Reynolds averaged turbulence modelling using deep neural networks with embedded invariance

There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of fluid mechanics Ročník 807; s. 155 - 166
Hlavní autori: Ling, Julia, Kurzawski, Andrew, Templeton, Jeremy
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 25.11.2016
Predmet:
ISSN:0022-1120, 1469-7645
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. The Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.
AbstractList There exists significant demand for improved Reynolds-averaged Navier-Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. The Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.
There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. Furthermore, the Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.
Author Kurzawski, Andrew
Templeton, Jeremy
Ling, Julia
Author_xml – sequence: 1
  givenname: Julia
  surname: Ling
  fullname: Ling, Julia
  email: jling@sandia.gov
  organization: Thermal/Fluids Science and Engineering Department, Sandia National Labs, Livermore, CA 94550, USA
– sequence: 2
  givenname: Andrew
  surname: Kurzawski
  fullname: Kurzawski, Andrew
  organization: Mechanical Engineering Department, University of Texas at Austin, Austin, TX 78712, USA
– sequence: 3
  givenname: Jeremy
  surname: Templeton
  fullname: Templeton, Jeremy
  organization: Thermal/Fluids Science and Engineering Department, Sandia National Labs, Livermore, CA 94550, USA
BackLink https://www.osti.gov/servlets/purl/1333570$$D View this record in Osti.gov
BookMark eNp1kM9LwzAYhoMouE1v_gFFr3YmaZu2Rxn-AkEQvXgJafJ1y2yTmaQb--_N2A4ievm-y_O8vLxjdGysAYQuCJ4STMqbZdtPKSZsykhxhEYkZ3Vasrw4RiOMKU0JofgUjb1fYkwyXJcj9PEKW2M75ROxBifmoJIwuGbowEhIequg67SZJ4PfXQWwSgwMTnTxhY11nz7Z6LBIoG9AqWhrsxZOi2ifoZNWdB7OD3-C3u_v3maP6fPLw9Ps9jmVGStDmuMqr1uqcNMKRpUgbSZrCliWomQVsEoWLZZYZISJiklCm4JWVBWgCtZISrMJutznWh8091IHkAtpjQEZOMmyrChxhK720MrZrwF84Es7OBN7cVJVeRFb1HWk6J6SznrvoOUxTQRtTXBCd5xgvhuax6H5bmgeh47S9S9p5XQv3PY_fHrARd84rebwo8pfwjelh5Fi
CitedBy_id crossref_primary_10_1016_j_engappai_2023_107334
crossref_primary_10_1016_j_cma_2024_117187
crossref_primary_10_1002_nme_6828
crossref_primary_10_1007_s10409_021_01130_x
crossref_primary_10_1088_1742_6596_2707_1_012104
crossref_primary_10_1016_j_jcp_2020_109951
crossref_primary_10_1080_00295639_2020_1712928
crossref_primary_10_1137_19M1251941
crossref_primary_10_1016_j_ijheatfluidflow_2022_109017
crossref_primary_10_1016_j_ijheatfluidflow_2022_109018
crossref_primary_10_1007_s00466_023_02342_7
crossref_primary_10_1016_j_cma_2018_09_010
crossref_primary_10_1021_acs_langmuir_5c00754
crossref_primary_10_1016_j_cma_2022_115436
crossref_primary_10_32604_cmes_2021_015747
crossref_primary_10_1016_j_ces_2021_116832
crossref_primary_10_1007_s40314_023_02547_9
crossref_primary_10_1016_j_physd_2020_132495
crossref_primary_10_1017_jfm_2024_81
crossref_primary_10_1007_s10494_019_00089_x
crossref_primary_10_1016_j_ijheatfluidflow_2022_109004
crossref_primary_10_1016_j_flowmeasinst_2019_04_006
crossref_primary_10_1073_pnas_2016708118
crossref_primary_10_1016_j_ijheatfluidflow_2022_109008
crossref_primary_10_1029_2018WR024090
crossref_primary_10_1038_s42005_025_02149_3
crossref_primary_10_1016_j_compfluid_2022_105379
crossref_primary_10_1016_j_ocemod_2024_102325
crossref_primary_10_1017_jfm_2024_77
crossref_primary_10_1016_j_physa_2022_128327
crossref_primary_10_1063_5_0171217
crossref_primary_10_1080_19942060_2023_2288235
crossref_primary_10_1007_s10494_023_00482_7
crossref_primary_10_1016_j_ijheatfluidflow_2022_109038
crossref_primary_10_1016_j_jocs_2024_102404
crossref_primary_10_1017_jfm_2022_1069
crossref_primary_10_1177_09544100211027023
crossref_primary_10_1080_02286203_2024_2371682
crossref_primary_10_1029_2018EA000432
crossref_primary_10_1016_j_cma_2022_115457
crossref_primary_10_1016_j_oceaneng_2024_119779
crossref_primary_10_1016_j_energy_2025_135571
crossref_primary_10_1063_5_0212096
crossref_primary_10_1007_s12650_018_0519_x
crossref_primary_10_1016_j_ijheatfluidflow_2022_109034
crossref_primary_10_1016_j_compfluid_2022_105382
crossref_primary_10_1017_jfm_2021_1012
crossref_primary_10_1109_ACCESS_2024_3430075
crossref_primary_10_1016_j_jcp_2024_113063
crossref_primary_10_2298_TSCI210313227Z
crossref_primary_10_1016_j_compfluid_2020_104777
crossref_primary_10_1016_j_petrol_2022_110360
crossref_primary_10_1016_j_ast_2024_108955
crossref_primary_10_1016_j_mineng_2022_107884
crossref_primary_10_3390_jmse12112074
crossref_primary_10_1016_j_oceaneng_2021_109932
crossref_primary_10_1017_jfm_2020_453
crossref_primary_10_1016_j_cja_2019_04_004
crossref_primary_10_1016_j_nucengdes_2022_111716
crossref_primary_10_1016_j_matcom_2024_10_001
crossref_primary_10_1016_j_paerosci_2022_100849
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124854
crossref_primary_10_1016_j_oceaneng_2022_113000
crossref_primary_10_1063_5_0218611
crossref_primary_10_1016_j_cnsns_2022_106664
crossref_primary_10_1016_j_energy_2023_128209
crossref_primary_10_1017_jfm_2019_358
crossref_primary_10_1073_pnas_2217744120
crossref_primary_10_3390_atmos12020157
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122557
crossref_primary_10_1016_j_jcp_2019_109056
crossref_primary_10_1088_1751_8121_ad67bb
crossref_primary_10_1002_fld_5284
crossref_primary_10_1073_pnas_2311808121
