf_yAHQS-5eKsPW7JzCITQpIVAL-lZyNJ4V8aWNpI2IaU_vtq4pxxaEIhhnneYed8TtPLBA0IXlGwooeLLuAEPcfu6YYTRDWVMSvkBrWkreSVk26zQmnBBqqau2Sd0ktJICGnarluj3zd4PkzZVaEfwWT3DDjss5vdL51d8HiGvAsW9zqBxaXW5Vm9fwNLT1dzsDDhIURsJp1SDGHGFpLbevzi8g6nWceMYSrDYzC7GGZnSsfb8JLO0MdBTwnO__6n6Ofd18fbb9XDj_vvtzcPleFC5qpuBatpzTvKBLSGA5VdIxs7SAHAQTS8rUtlxTAwYUQtmel5z40ctGh6w_gpulzm7mN4OkDKanbJwDRpD-GQFBNcCCkpbwv6-R06hkP0Zbsj1RUbpeSFqhfKxFBuhkHtoyuHvipK1DESNaolEnWMRC2RFNnVO5lx-c3nHLWb_ie-XsRQnHp2EFUyDrwB62IxV9ng_j3gD_DRrcU |
| CitedBy_id | crossref_primary_10_1016_j_egyr_2025_08_042 crossref_primary_10_1016_j_energy_2024_130251 crossref_primary_10_1016_j_adapen_2025_100225 crossref_primary_10_1016_j_enbuild_2025_116126 crossref_primary_10_1016_j_enbuild_2024_115098 crossref_primary_10_3390_en15239196 crossref_primary_10_1002_2475_8876_12434 crossref_primary_10_1016_j_energy_2023_129298 crossref_primary_10_1016_j_jobe_2024_110322 crossref_primary_10_1016_j_buildenv_2025_113311 crossref_primary_10_1016_j_enbuild_2023_113468 crossref_primary_10_1016_j_optmat_2023_114455 crossref_primary_10_3390_buildings14092703 crossref_primary_10_1016_j_egyr_2022_12_073 crossref_primary_10_1002_advs_202406232 crossref_primary_10_3390_buildings15173114 crossref_primary_10_3390_su152215876 crossref_primary_10_1016_j_applthermaleng_2025_126229 crossref_primary_10_1016_j_enbuild_2023_113562 crossref_primary_10_1007_s10973_022_11815_5 crossref_primary_10_1016_j_buildenv_2024_112365 crossref_primary_10_3233_JIFS_232002 crossref_primary_10_3390_en16041579 crossref_primary_10_1016_j_enbuild_2024_114190 crossref_primary_10_1002_apj_2779 crossref_primary_10_1007_s12273_022_0944_6 crossref_primary_10_1080_17508975_2024_2407974 crossref_primary_10_1016_j_jobe_2023_106779 |
| Cites_doi | 10.1016/j.jfineco.2005.03.004 10.1016/j.tate.2016.08.005 10.1016/j.apenergy.2017.08.204 10.1016/j.enbuild.2020.109972 10.1016/j.energy.2019.116046 10.1016/j.rser.2012.12.014 10.1016/j.enconman.2019.01.005 10.1016/j.enbuild.2021.110839 10.1016/j.asej.2018.04.003 10.1016/j.buildenv.2020.107088 10.1016/j.buildenv.2015.02.023 10.1016/j.enbuild.2017.07.046 10.1016/j.enbuild.2017.01.048 10.1016/j.energy.2019.116723 10.1016/j.rser.2014.09.020 10.1007/s12273-012-0059-6 10.1016/j.enbuild.2016.03.035 10.1016/j.nanoen.2020.104720 10.1016/j.enbuild.2010.12.022 10.1016/j.enbuild.2012.10.057 10.1016/j.rser.2017.03.061 10.1109/4235.996017 10.1016/j.enbuild.2014.06.009 10.1016/j.fuel.2018.04.142 10.1016/j.enbuild.2016.04.027 10.1016/j.energy.2021.120331 10.1016/j.enbuild.2020.110398 10.1080/09613218.2019.1663137 10.1016/j.enbuild.2019.04.033 10.1016/j.solmat.2011.08.010 10.1016/j.apenergy.2020.115862 10.1016/j.apenergy.2019.114338 10.1016/j.actamat.2020.10.040 10.1016/j.scs.2020.102369 10.1016/j.mssp.2020.105176 10.1016/j.egyr.2020.06.008 10.1016/j.buildenv.2019.106543 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Mar 15, 2022 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Mar 15, 2022 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2021.122777 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | 10_1016_j_energy_2021_122777 S0360544221030267 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-486241439126e8c3e179575df76ee3e653845dfd6ff26c6472cb3b3c7fa65bc23 |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000791917100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 00:39:33 EDT 2025 Wed Aug 13 10:35:23 EDT 2025 Sat Nov 29 07:21:12 EST 2025 Tue Nov 18 22:39:08 EST 2025 Fri Feb 23 02:43:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Meta-model Envelope optimization Multi-objective Smart electrochromic window School classroom |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-486241439126e8c3e179575df76ee3e653845dfd6ff26c6472cb3b3c7fa65bc23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6962-2997 |
| PQID | 2639036773 |
| PQPubID | 2045484 |
| ParticipantIDs | proquest_miscellaneous_2636677138 proquest_journals_2639036773 crossref_primary_10_1016_j_energy_2021_122777 crossref_citationtrail_10_1016_j_energy_2021_122777 elsevier_sciencedirect_doi_10_1016_j_energy_2021_122777 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-15 |
| PublicationDateYYYYMMDD | 2022-03-15 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Doulos, Kontadakis, Madias, Sinou, Tsangrassoulis (bib7) 2019; 194 Zhang, Bokel, van den Dobbelsteen, Sun, Huang, Zhang (bib2) 2017; 139 Deb, Pratap, Agarwal, Meyarivan (bib33) 2002; 6 García Kerdan, Morillón Gálvez (bib28) 2020; 280 Consalvo, David (bib24) 2016; 60 Xu, Yan, Liu, Wang, Yang, Jiang (bib34) 2020; 62 Fernandes, Lee, Ward (bib6) 2013; 61 Navid, Khalilarya, Abbasi (bib25) 2018; 228 Tian (bib26) 2013; 20 Marszal, Heiselberg, Bourrelle, Musall, Voss, Sartori, Napolitano (bib17) 2011; 43 Yang, Chen, Lin, Ho, Lin (bib35) 2016; 122 Lee, Kang, Park, Kang, Jo, Sung, Ahn (bib4) 2020; 72 Hoon Lee, Jeong, Tae Chae (bib13) 2020; 260 Monsef, Naghashzadegan, Jamali, Farmani (bib43) 2019; 10 Asadi, Silva, Antunes, Dias, Glicksman (bib21) 2014; 81 Roman, Bre, Fachinotti, Lamberts (bib32) 2020; 217 Wang, Lu, Feng (bib16) 2020; 192 Queiroz, Westphal, Ruttkay Pereira (bib36) 2020; 183 Hamdy, Nguyen, Hensen (bib41) 2016; 121 Mallikarjuna, Shinde, Kim (bib11) 2020; 117 Dussault, Gosselin (bib5) 2017; 153 Isaia, Fiorentini, Serra, Capozzoli (bib40) 2021; 43 Wang (bib9) 2018 Boithias, El Mankibi, Michel (bib29) 2012; 5 Chen, Yang (bib19) 2017; 206 Alnaqi, Moayedi, Shahsavar, Nguyen (bib31) 2019; 183 Wang, Kuckelkorn, Zhao, Liu, Kirschbaum, Zhang (bib1) 2015; 89 Flannery, Rangan (bib27) 2006; 79 Jelle, Hynd, Gustavsen, Arasteh, Goudey, Hart (bib10) 2012; 96 Wong (bib23) 2017; 74 Camacho-Montano, Cook, Wagner (bib15) 2019; 48 Chen, Gao, Hu, Zeng, Liu (bib18) 2019; 188 Hee, Alghoul, Bakhtyar, Elayeb, Shameri, Alrubaih, Sopian (bib22) 2015; 42 Li, Jia, Han, Bai (bib30) 2021; 225 . The weather data file of Nanjing Xu, Dai, Yin, Sun, Xu, Yang, Wang, Zhang (bib14) 2020; 226 Hawila, Merabtine (bib20) 2021; 33 Acosta-Acosta, El-Rayes (bib8) 2020; 169 Cho, Min, Won, Kwon, Ko (bib12) 2020; 201 Bakmohammadi, Noorzai (bib3) 2020; 6 Chegari, Tabaa, Simeu, Moutaouakkil, Medromi (bib42) 2021; 239 (bib38) 2007 (bib39) 2011 Fernandes (10.1016/j.energy.2021.122777_bib6) 2013; 61 Doulos (10.1016/j.energy.2021.122777_bib7) 2019; 194 Hawila (10.1016/j.energy.2021.122777_bib20) 2021; 33 Consalvo (10.1016/j.energy.2021.122777_bib24) 2016; 60 Deb (10.1016/j.energy.2021.122777_bib33) 2002; 6 Wang (10.1016/j.energy.2021.122777_bib9) 2018 Xu (10.1016/j.energy.2021.122777_bib14) 2020; 226 Roman (10.1016/j.energy.2021.122777_bib32) 2020; 217 Zhang (10.1016/j.energy.2021.122777_bib2) 2017; 139 Boithias (10.1016/j.energy.2021.122777_bib29) 2012; 5 Monsef (10.1016/j.energy.2021.122777_bib43) 2019; 10 Xu (10.1016/j.energy.2021.122777_bib34) 2020; 62 Tian (10.1016/j.energy.2021.122777_bib26) 2013; 20 Lee (10.1016/j.energy.2021.122777_bib4) 2020; 72 Cho (10.1016/j.energy.2021.122777_bib12) 2020; 201 Hoon Lee (10.1016/j.energy.2021.122777_bib13) 2020; 260 Navid (10.1016/j.energy.2021.122777_bib25) 2018; 228 Chen (10.1016/j.energy.2021.122777_bib19) 2017; 206 Alnaqi (10.1016/j.energy.2021.122777_bib31) 2019; 183 Marszal (10.1016/j.energy.2021.122777_bib17) 2011; 43 Asadi (10.1016/j.energy.2021.122777_bib21) 2014; 81 Isaia (10.1016/j.energy.2021.122777_bib40) 2021; 43 Acosta-Acosta (10.1016/j.energy.2021.122777_bib8) 2020; 169 Bakmohammadi (10.1016/j.energy.2021.122777_bib3) 2020; 6 Mallikarjuna (10.1016/j.energy.2021.122777_bib11) 2020; 117 Li (10.1016/j.energy.2021.122777_bib30) 2021; 225 Hee (10.1016/j.energy.2021.122777_bib22) 2015; 42 Yang (10.1016/j.energy.2021.122777_bib35) 2016; 122 Hamdy (10.1016/j.energy.2021.122777_bib41) 2016; 121 Wang (10.1016/j.energy.2021.122777_bib16) 2020; 192 Camacho-Montano (10.1016/j.energy.2021.122777_bib15) 2019; 48 García Kerdan (10.1016/j.energy.2021.122777_bib28) 2020; 280 Chen (10.1016/j.energy.2021.122777_bib18) 2019; 188 10.1016/j.energy.2021.122777_bib37 Wong (10.1016/j.energy.2021.122777_bib23) 2017; 74 Wang (10.1016/j.energy.2021.122777_bib1) 2015; 89 Flannery (10.1016/j.energy.2021.122777_bib27) 2006; 79 (10.1016/j.energy.2021.122777_bib38) 2007 Jelle (10.1016/j.energy.2021.122777_bib10) 2012; 96 Queiroz (10.1016/j.energy.2021.122777_bib36) 2020; 183 Chegari (10.1016/j.energy.2021.122777_bib42) 2021; 239 (10.1016/j.energy.2021.122777_bib39) 2011 Dussault (10.1016/j.energy.2021.122777_bib5) 2017; 153 |
| References_xml | – volume: 48 start-page: 349 year: 2019 end-page: 363 ident: bib15 article-title: Avoiding overheating in existing school buildings through optimized passive measures publication-title: Build Res Inf – volume: 217 start-page: 109972 year: 2020 ident: bib32 article-title: Application and characterization of metamodels based on artificial neural networks for building performance simulation: a systematic review publication-title: Energy Build – volume: 79 start-page: 469 year: 2006 end-page: 506 ident: bib27 article-title: Partial adjustment toward target capital structures publication-title: J Financ Econ – volume: 121 start-page: 57 year: 2016 end-page: 71 ident: bib41 article-title: A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems publication-title: Energy Build – volume: 10 start-page: 103 year: 2019 end-page: 111 ident: bib43 article-title: Comparison of evolutionary multi objective optimization algorithms in optimum design of water distribution network publication-title: Ain Shams Eng J – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib33 article-title: A fast and elitist multiobjective genetic algorithm NSGA-II publication-title: IEEE Trans Evol Comput – volume: 89 start-page: 86 year: 2015 end-page: 106 ident: bib1 article-title: Evaluation on classroom thermal comfort and energy performance of passive school building by optimizing HVAC control systems publication-title: Build Environ – volume: 42 start-page: 323 year: 2015 end-page: 343 ident: bib22 article-title: The role of window glazing on daylighting and energy saving in buildings publication-title: Renew Sustain Energy Rev – volume: 20 start-page: 411 year: 2013 end-page: 419 ident: bib26 article-title: A review of sensitivity analysis methods in building energy analysis publication-title: Renew Sustain Energy Rev – volume: 226 start-page: 110398 year: 2020 ident: bib14 article-title: Research on the climate response of variable thermo-physical property building envelopes: a literature review publication-title: Energy Build – reference: The weather data file of Nanjing’, – year: 2007 ident: bib38 article-title: National best Practices manual for building high performance schools – volume: 117 start-page: 105176 year: 2020 ident: bib11 article-title: Electrochromic smart windows using 2D-MoS2 nanostructures protected silver nanowire based flexible transparent electrodes publication-title: Mater Sci Semicond Process – volume: 201 start-page: 528 year: 2020 end-page: 534 ident: bib12 article-title: Selective photo-thermal conversion of tungsten oxide sol precursor for electrochromic smart window applications publication-title: Acta Mater – volume: 280 start-page: 115862 year: 2020 ident: bib28 article-title: Artificial neural network structure optimisation for accurately prediction of exergy, comfort and life cycle cost performance of a low energy building publication-title: Appl Energy – volume: 122 start-page: 120 year: 2016 end-page: 130 ident: bib35 article-title: Multiobjective optimization using nondominated sorting genetic algorithm-II for allocation of energy conservation and renewable energy facilities in a campus publication-title: Energy Build – volume: 153 start-page: 50 