crossref_primary_10_1016_j_pecs_2022_101010
crossref_primary_10_1007_s10409_022_22302_x
crossref_primary_10_1007_s10494_022_00321_1
crossref_primary_10_1103_PhysRevX_10_031056
crossref_primary_10_1016_j_ast_2024_109828
crossref_primary_10_1007_s10409_021_01143_6
crossref_primary_10_1016_j_applthermaleng_2018_08_041
crossref_primary_10_1146_annurev_fluid_010518_040547
crossref_primary_10_1016_j_ijhydene_2020_04_286
crossref_primary_10_1016_j_eswa_2024_124290
crossref_primary_10_1007_s00773_022_00914_5
crossref_primary_10_2514_1_J060866
crossref_primary_10_1007_s11082_024_07149_1
crossref_primary_10_1016_j_ces_2024_120950
crossref_primary_10_1016_j_combustflame_2019_02_019
crossref_primary_10_1017_jfm_2018_770
crossref_primary_10_1016_j_compfluid_2023_106113
crossref_primary_10_3847_1538_4357_ac3998
crossref_primary_10_1080_14685248_2017_1334907
crossref_primary_10_1080_14685248_2020_1757685
crossref_primary_10_1109_ACCESS_2020_2987324
crossref_primary_10_1017_jfm_2023_291
crossref_primary_10_1063_5_0033109
crossref_primary_10_1016_j_nucengdes_2024_113467
crossref_primary_10_1038_s41598_023_27426_5
crossref_primary_10_1016_j_jcp_2020_109957
crossref_primary_10_1088_1367_2630_ad6689
crossref_primary_10_1016_j_oceaneng_2024_118250
crossref_primary_10_1121_10_0026459
crossref_primary_10_3390_pr13041055
crossref_primary_10_1016_j_engstruct_2022_115149
crossref_primary_10_1016_j_powtec_2019_01_013
crossref_primary_10_1038_s41467_020_20779_9
crossref_primary_10_3390_en14165127
crossref_primary_10_2514_1_J057204
crossref_primary_10_1088_1742_6596_1618_6_062059
crossref_primary_10_1016_j_enganabound_2022_10_009
crossref_primary_10_2514_1_J057894
crossref_primary_10_1016_j_neo_2020_09_008
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122998
crossref_primary_10_1016_j_ijheatfluidflow_2022_109094
crossref_primary_10_1177_23977914251353307
crossref_primary_10_3390_su151813383
crossref_primary_10_1016_j_oceaneng_2024_118041
crossref_primary_10_1007_s42241_019_0093_2
crossref_primary_10_1016_j_buildenv_2023_111157
crossref_primary_10_3390_fluids9080178
crossref_primary_10_1016_j_ijheatfluidflow_2023_109140
crossref_primary_10_1016_j_jcp_2025_114067
crossref_primary_10_1016_j_jcp_2025_114068
crossref_primary_10_1016_j_applthermaleng_2025_126380
crossref_primary_10_1016_j_ijthermalsci_2024_109363
crossref_primary_10_1063_5_0074724
crossref_primary_10_1002_fld_5093
crossref_primary_10_1007_s00162_022_00603_4
crossref_primary_10_1016_j_ces_2020_115835
crossref_primary_10_1007_s00521_021_06784_z
crossref_primary_10_1007_s10409_022_22315_x
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123622
crossref_primary_10_1088_1361_6587_adfd13
crossref_primary_10_1007_s10439_022_02911_6
crossref_primary_10_1016_j_cma_2021_114211
crossref_primary_10_1016_j_jcp_2020_110085
crossref_primary_10_1080_00295450_2021_1974279
crossref_primary_10_1007_s00162_019_00512_z
crossref_primary_10_1007_s10409_023_23517_x
crossref_primary_10_1088_1361_6501_ace98b
crossref_primary_10_1017_jfm_2020_861
crossref_primary_10_1016_j_neunet_2024_106354
crossref_primary_10_1088_1367_2630_abadb3
crossref_primary_10_1016_j_jcp_2021_110116
crossref_primary_10_1016_j_icheatmasstransfer_2023_107210
crossref_primary_10_1007_s10409_022_22326_x
crossref_primary_10_1016_j_actaastro_2020_05_021
crossref_primary_10_3390_math11173698
crossref_primary_10_1140_epje_s10189_023_00302_w
crossref_primary_10_1073_pnas_2304669120
crossref_primary_10_1515_jnet_2021_0008
crossref_primary_10_1016_j_compfluid_2024_106443
crossref_primary_10_3390_jmse13091761
crossref_primary_10_3390_fluids9080191
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105201
crossref_primary_10_1016_j_ast_2022_107931
crossref_primary_10_1016_j_neucom_2020_09_006
crossref_primary_10_1007_s11071_021_07118_3
crossref_primary_10_1109_TPAMI_2025_3581941
crossref_primary_10_1017_jfm_2024_272
crossref_primary_10_3390_en13225987
crossref_primary_10_1007_s11804_022_00278_7
crossref_primary_10_1016_j_compfluid_2019_104258
crossref_primary_10_1007_s10494_020_00124_2
crossref_primary_10_1016_j_ijheatfluidflow_2025_109970
crossref_primary_10_1016_j_jcp_2025_114277
crossref_primary_10_2166_hydro_2023_035
crossref_primary_10_1088_1742_6596_1715_1_012012
crossref_primary_10_1016_j_oceaneng_2023_115313
crossref_primary_10_1016_j_compfluid_2024_106215
crossref_primary_10_3390_aerospace9020096
crossref_primary_10_1016_j_ijhydene_2021_03_074
crossref_primary_10_1007_s10409_021_01147_2
crossref_primary_10_1038_s41598_022_09938_8
crossref_primary_10_1063_5_0084999
crossref_primary_10_3390_jmse11020239
crossref_primary_10_1016_j_geoen_2024_212938
crossref_primary_10_1016_j_ijheatfluidflow_2022_109047
crossref_primary_10_1063_5_0066077
crossref_primary_10_1016_j_energy_2022_125907
crossref_primary_10_1017_jfm_2018_147
crossref_primary_10_1146_annurev_fluid_010719_060214
crossref_primary_10_1177_03019233241278460
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118931
crossref_primary_10_1063_5_0289270
crossref_primary_10_1016_j_fluid_2021_113012
crossref_primary_10_1073_pnas_2101784118
crossref_primary_10_1007_s10494_025_00643_w
crossref_primary_10_1017_jfm_2020_820
crossref_primary_10_1017_jfm_2023_679
crossref_primary_10_1016_j_ast_2020_106452
crossref_primary_10_1016_j_jcp_2021_110153