year: 2017 end-page: 62 ident: bib5 article-title: Office buildings with electrochromic windows: a sensitivity analysis of design parameters on energy performance, and thermal and visual comfort publication-title: Energy Build – volume: 225 start-page: 120331 year: 2021 ident: bib30 article-title: Towards a comprehensive optimization of engine efficiency and emissions by coupling artificial neural network (ANN) with genetic algorithm (GA) publication-title: Energy – volume: 5 start-page: 95 year: 2012 end-page: 106 ident: bib29 article-title: Genetic algorithms based optimization of artificial neural network architecture for buildings' indoor discomfort and energy consumption prediction publication-title: Build Simul – volume: 62 start-page: 102369 year: 2020 ident: bib34 article-title: Smart energy systems: a critical review on design and operation optimization publication-title: Sustain Cities Soc – volume: 169 start-page: 106543 year: 2020 ident: bib8 article-title: Optimal design of classroom spaces in naturally-ventilated buildings to maximize occupant satisfaction with human bioeffluents/body odor levels publication-title: Build Environ – volume: 81 start-page: 444 year: 2014 end-page: 456 ident: bib21 article-title: Multi-objective optimization for building retrofit: a model using genetic algorithm and artificial neural network and an application publication-title: Energy Build – volume: 6 start-page: 1590 year: 2020 end-page: 1607 ident: bib3 article-title: Optimization of the design of the primary school classrooms in terms of energy and daylight performance considering occupants' thermal and visual comfort publication-title: Energy Rep – volume: 61 start-page: 8 year: 2013 end-page: 20 ident: bib6 article-title: Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort publication-title: Energy Build – volume: 33 start-page: 101661 year: 2021 ident: bib20 article-title: A statistical-based optimization method to integrate thermal comfort in the design of low energy consumption building publication-title: J Build Eng – volume: 183 start-page: 107088 year: 2020 ident: bib36 article-title: A performance-based design validation study on EnergyPlus for daylighting analysis publication-title: Build Environ – volume: 139 start-page: 371 year: 2017 end-page: 384 ident: bib2 article-title: Optimization of thermal and daylight performance of school buildings based on a multi-objective genetic algorithm in the cold climate of China publication-title: Energy Build – volume: 43 start-page: 971 year: 2011 end-page: 979 ident: bib17 article-title: Zero Energy Building – a review of definitions and calculation methodologies publication-title: Energy Build – year: 2011 ident: bib39 publication-title: National standards of the people's Republic of China – volume: 96 start-page: 1 year: 2012 end-page: 28 ident: bib10 article-title: Fenestration of today and tomorrow: a state-of-the-art review and future research opportunities publication-title: Sol Energy Mater Sol Cell – volume: 239 start-page: 110839 year: 2021 ident: bib42 article-title: Multi-objective optimization of building energy performance and indoor thermal comfort by combining artificial neural networks and metaheuristic algorithms publication-title: Energy Build – volume: 72 start-page: 104720 year: 2020 ident: bib4 article-title: Color-switchable electrochromic Co(OH)2/Ni(OH)2 nanofilms with ultrafast kinetics for multifunctional smart windows publication-title: Nanomater Energy – volume: 188 start-page: 116046 year: 2019 ident: bib18 article-title: A meta-model-based optimization approach for fast and reliable calibration of building energy models publication-title: Energy – volume: 228 start-page: 349 year: 2018 end-page: 367 ident: bib25 article-title: Diesel engine optimization with multi-objective performance characteristics by non-evolutionary Nelder-Mead