crossref_primary_10_1016_j_ijheatfluidflow_2022_109072
crossref_primary_10_1186_s42774_022_00121_1
crossref_primary_10_3847_1538_4357_ad088c
crossref_primary_10_1029_2018MS001472
crossref_primary_10_1016_j_ijheatfluidflow_2020_108615
crossref_primary_10_1080_00295450_2023_2185056
crossref_primary_10_1007_s00205_023_01849_w
crossref_primary_10_1016_j_jocs_2020_101237
crossref_primary_10_1109_ACCESS_2021_3139622
crossref_primary_10_1016_j_jcp_2018_10_045
crossref_primary_10_1137_23M1615425
crossref_primary_10_1088_1873_7005_ac4f2d
crossref_primary_10_1080_14685248_2024_2412602
crossref_primary_10_1016_j_compfluid_2024_106246
crossref_primary_10_1017_jfm_2023_446
crossref_primary_10_1016_j_engappai_2025_111788
crossref_primary_10_1017_jfm_2021_1045
crossref_primary_10_1016_j_proci_2025_105796
crossref_primary_10_1017_jfm_2021_812
crossref_primary_10_1063_5_0132433
crossref_primary_10_1103_PhysRevFluids_10_014601
crossref_primary_10_1103_PhysRevFluids_10_014603
crossref_primary_10_1063_5_0010917
crossref_primary_10_2514_1_J063251
crossref_primary_10_1109_TR_2022_3196272
crossref_primary_10_1073_pnas_2213638120
crossref_primary_10_1109_TIE_2022_3140489
crossref_primary_10_3390_biomimetics9020072
crossref_primary_10_1016_j_compfluid_2024_106259
crossref_primary_10_2514_1_J063263
crossref_primary_10_1016_j_cja_2021_07_027
crossref_primary_10_1016_j_jcp_2021_110781
crossref_primary_10_1016_j_jcp_2024_113638
crossref_primary_10_1061__ASCE_PS_1949_1204_0000696
crossref_primary_10_1177_09544062211042920
crossref_primary_10_1016_j_knosys_2024_111641
crossref_primary_10_1016_j_nucengdes_2022_112005
crossref_primary_10_1016_j_oceaneng_2019_106799
crossref_primary_10_1007_s00162_022_00609_y
crossref_primary_10_1016_j_icheatmasstransfer_2021_105626
crossref_primary_10_1063_5_0062377
crossref_primary_10_1080_14685248_2020_1832230
crossref_primary_10_1088_1361_6463_ada167
crossref_primary_10_1111_cgf_13620
crossref_primary_10_1007_s00162_020_00528_w
crossref_primary_10_1016_j_euromechflu_2025_204372
crossref_primary_10_1016_j_physrep_2021_07_001
crossref_primary_10_1016_j_ijthermalsci_2018_09_002
crossref_primary_10_1016_j_jcp_2020_109491
crossref_primary_10_1109_TNNLS_2023_3338619
crossref_primary_10_1007_s42241_019_0089_y
crossref_primary_10_1016_j_compfluid_2024_106270
crossref_primary_10_1007_s10494_020_00170_w
crossref_primary_10_1016_j_camwa_2023_06_038
crossref_primary_10_1016_j_energy_2020_119005
crossref_primary_10_1016_j_physd_2022_133454
crossref_primary_10_1029_2020GL087005
crossref_primary_10_1007_s12206_021_0342_5
crossref_primary_10_1103_PhysRevFluids_6_050502
crossref_primary_10_1103_PhysRevFluids_6_050501
crossref_primary_10_1080_17455030_2023_2265506
crossref_primary_10_1080_00295639_2022_2107864
crossref_primary_10_1103_PhysRevFluids_6_050504
crossref_primary_10_1016_j_ast_2024_109155
crossref_primary_10_1007_s42401_019_00026_w
crossref_primary_10_1016_j_compfluid_2021_105113
crossref_primary_10_1016_j_anucene_2022_109367
crossref_primary_10_1115_1_4068396
crossref_primary_10_1063_5_0136830
crossref_primary_10_1063_5_0121344
crossref_primary_10_1016_j_cma_2021_114424
crossref_primary_10_3390_math9161843
crossref_primary_10_1073_pnas_1814058116
crossref_primary_10_1016_j_paerosci_2018_10_001
crossref_primary_10_1088_1742_6596_1037_2_022009
crossref_primary_10_1016_j_cherd_2022_12_035
crossref_primary_10_1103_PhysRevE_103_053107
crossref_primary_10_2514_1_J063222
crossref_primary_10_1016_j_buildenv_2025_113535
crossref_primary_10_1103_qqxr_ly55
crossref_primary_10_1016_j_icheatmasstransfer_2018_04_005
crossref_primary_10_1007_s11814_021_0979_x
crossref_primary_10_1038_s41598_021_90734_1
crossref_primary_10_1016_j_buildenv_2024_112103
crossref_primary_10_1111_cgf_13619
crossref_primary_10_1103_PhysRevFluids_10_024603
crossref_primary_10_1002_nme_7310
crossref_primary_10_1103_PhysRevFluids_10_024605
crossref_primary_10_1016_j_compfluid_2022_105611
crossref_primary_10_1016_j_jcp_2024_112982
crossref_primary_10_1017_jfm_2025_10332
crossref_primary_10_1016_j_cej_2022_138036
crossref_primary_10_3390_w13040423
crossref_primary_10_1007_s00521_020_05461_x
crossref_primary_10_1016_j_nucengdes_2019_04_023
crossref_primary_10_1016_j_camwa_2020_08_012
crossref_primary_10_1063_5_0260447
crossref_primary_10_1002_ceat_202200564
crossref_primary_10_1017_jfm_2025_209
crossref_primary_10_1007_s12650_024_00974_2
crossref_primary_10_1007_s42979_021_00867_3
crossref_primary_10_1016_j_euromechflu_2025_204333
crossref_primary_10_1016_j_compfluid_2022_105620
crossref_primary_10_1016_j_cja_2023_09_003
crossref_primary_10_1007_s10494_025_00668_1
crossref_primary_10_1029_2023MS003658
crossref_primary_10_1029_2020GL088376
crossref_primary_10_1016_j_renene_2021_11_097
crossref_primary_10_1007_s40997_023_00615_3
crossref_primary_10_1007_s12206_022_1223_2
crossref_primary_10_1016_j_jcp_2021_110567
crossref_primary_10_1016_j_partic_2023_12_012
crossref_primary_10_1038_s41598_021_92278_w
crossref_primary_10_1007_s42405_023_00598_0
crossref_primary_10_3390_su141911996
crossref_primary_10_1109_TGRS_2023_3281784
crossref_primary_10_1145_3514228
crossref_primary_10_1155_2022_9873112
crossref_primary_10_2514_1_J063407
crossref_primary_10_1002_nme_5583
crossref_primary_10_1016_j_cma_2022_115396
crossref_primary_10_1063_5_0253703
crossref_primary_10_1016_j_cma_2023_116543