algorithm: sobol sequence and Latin hypercube sampling methods comparison in DoE process publication-title: Fuel – reference: . – volume: 192 start-page: 116723 year: 2020 ident: bib16 article-title: A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost publication-title: Energy – volume: 74 start-page: 959 year: 2017 end-page: 968 ident: bib23 article-title: A review of daylighting design and implementation in buildings publication-title: Renew Sustain Energy Rev – volume: 194 start-page: 201 year: 2019 end-page: 217 ident: bib7 article-title: Minimizing energy consumption for artificial lighting in a typical classroom of a Hellenic public school aiming for near Zero Energy Building using LED DC luminaires and daylight harvesting systems publication-title: Energy Build – volume: 183 start-page: 137 year: 2019 end-page: 148 ident: bib31 article-title: Prediction of energetic performance of a building integrated photovoltaic/thermal system thorough artificial neural network and hybrid particle swarm optimization models publication-title: Energy Convers Manag – volume: 43 start-page: 102535 year: 2021 ident: bib40 article-title: Enhancing energy efficiency and comfort in buildings through model predictive control for dynamic façades with electrochromic glazing publication-title: J Build Eng – year: 2018 ident: bib9 article-title: Research on top datlighting design of classrooms in primary and secondary schools in Guangdong based on visual health – volume: 60 start-page: 54 year: 2016 end-page: 65 ident: bib24 article-title: Writing on the walls: supporting 21st century thinking in the material classroom publication-title: Teach Teach Educ – volume: 260 start-page: 114338 year: 2020 ident: bib13 article-title: Optimal control parameter for electrochromic glazing operation in commercial buildings under different climatic conditions publication-title: Appl Energy – volume: 206 start-page: 541 year: 2017 end-page: 557 ident: bib19 article-title: A multi-stage optimization of passively designed high-rise residential buildings in multiple building operation scenarios publication-title: Appl Energy – volume: 79 start-page: 469 issue: 3 year: 2006 ident: 10.1016/j.energy.2021.122777_bib27 article-title: Partial adjustment toward target capital structures publication-title: J Financ Econ doi: 10.1016/j.jfineco.2005.03.004 – volume: 60 start-page: 54 year: 2016 ident: 10.1016/j.energy.2021.122777_bib24 article-title: Writing on the walls: supporting 21st century thinking in the material classroom publication-title: Teach Teach Educ doi: 10.1016/j.tate.2016.08.005 – ident: 10.1016/j.energy.2021.122777_bib37 – volume: 206 start-page: 541 year: 2017 ident: 10.1016/j.energy.2021.122777_bib19 article-title: A multi-stage optimization of passively designed high-rise residential buildings in multiple building operation scenarios publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.08.204 – volume: 217 start-page: 109972 year: 2020 ident: 10.1016/j.energy.2021.122777_bib32 article-title: Application and characterization of metamodels based on artificial neural networks for building performance simulation: a systematic review publication-title: Energy Build doi: 10.1016/j.enbuild.2020.109972 – volume: 188 start-page: 116046 year: 2019 ident: 10.1016/j.energy.2021.122777_bib18 article-title: A meta-model-based optimization approach for fast and reliable calibration of building energy models publication-title: Energy doi: 10.1016/j.energy.2019.116046 – volume: 20 start-page: 411 year: 2013 ident: 10.1016/j.energy.2021.122777_bib26 article-title: A review of sensitivity analysis methods in building energy analysis publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2012.12.014 – volume: 183 start-page: 137 year: 2019 ident: 10.1016/j.energy.2021.122777_bib31 article-title: Prediction of energetic performance of a building integrated photovoltaic/thermal system thorough artificial neural network and hybrid particle swarm optimization models publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.01.005 – volume: 239 start-page: 110839 year: 2021 ident: 10.1016/j.energy.2021.122777_bib42 article-title: Multi-objective optimization of building energy performance and indoor thermal comfort by combining artificial neural networks and metaheuristic algorithms publication-title: Energy Build doi: 10.1016/j.enbuild.2021.110839 – volume: 43 start-page: 102535 year: 2021 ident: 10.1016/j.energy.2021.122777_bib40 article-title: Enhancing energy efficiency and comfort in buildings through model predictive control for dynamic façades with electrochromic glazing publication-title: J Build Eng – volume: 10 start-page: 103 issue: 1 year: 2019 ident: 10.1016/j.energy.2021.122777_bib43 article-title: Comparison of evolutionary multi objective optimization algorithms in optimum design of water distribution network publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2018.04.003 – volume: 183 start-page: 107088 year: 2020 ident: 10.1016/j.energy.2021.122777_bib36 article-title: A performance-based design validation study on EnergyPlus for daylighting analysis publication-title: Build Environ doi: 10.1016/j.buildenv.2020.107088 – volume: 89 start-page: 86 year: 2015 ident: 10.1016/j.energy.2021.122777_bib1 article-title: Evaluation on classroom thermal comfort and energy performance of passive school building by optimizing HVAC control systems publication-title: Build Environ doi: 10.1016/j.buildenv.2015.02.023 – volume: 153 start-page: 50 year: 2017 ident: 10.1016/j.energy.2021.122777_bib5 article-title: Office buildings with electrochromic windows: a sensitivity analysis of design parameters on energy performance, and thermal and visual comfort publication-title: Energy Build doi: 10.1016/j.enbuild.2017.07.046 – volume: 139 start-page: 371 year: 2017 ident: 10.1016/j.energy.2021.122777_bib2 article-title: Optimization of thermal and daylight performance of school buildings based on a multi-objective genetic algorithm in the cold climate of China publication-title: Energy Build doi: 10.1016/j.enbuild.2017.01.048 – volume: 33 start-page: 101661 year: 2021 ident: 10.1016/j.energy.2021.122777_bib20 article-title: A statistical-based optimization method to integrate thermal comfort in the design of low energy consumption building publication-title: J Build Eng – year: 2011 ident: 10.1016/j.energy.2021.122777_bib39 – year: 2007 ident: 10.1016/j.energy.2021.122777_bib38 – volume: 192 start-page: 116723 year: 2020 ident: 10.1016/j.energy.2021.122777_bib16 article-title: A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost publication-title: Energy doi: 10.1016/j.energy.2019.116723 – volume: 42 start-page: 323 year: 2015 ident: 10.1016/j.energy.2021.122777_bib22 article-title: The role of window glazing on daylighting and energy saving in buildings publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.09.020 – volume: 5 start-page: 95 issue: 2 year: 2012 ident: 10.1016/j.energy.2021.122777_bib29 article-title: Genetic algorithms based optimization of artificial neural network architecture for buildings' indoor discomfort and energy consumption prediction publication-title: Build Simul doi: 10.1007/s12273-012-0059-6 – volume: 121 start-page: 57 year: 2016 ident: 10.1016/j.energy.2021.122777_bib41 article-title: A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems publication-title: Energy Build doi: 10.1016/j.enbuild.2016.03.035 – volume: 72 start-page: 104720 year: 2020 ident: 10.1016/j.energy.2021.122777_bib4 article-title: Color-switchable electrochromic Co(OH)2/Ni(OH)2 nanofilms with ultrafast kinetics for multifunctional smart windows publication-title: Nanomater Energy doi: 10.1016/j.nanoen.2020.104720 – volume: 43 start-page: 971 issue: 