crossref_primary_10_3389_fhpcp_2024_1444337
crossref_primary_10_3390_pr11030890
crossref_primary_10_2514_1_J062572
crossref_primary_10_1017_jfm_2019_700
crossref_primary_10_2514_1_J064745
crossref_primary_10_1016_j_cma_2020_113401
crossref_primary_10_1016_j_physd_2022_133630
crossref_primary_10_1038_s42003_020_01638_1
crossref_primary_10_1016_j_jcp_2025_113995
crossref_primary_10_1109_JAS_2024_124335
crossref_primary_10_1016_j_ress_2025_111353
crossref_primary_10_1038_s41597_021_01034_2
crossref_primary_10_1016_j_compfluid_2022_105651
crossref_primary_10_1073_pnas_1909854116
crossref_primary_10_1016_j_oceaneng_2019_106712
crossref_primary_10_1016_j_paerosci_2025_101130
crossref_primary_10_1051_epjconf_202124703013
crossref_primary_10_1016_j_jcp_2022_111090
crossref_primary_10_1016_j_actaastro_2024_01_022
crossref_primary_10_1186_s42774_021_00085_8
crossref_primary_10_1016_j_jcp_2020_109413
crossref_primary_10_1016_j_apenergy_2024_124703
crossref_primary_10_1155_2020_8888811
crossref_primary_10_1016_j_neunet_2023_03_014
crossref_primary_10_1016_j_jcp_2022_111081
crossref_primary_10_1063_5_0220444
crossref_primary_10_1016_j_nexres_2025_100618
crossref_primary_10_2514_1_J060131
crossref_primary_10_1016_j_jcp_2019_109209
crossref_primary_10_1016_j_jppr_2024_02_002
crossref_primary_10_1146_annurev_chembioeng_060817_084025
crossref_primary_10_1016_j_jcp_2021_110922
crossref_primary_10_1016_j_ultsonch_2025_107298
crossref_primary_10_1016_j_euromechflu_2025_204307
crossref_primary_10_2514_1_J058291
crossref_primary_10_1016_j_cma_2021_113927
crossref_primary_10_1080_14685248_2021_1999459
crossref_primary_10_1016_j_jcp_2023_112243
crossref_primary_10_1016_j_camwa_2023_01_002
crossref_primary_10_1016_j_compfluid_2023_105993
crossref_primary_10_1016_j_jcis_2021_11_195
crossref_primary_10_1007_s10596_020_09963_4
crossref_primary_10_1007_s10409_021_01150_7
crossref_primary_10_1016_j_jcp_2021_110733
crossref_primary_10_1016_j_camwa_2025_07_037
crossref_primary_10_1029_2022MS003105
crossref_primary_10_1007_s10444_018_9590_z
crossref_primary_10_1007_s00162_021_00580_0
crossref_primary_10_1016_j_paerosci_2021_100725
crossref_primary_10_1016_j_ast_2023_108632
crossref_primary_10_1017_jfm_2021_53
crossref_primary_10_1007_s00521_021_06633_z
crossref_primary_10_1051_e3sconf_202345902005
crossref_primary_10_1063_5_0207453
crossref_primary_10_1016_j_engappai_2024_108981
crossref_primary_10_1016_j_compstruc_2025_107839
crossref_primary_10_3390_w15030472
crossref_primary_10_1109_TASC_2024_3420184
crossref_primary_10_1007_s00162_025_00737_1
crossref_primary_10_1017_jfm_2021_398
crossref_primary_10_3389_fphy_2024_1452876
crossref_primary_10_1007_s10409_021_01119_6
crossref_primary_10_1017_jfm_2022_1020
crossref_primary_10_2514_1_J058486
crossref_primary_10_1109_JTEHM_2018_2886021
crossref_primary_10_1016_j_combustflame_2021_111486
crossref_primary_10_1016_j_jcp_2021_110717
crossref_primary_10_1063_5_0276641
crossref_primary_10_1016_j_oceaneng_2022_111436
crossref_primary_10_3389_fenrg_2023_1163043
crossref_primary_10_1002_ceat_202300040
crossref_primary_10_1007_s00162_019_00485_z
crossref_primary_10_1140_epje_s10189_023_00267_w
crossref_primary_10_1016_j_jcp_2023_112016
crossref_primary_10_1145_3768158
crossref_primary_10_1016_j_cma_2025_117810
crossref_primary_10_1016_j_combustflame_2025_114241
crossref_primary_10_1016_j_jcp_2023_112272
crossref_primary_10_1016_j_neunet_2023_04_017
crossref_primary_10_1063_5_0251597
crossref_primary_10_1063_5_0273361
crossref_primary_10_1109_ACCESS_2020_2979794
crossref_primary_10_1016_j_ces_2021_116886
crossref_primary_10_1016_j_oceaneng_2021_109058
crossref_primary_10_1016_j_cma_2025_117804
crossref_primary_10_1109_TAES_2021_3056086
crossref_primary_10_3390_fluids8070212
crossref_primary_10_1016_j_engappai_2023_106127
crossref_primary_10_1016_j_ast_2023_108542
crossref_primary_10_1016_j_anucene_2024_110679
crossref_primary_10_1007_s11831_024_10145_z
crossref_primary_10_1016_j_arcontrol_2021_03_009
crossref_primary_10_1063_5_0077050
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126150
crossref_primary_10_2514_1_J062711
crossref_primary_10_1038_s43588_022_00264_7
crossref_primary_10_1063_5_0265759
crossref_primary_10_1029_2022MS003424
crossref_primary_10_3390_en14051465
crossref_primary_10_3847_1538_4357_ad1c55
crossref_primary_10_1017_jfm_2018_872
crossref_primary_10_2514_1_J058462
crossref_primary_10_1016_j_apenergy_2021_116641
crossref_primary_10_1146_annurev_fluid_121021_031431
crossref_primary_10_1063_1_5067313
crossref_primary_10_1002_fld_5125
crossref_primary_10_1017_jfm_2021_148
crossref_primary_10_1287_moor_2020_1118
crossref_primary_10_1016_j_taml_2021_100244
crossref_primary_10_1017_jfm_2017_823
crossref_primary_10_1016_j_jcp_2020_109811
crossref_primary_10_1016_j_neunet_2025_107455
crossref_primary_10_1007_s00162_023_00663_0
crossref_primary_10_1016_j_biosystemseng_2019_11_006
crossref_primary_10_1016_j_jocs_2022_101906
crossref_primary_10_1002_fld_5375
crossref_primary_10_1088_2632_2153_ad7d60
crossref_primary_10_1088_1361_6501_ad3fd3
crossref_primary_10_1007_s00162_018_0480_2
crossref_primary_10_2514_1_J057108
crossref_primary_10_1016_j_compfluid_2020_104645
crossref_primary_10_3390_computation8010015
crossref_primary_10_1063_5_0134198
crossref_primary_10_1016_j_eswa_2022_117038
crossref_primary_10_1134_S1995080224605654
crossref_primary_10_1177_09544062211028264
crossref_primary_10_1007_s11071_019_04915_9
crossref_primary_10_1016_j_envsoft_2024_106182
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123115
crossref_primary_10_1016_j_powtec_2022_117303
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126149
crossref_primary_10_1088_1572_9494_ac60f9
crossref_primary_10_1016_j_cpc_2025_109754
crossref_primary_10_1016_j_engappai_2024_109922
crossref_primary_10_3390_fluids7030111
crossref_primary_10_1134_S0021894423030094
crossref_primary_10_1016_j_ijheatfluidflow_2023_109204
crossref_primary_10_2514_1_J059302
crossref_primary_10_1155_er_3241787
crossref_primary_10_1029_2021MS002847
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127539
crossref_primary_10_1080_00295450_2023_2178251
crossref_primary_10_1111_mice_13000
crossref_primary_10_1016_j_cma_2025_117782
crossref_primary_10_1017_jfm_2019_238
crossref_primary_10_1017_jfm_2017_637
crossref_primary_10_1017_jfm_2023_179
crossref_primary_10_1016_j_cpc_2024_109220
crossref_primary_10_1063_5_0056549
crossref_primary_10_2514_1_J060976
crossref_primary_10_1016_j_ymssp_2024_111297
crossref_primary_10_1016_j_ast_2023_108354
crossref_primary_10_1016_j_oceaneng_2023_114743
crossref_primary_10_1016_j_ast_2022_108054
crossref_primary_10_1109_TKDE_2021_3079836
crossref_primary_10_1016_j_jcp_2020_109859
crossref_primary_10_1016_j_buildenv_2020_106671
crossref_primary_10_3390_math12081188
crossref_primary_10_1016_j_cja_2023_06_031
crossref_primary_10_1007_s10494_023_00506_2
crossref_primary_10_1016_j_jhydrol_2023_130350
crossref_primary_10_3390_en16041755
crossref_primary_10_1063_5_0278635
crossref_primary_10_1016_j_energy_2023_129405
crossref_primary_10_1109_OJCOMS_2025_3560319
crossref_primary_10_1016_j_jcp_2024_113157
crossref_primary_10_1007_s10494_019_00011_5
crossref_primary_10_3389_fonc_2022_850731
crossref_primary_10_1017_jfm_2016_803
crossref_primary_10_2514_1_J058638
crossref_primary_10_1145_3611383
crossref_primary_10_1016_j_compfluid_2024_106506
crossref_primary_10_1088_1742_6596_1522_1_012022
crossref_primary_10_1016_j_combustflame_2021_111758
crossref_primary_10_1016_j_compchemeng_2022_108111
crossref_primary_10_3390_fluids10080193
crossref_primary_10_1017_jfm_2023_154
crossref_primary_10_1063_5_0056569
crossref_primary_10_1016_j_cma_2024_117478
crossref_primary_10_1186_s40323_025_00284_8
crossref_primary_10_1063_5_0253128
crossref_primary_10_3390_jmse9040376
crossref_primary_10_3390_machines13060496
crossref_primary_10_1017_jfm_2019_205
crossref_primary_10_2514_1_J059741
crossref_primary_10_3390_en13010258
crossref_primary_10_1016_j_jcp_2022_111037
crossref_primary_10_1016_j_compfluid_2019_03_022
crossref_primary_10_1007_s10494_024_00623_6
crossref_primary_10_3390_aerospace12030238
crossref_primary_10_1016_j_finel_2022_103895
crossref_primary_10_1103_PhysRevFluids_10_034606
crossref_primary_10_1016_j_xphs_2024_09_015
crossref_primary_10_2514_1_J055595
crossref_primary_10_1063_5_0280752
crossref_primary_10_1137_18M1192184
crossref_primary_10_1016_j_buildenv_2021_108315
crossref_primary_10_1016_j_cma_2024_116807
crossref_primary_10_1016_j_cryogenics_2025_104142
crossref_primary_10_1017_jfm_2020_725
crossref_primary_10_1063_5_0282938
crossref_primary_10_1016_j_ast_2024_108896
crossref_primary_10_1016_j_compfluid_2020_104473
crossref_primary_10_1007_s10915_023_02401_4
crossref_primary_10_1016_j_compfluid_2019_104318
crossref_primary_10_1016_j_compfluid_2019_104319
crossref_primary_10_1016_j_oceaneng_2023_113693
crossref_primary_10_1103_8t52_mtb9
crossref_primary_10_1007_s00366_024_02057_0
crossref_primary_10_1016_j_taml_2020_01_006
crossref_primary_10_2514_1_J059721
crossref_primary_10_1088_1742_6596_2099_1_012020
crossref_primary_10_3390_en15228719
crossref_primary_10_1029_2021WR030163
crossref_primary_10_1007_s10494_019_00013_3
crossref_primary_10_1016_j_ast_2022_108089
crossref_primary_10_5194_npg_27_373_2020
crossref_primary_10_1016_j_ijft_2025_101073
crossref_primary_10_2514_1_J060919
crossref_primary_10_1073_pnas_2305765120
crossref_primary_10_1016_j_ijheatfluidflow_2021_108822
crossref_primary_10_1016_j_taml_2024_100496
crossref_primary_10_1016_j_jocs_2022_101741
crossref_primary_10_1038_s43588_024_00643_2
crossref_primary_10_1017_jfm_2019_254
crossref_primary_10_1088_1742_6596_2151_1_012011
crossref_primary_10_1016_j_egyai_2025_100567
crossref_primary_10_1088_2632_2153_ad7191
crossref_primary_10_1016_j_compfluid_2020_104497
crossref_primary_10_1146_annurev_fluid_010719_060317
crossref_primary_10_1016_j_jcp_2019_108910
crossref_primary_10_1016_j_neucom_2020_01_088
crossref_primary_10_3390_en14040984
crossref_primary_10_1007_s10409_021_09057_z
crossref_primary_10_1103_PhysRevFluids_7_024305
crossref_primary_10_1007_s10494_020_00234_x
crossref_primary_10_1016_j_compfluid_2021_104950
crossref_primary_10_1063_5_0216747
crossref_primary_10_1016_j_combustflame_2021_111973
crossref_primary_10_1016_j_ijheatfluidflow_2019_04_014
crossref_primary_10_5802_crmeca_240
crossref_primary_10_1007_s40997_023_00632_2
crossref_primary_10_1137_21M1401243
crossref_primary_10_3390_app14188382
crossref_primary_10_1109_ACCESS_2020_2970143
crossref_primary_10_1016_j_ijheatfluidflow_2019_108454
crossref_primary_10_1007_s11071_025_11773_1
crossref_primary_10_1103_PhysRevFluids_6_094607
crossref_primary_10_3390_fluids7050154
crossref_primary_10_1016_j_jcp_2019_05_024
crossref_primary_10_1007_s42241_018_0156_9
crossref_primary_10_1017_aer_2020_83
crossref_primary_10_1186_s42774_024_00197_x
crossref_primary_10_1016_j_ijhydene_2023_04_311
crossref_primary_10_2514_1_J056640
crossref_primary_10_1007_s10462_024_10874_4
crossref_primary_10_1080_19942060_2024_2374316
crossref_primary_10_1016_j_jcp_2021_110296
crossref_primary_10_1016_j_pnucene_2022_104339
crossref_primary_10_1016_j_compfluid_2023_106054
crossref_primary_10_1016_j_compfluid_2020_104431
crossref_primary_10_1016_j_ast_2023_108198
crossref_primary_10_1017_jfm_2023_590
crossref_primary_10_1017_jfm_2025_91
crossref_primary_10_1155_2020_8855314
crossref_primary_10_1063_5_0058346
crossref_primary_10_1080_19942060_2023_2237611
crossref_primary_10_1016_j_nucengdes_2024_113721
crossref_primary_10_1155_2022_9034773
crossref_primary_10_2166_hydro_2024_373
crossref_primary_10_1016_j_ijheatfluidflow_2021_108816
crossref_primary_10_1108_HFF_12_2023_0726
crossref_primary_10_1016_j_jcp_2025_114388
crossref_primary_10_1088_1674_1056_ac9cb9
crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_070
crossref_primary_10_1007_s11082_023_06107_7
crossref_primary_10_1140_epje_s10189_023_00314_6
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126893
crossref_primary_10_1017_jfm_2025_10618
crossref_primary_10_2514_1_J065567
crossref_primary_10_1007_s10494_019_00028_w
crossref_primary_10_1016_j_jcp_2022_111205
crossref_primary_10_1016_j_cagd_2022_102087
crossref_primary_10_1017_jfm_2020_948
crossref_primary_10_1029_2018MS001351
crossref_primary_10_1016_j_nucengdes_2022_112059
crossref_primary_10_3390_vehicles6030063
crossref_primary_10_1109_JSEN_2025_3538625
crossref_primary_10_1007_s00707_021_02951_4
crossref_primary_10_1016_j_jcp_2025_114125
crossref_primary_10_1016_j_ijheatfluidflow_2023_109242
crossref_primary_10_1080_14685248_2019_1706742
crossref_primary_10_1007_s10115_023_01864_z
crossref_primary_10_3389_fphy_2024_1347657
crossref_primary_10_1016_j_asoc_2025_113394
crossref_primary_10_1186_s42774_021_00088_5
crossref_primary_10_1038_s41598_022_16463_1
crossref_primary_10_1142_S0218202525500125
crossref_primary_10_1016_j_cma_2020_113375
crossref_primary_10_1016_j_ijheatfluidflow_2024_109377
crossref_primary_10_3390_aerospace10070599
crossref_primary_10_1002_gamm_202100002
crossref_primary_10_1017_jfm_2022_738
crossref_primary_10_3390_app12136718
crossref_primary_10_3934_fods_2021013
crossref_primary_10_1016_j_taml_2024_100503
crossref_primary_10_1016_j_jcp_2023_112173
crossref_primary_10_1186_s40323_020_00153_6
crossref_primary_10_1007_s10494_025_00667_2
crossref_primary_10_1063_5_0213412
crossref_primary_10_1017_jfm_2022_744
crossref_primary_10_1063_5_0236511
crossref_primary_10_1016_j_ast_2025_110750
crossref_primary_10_3390_app12105194
crossref_primary_10_1017_flo_2024_15
crossref_primary_10_1016_j_ymssp_2021_108709
crossref_primary_10_1016_j_ast_2024_109014
crossref_primary_10_1016_j_acha_2024_101717
crossref_primary_10_1063_5_0190452
crossref_primary_10_1002_hyp_14565
crossref_primary_10_1016_j_ijheatfluidflow_2022_108983
crossref_primary_10_1063_5_0132326
crossref_primary_10_1063_5_0211680
crossref_primary_10_1016_j_ces_2021_117268
crossref_primary_10_1109_ACCESS_2020_2976199
crossref_primary_10_1007_s00397_023_01412_0
crossref_primary_10_3390_math9161939
crossref_primary_10_1016_j_compfluid_2022_105707
crossref_primary_10_3390_math12101417
crossref_primary_10_1016_j_applthermaleng_2025_127412
crossref_primary_10_1016_j_ijheatfluidflow_2024_109348
crossref_primary_10_1007_s10494_017_9807_0
crossref_primary_10_1103_PhysRevFluids_6_094401
crossref_primary_10_1016_j_apenergy_2019_114025
crossref_primary_10_1016_j_neunet_2024_106401
crossref_primary_10_1016_j_oceaneng_2024_116717
crossref_primary_10_12677_AAM_2022_119670
crossref_primary_10_1016_j_oceaneng_2022_110650
crossref_primary_10_1145_3689037
crossref_primary_10_1007_s10462_024_10867_3
crossref_primary_10_1017_jfm_2020_1028
crossref_primary_10_1016_j_cageo_2021_104833
crossref_primary_10_1038_s41598_020_61450_z
crossref_primary_10_1038_s42256_020_00272_0
crossref_primary_10_1063_5_0259567
crossref_primary_10_2514_1_J064416
crossref_primary_10_1631_FITEE_2000435
crossref_primary_10_1109_ACCESS_2019_2960451
crossref_primary_10_1007_s10494_024_00539_1
crossref_primary_10_1038_s41598_023_29525_9
crossref_primary_10_1061_JAEEEZ_ASENG_6214
crossref_primary_10_1016_j_renene_2022_10_013
crossref_primary_10_1016_j_ast_2021_106576
crossref_primary_10_1016_j_paerosci_2019_100554
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1017_jfm_2025_10488
crossref_primary_10_1103_PhysRevE_111_055302
crossref_primary_10_1016_j_supflu_2023_106051
crossref_primary_10_1103_PhysRevFluids_8_054602
crossref_primary_10_1088_1674_1056_ac5e98
crossref_primary_10_1115_1_4069140
crossref_primary_10_2514_1_J064422
crossref_primary_10_1080_14685248_2024_2361738
crossref_primary_10_1016_j_ces_2019_115357
crossref_primary_10_1016_j_jcp_2024_112869
crossref_primary_10_3390_en12142716
crossref_primary_10_1016_j_compfluid_2021_105213
crossref_primary_10_1007_s11831_025_10378_6
crossref_primary_10_1103_PhysRevLett_126_098302
crossref_primary_10_3390_app13126891
crossref_primary_10_1016_j_apor_2023_103587
crossref_primary_10_1016_j_asoc_2023_110013
crossref_primary_10_1016_j_cnsns_2019_04_025
crossref_primary_10_1109_ACCESS_2025_3602021
crossref_primary_10_1109_ACCESS_2018_2888733
crossref_primary_10_1016_j_taml_2025_100623
crossref_primary_10_1016_j_pnucene_2024_105097
crossref_primary_10_2514_1_J061375
crossref_primary_10_1029_2020MS002301
crossref_primary_10_1109_ACCESS_2020_2993562
crossref_primary_10_1029_2022MS003034
crossref_primary_10_1017_dce_2022_37
crossref_primary_10_1016_j_compfluid_2023_105835
crossref_primary_10_1038_s41598_019_47747_8
crossref_primary_10_1146_annurev_fluid_031221_105530
crossref_primary_10_1016_j_physd_2020_132409
crossref_primary_10_1016_j_taml_2022_100359
crossref_primary_10_1063_5_0212949
crossref_primary_10_1016_j_energy_2022_124440
crossref_primary_10_2514_1_J064610
crossref_primary_10_1088_2632_2153_add8de
crossref_primary_10_1038_s41563_020_00913_0
crossref_primary_10_1016_j_icheatmasstransfer_2022_105890
crossref_primary_10_1016_j_ijheatmasstransfer_2021_120976
crossref_primary_10_1088_1873_7005_ade8a2
crossref_primary_10_1103_PhysRevFluids_8_064603
crossref_primary_10_1016_j_compfluid_2021_105266
crossref_primary_10_1016_j_engappai_2024_108896
crossref_primary_10_1016_j_ast_2022_107328
crossref_primary_10_1017_jfm_2019_822
crossref_primary_10_2514_1_J062203
crossref_primary_10_1007_s10409_022_09001_w
crossref_primary_10_1007_s10973_021_10931_y
crossref_primary_10_1016_j_cma_2024_117441
crossref_primary_10_1088_2632_2153_acb19c
crossref_primary_10_1017_jfm_2019_814
crossref_primary_10_3390_fluids6020072
crossref_primary_10_3390_ijtpp7020016
crossref_primary_10_1016_j_jcp_2019_01_021
crossref_primary_10_1063_5_0239178
crossref_primary_10_4271_2021_01_0407
crossref_primary_10_1016_j_applthermaleng_2022_118449
crossref_primary_10_1016_j_jcp_2024_113341
crossref_primary_10_1016_j_combustflame_2019_10_031
crossref_primary_10_1063_5_0252753
crossref_primary_10_1063_5_0127808
crossref_primary_10_1186_s40323_021_00213_5
crossref_primary_10_1063_1_5138681
crossref_primary_10_1002_aic_17715
crossref_primary_10_2514_1_J062664
crossref_primary_10_1063_5_0142198
crossref_primary_10_1080_14685248_2022_2060508
crossref_primary_10_1016_j_powtec_2018_11_092
crossref_primary_10_1002_we_70030
crossref_primary_10_1007_s00348_023_03736_2
crossref_primary_10_1016_j_compfluid_2022_105354
crossref_primary_10_1016_j_apor_2025_104661
crossref_primary_10_1007_s00162_020_00518_y
crossref_primary_10_1186_s13636_024_00376_0
crossref_primary_10_1073_pnas_1900358116
crossref_primary_10_1155_2021_5575722
crossref_primary_10_1016_j_ces_2020_116235
crossref_primary_10_2514_1_J059474
crossref_primary_10_3390_fluids7020056
crossref_primary_10_1017_aer_2024_123
crossref_primary_10_1051_meca_2024023
crossref_primary_10_3390_math11244926
crossref_primary_10_1016_j_procir_2024_08_302
crossref_primary_10_1016_j_taml_2021_100280
crossref_primary_10_1016_j_taml_2022_100381
crossref_primary_10_1016_j_compfluid_2023_105864
crossref_primary_10_3389_fmars_2021_672477
crossref_primary_10_1016_j_taml_2022_100389
crossref_primary_10_1016_j_taml_2022_100387
crossref_primary_10_1017_jfm_2019_867
crossref_primary_10_1007_s00707_025_04325_6
crossref_primary_10_1016_j_jcp_2018_08_016
crossref_primary_10_1016_j_actaastro_2022_04_007
crossref_primary_10_1016_j_compfluid_2021_105298
crossref_primary_10_3390_su162411039
crossref_primary_10_3389_fsufs_2024_1363744
crossref_primary_10_1007_s11630_024_2035_8
crossref_primary_10_1016_j_engappai_2023_107483
crossref_primary_10_1080_10618562_2022_2113520
crossref_primary_10_1016_j_ast_2025_110166
crossref_primary_10_1016_j_jcp_2018_08_029
crossref_primary_10_1103_PhysRevResearch_7_013202
crossref_primary_10_1080_17455030_2023_2192818
crossref_primary_10_1016_j_oceaneng_2022_111791
crossref_primary_10_1063_5_0053590
crossref_primary_10_1016_j_compfluid_2023_105883
crossref_primary_10_1016_j_scs_2023_104881
crossref_primary_10_1063_5_0263211
crossref_primary_10_1007_s00162_020_00529_9
crossref_primary_10_2514_1_J062870
crossref_primary_10_1088_1674_4527_ac449d
crossref_primary_10_3390_aerospace9100578
crossref_primary_10_3390_aerospace11070592
crossref_primary_10_1016_j_compfluid_2022_105592
crossref_primary_10_1007_s42241_020_0077_2
crossref_primary_10_1002_msd2_70031
crossref_primary_10_1109_ACCESS_2025_3580485
crossref_primary_10_3390_en16052343
crossref_primary_10_1177_09544100221097521
crossref_primary_10_1063_5_0122165
crossref_primary_10_1007_s11082_023_04715_x
Cites_doi 10.1016/j.jcp.2015.11.012
10.1016/0142-727X(95)00079-6
10.1017/S0022112093002034
10.1016/j.jcp.2016.05.003
10.1038/nature16961
10.1063/1.4915065
10.2514/6.2014-2085
10.1038/nature14539
10.2514/6.2015-1287
10.1017/jfm.2011.193
10.2514/6.2003-149
10.1063/1.4927765
10.1017/S0022112009992242
10.1006/jcph.2002.7146
10.1007/BF00251667
10.1017/S0022112075003382
10.1017/S0022112099007004
10.1109/MSP.2012.2205597
10.1016/j.ijheatfluidflow.2010.05.006
10.1115/1.4031698
10.2514/6.2015-2460
10.2514/6.2013-259
10.1063/1.869966
ContentType Journal Article
Copyright Cambridge University Press 2016. This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Copyright_xml – notice: Cambridge University Press 2016. This is a work of the U.S. Government and is not subject to copyright protection in the United States.
CorporateAuthor Sandia National Lab. (SNL-CA), Livermore, CA (United States)
CorporateAuthor_xml – name: Sandia National Lab. (SNL-CA), Livermore, CA (United States)
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
OIOZB
OTOTI
DOI 10.1017/jfm.2016.615
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep

CrossRef

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate J. Ling, A. Kurzawski and J. Templeton
Turbulence modelling using deep neural networks
EISSN 1469-7645
EndPage 166
ExternalDocumentID 1333570
4321477043
10_1017_jfm_2016_615
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AATMM
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVKB
ABXAU
ABZCX
ACBEA
ACBMC
ACDLN
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEUYN
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WYP
ZE2
ZMEZD
ZYDXJ
~02
AAYXX
ABUFD
ABXHF
ADMLS
AFFHD
AKMAY
CITATION
PHGZM
PHGZT
PQGLB
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
AAEED
ABBJB
ABTRL
ACCHT
ACQFJ
ACREK
ACUYZ
ACWGA
ADGEJ
ADOCW
AFKSM
AGOOT
AIAFM
OIOZB
OTOTI
WXY
ZJOSE
ID FETCH-LOGICAL-c367t-40849f2d0bfa62da1f3c92e0c7a768e68c5f0c0a316a86c12b5282d5ed56bc223
IEDL.DBID BENPR
ISICitedReferencesCount 1176
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386452000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1120
IngestDate Mon Jul 03 03:57:20 EDT 2023
Sat Aug 16 05:41:12 EDT 2025
Tue Nov 18 22:18:18 EST 2025
Sat Nov 29 04:24:12 EST 2025
Tue Jan 21 06:22:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords turbulent flows
turbulence modelling
turbulence theory
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-40849f2d0bfa62da1f3c92e0c7a768e68c5f0c0a316a86c12b5282d5ed56bc223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC04-94AL85000
USDOE National Nuclear Security Administration (NNSA)
SAND-2016-7345J
OpenAccessLink https://www.osti.gov/servlets/purl/1333570
PQID 1884540899
PQPubID 34769
PageCount 12
ParticipantIDs osti_scitechconnect_1333570
proquest_journals_1884540899
crossref_citationtrail_10_1017_jfm_2016_615
crossref_primary_10_1017_jfm_2016_615
cambridge_journals_10_1017_jfm_2016_615
PublicationCentury 2000
PublicationDate 2016-11-25
PublicationDateYYYYMMDD 2016-11-25
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-25
  day: 25
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
– name: United States
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2016
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2010; 31
2016c; 138
2002; 182
1996; 17
2015; 27
2015; 521
2010; 644
2016; 305
2000; 403
2016; 529
2013; 30
2007; 8
1999; 11
2012; 29
2012; 25
1975; 72
1965; 18
2016a; 318
1993; 254
2011; 681
S0022112016006157_r3
S0022112016006157_r25
S0022112016006157_r2
S0022112016006157_r27
S0022112016006157_r5
S0022112016006157_r4
S0022112016006157_r26
S0022112016006157_r28
S0022112016006157_r21
S0022112016006157_r20
S0022112016006157_r23
S0022112016006157_r22
Banerjee (S0022112016006157_r1) 2007; 8
Ling (S0022112016006157_r10) 2016b
Karpathy (S0022112016006157_r7) 2014
S0022112016006157_r6
S0022112016006157_r9
S0022112016006157_r8
S0022112016006157_r14
S0022112016006157_r16
S0022112016006157_r15
S0022112016006157_r18
S0022112016006157_r17
S0022112016006157_r19
Ling (S0022112016006157_r11) 2016c; 138
Snoek (S0022112016006157_r24) 2012; 25
S0022112016006157_r12
Maas (S0022112016006157_r13) 2013; 30
References_xml – volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 27
  year: 2015
  article-title: Flow topologies and turbulence scales in a jet-in-cross-flow
  publication-title: Phys. Fluids
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
– volume: 31
  start-page: 805
  year: 2010
  end-page: 819
  article-title: A numerical study of scalar dispersion downstream of a wall-mounted cube using direct simulations and algebraic flux models
  publication-title: Intl J. Heat Fluid Flow
– volume: 254
  start-page: 59
  year: 1993
  end-page: 78
  article-title: On explicit algebraic stress models for complex turbulent flows
  publication-title: J. Fluid Mech.
– volume: 318
  start-page: 22
  year: 2016a
  end-page: 35
  article-title: Machine learning strategies for systems with invariance properties
  publication-title: J. Comput. Phys.
– volume: 11
  start-page: 943
  year: 1999
  end-page: 945
  article-title: Direct numerical simulation of turbulent channel flow up to Re = 590
  publication-title: Phys. Fluids
– volume: 18
  start-page: 282
  year: 1965
  end-page: 292
  article-title: On isotropic integrity bases
  publication-title: Arch. Rational Mech. Anal.
– volume: 644
  start-page: 107
  year: 2010
  end-page: 122
  article-title: Reynolds number dependence of mean flow structure in square duct turbulence
  publication-title: J. Fluid Mech.
– volume: 182
  start-page: 1
  year: 2002
  end-page: 26
  article-title: Neural network modeling for near wall turbulent flow
  publication-title: J. Comput. Phys.
– volume: 529
  start-page: 484
  year: 2016
  end-page: 489
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