4 year: 2011 ident: 10.1016/j.energy.2021.122777_bib17 article-title: Zero Energy Building – a review of definitions and calculation methodologies publication-title: Energy Build doi: 10.1016/j.enbuild.2010.12.022 – volume: 61 start-page: 8 year: 2013 ident: 10.1016/j.energy.2021.122777_bib6 article-title: Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort publication-title: Energy Build doi: 10.1016/j.enbuild.2012.10.057 – volume: 74 start-page: 959 year: 2017 ident: 10.1016/j.energy.2021.122777_bib23 article-title: A review of daylighting design and implementation in buildings publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.03.061 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.energy.2021.122777_bib33 article-title: A fast and elitist multiobjective genetic algorithm NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 81 start-page: 444 year: 2014 ident: 10.1016/j.energy.2021.122777_bib21 article-title: Multi-objective optimization for building retrofit: a model using genetic algorithm and artificial neural network and an application publication-title: Energy Build doi: 10.1016/j.enbuild.2014.06.009 – volume: 228 start-page: 349 year: 2018 ident: 10.1016/j.energy.2021.122777_bib25 article-title: Diesel engine optimization with multi-objective performance characteristics by non-evolutionary Nelder-Mead algorithm: sobol sequence and Latin hypercube sampling methods comparison in DoE process publication-title: Fuel doi: 10.1016/j.fuel.2018.04.142 – volume: 122 start-page: 120 year: 2016 ident: 10.1016/j.energy.2021.122777_bib35 article-title: Multiobjective optimization using nondominated sorting genetic algorithm-II for allocation of energy conservation and renewable energy facilities in a campus publication-title: Energy Build doi: 10.1016/j.enbuild.2016.04.027 – volume: 225 start-page: 120331 year: 2021 ident: 10.1016/j.energy.2021.122777_bib30 article-title: Towards a comprehensive optimization of engine efficiency and emissions by coupling artificial neural network (ANN) with genetic algorithm (GA) publication-title: Energy doi: 10.1016/j.energy.2021.120331 – volume: 226 start-page: 110398 year: 2020 ident: 10.1016/j.energy.2021.122777_bib14 article-title: Research on the climate response of variable thermo-physical property building envelopes: a literature review publication-title: Energy Build doi: 10.1016/j.enbuild.2020.110398 – volume: 48 start-page: 349 issue: 4 year: 2019 ident: 10.1016/j.energy.2021.122777_bib15 article-title: Avoiding overheating in existing school buildings through optimized passive measures publication-title: Build Res Inf doi: 10.1080/09613218.2019.1663137 – volume: 194 start-page: 201 year: 2019 ident: 10.1016/j.energy.2021.122777_bib7 article-title: Minimizing energy consumption for artificial lighting in a typical classroom of a Hellenic public school aiming for near Zero Energy Building using LED DC luminaires and daylight harvesting systems publication-title: Energy Build doi: 10.1016/j.enbuild.2019.04.033 – volume: 96 start-page: 1 year: 2012 ident: 10.1016/j.energy.2021.122777_bib10 article-title: Fenestration of today and tomorrow: a state-of-the-art review and future research opportunities publication-title: Sol Energy Mater Sol Cell doi: 10.1016/j.solmat.2011.08.010 – volume: 280 start-page: 115862 year: 2020 ident: 10.1016/j.energy.2021.122777_bib28 article-title: Artificial neural network structure optimisation for accurately prediction of exergy, comfort and life cycle cost performance of a low energy building publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115862 – volume: 260 start-page: 114338 year: 2020 ident: 10.1016/j.energy.2021.122777_bib13 article-title: Optimal control parameter for electrochromic glazing operation in commercial buildings under different climatic conditions publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114338 – volume: 201 start-page: 528 year: 2020 ident: 10.1016/j.energy.2021.122777_bib12 article-title: Selective photo-thermal conversion of tungsten oxide sol precursor for electrochromic smart window applications publication-title: Acta Mater doi: 10.1016/j.actamat.2020.10.040 – volume: 62 start-page: 102369 year: 2020 ident: 10.1016/j.energy.2021.122777_bib34 article-title: Smart energy systems: a critical review on design and operation optimization publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2020.102369 – volume: 117 start-page: 105176 year: 2020 ident: 10.1016/j.energy.2021.122777_bib11 article-title: Electrochromic smart windows using 2D-MoS2 nanostructures protected silver nanowire based flexible transparent electrodes publication-title: Mater Sci Semicond Process doi: 10.1016/j.mssp.2020.105176 – volume: 6 start-page: 1590 year: 2020 ident: 10.1016/j.energy.2021.122777_bib3 article-title: Optimization of the design of the primary school classrooms in terms of energy and daylight performance considering occupants' thermal and visual comfort publication-title: Energy Rep doi: 10.1016/j.egyr.2020.06.008 – volume: 169 start-page: 106543 year: 2020 ident: 10.1016/j.energy.2021.122777_bib8 article-title: Optimal design of classroom spaces in naturally-ventilated buildings to maximize occupant satisfaction with human bioeffluents/body odor levels publication-title: Build Environ doi: 10.1016/j.buildenv.2019.106543 – year: 2018 ident: 10.1016/j.energy.2021.122777_bib9 |
| SSID | ssj0005899 |
| Score | 2.5270514 |
| Snippet | Electrochromic windows are one of the most promising technologies in smart windows. They offer flexible control of indoor thermal environments, lighting... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 122777 |
| SubjectTerms | Algorithms Classrooms Daylighting Design Design optimization Electrochromism energy Energy consumption Envelope optimization Indoor environments Meta-model Model accuracy Multi-objective Multiple objective analysis Optimization School classroom secondary education Sensitivity analysis Smart electrochromic window Smart materials system optimization Thermal environments Windows (apertures) |
| Title | A multi-objective optimization method based on an adaptive meta-model for classroom design with smart electrochromic windows |
| URI | https://dx.doi.org/10.1016/j.energy.2021.122777 https://www.proquest.com/docview/2639036773 https://www.proquest.com/docview/2636677138 |
| Volume | 243 |
| WOSCitedRecordID | wos000791917100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKhwQvCAYThYGMhHiJMjVxYiePFeo0UFWQ6KTyZCWOQ1NtaWmbqUL88Zy_0q2ANh6QqqixL06T-_U-7DsfQm8zEcdFHquZewoOSgAOStpPM79fRmrrEFmQINfFJth4nEyn6edOp3G5MFcXrK6T7TZd_ldWQxswW6XO_gO720GhAb4D0-EIbIfjnRg_MEGC_iKfG2HmLUAsXNp8S1sy2lPaq_B0KLKXFdlSE0Jf5uvaODr6UDjL2it0nIeNZ7-Em3q2fI6YrVRaM_TUxcLa526e32QVqu1MtyaCvp1zmDZa8lc_Zi2svmZ29V_W38Ss2Wv-MsvqWVO51lGlBzhrqjKzmtdOXIDPq6Lg4mvyjdC-H0fRDWEcRsRbngRhyBjz_yjizWzD_ETqpwAPPwws_U6luWX88Sd-ej4a8clwOnm3_O6rYmNqUd5WXrmHDkIWp0kXHQw-DKcfd7FBiS482v5Cl3OpAwN_v_HfbJo97a5Nlslj9Mj6GnhgMPIEdWR9iB64VPT1IToa7tIcgdDK-fVT9HOA90CEr4MIGxBhDSIM5xl8LIjwDkQY2I5bEGEDIqxAhDWI8E0QYQuiZ-j8dDh5f-bbOh2-IJRt_EglGQUqhTukMhFEgpAHL6AoGZWSSAo6NYKzgpZlSIWqVyBykhPByozGuQjJEerWi1o-RzgvwQZXY6QEVEtBQT2ERRkps1wQUqY9RNyb5sJuYq9qqVxwF60454Y_XPGHG_70kN9etTSbuNxCzxwTuTVEjYHJAYS3XHnseM6tTFjzELwAgBJjpIfetN0gxtXaXFbLRaNpKFAEJHlxB5qX6OHuH3WMuptVI1-h--JqU61Xry2afwFdVsL4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+optimization+method+based+on+an+adaptive+meta-model+for+classroom+design+with+smart+electrochromic+windows&rft.jtitle=Energy+%28Oxford%29&rft.au=Xu%2C+Yizhe&rft.au=Yan%2C+Chengchu&rft.au=Yan%2C+Shanhui&rft.au=Liu%2C+Huifang&rft.date=2022-03-15&rft.issn=0360-5442&rft.volume=243+p.122777-&rft_id=info:doi/10.1016%2Fj.energy.2021.122777&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |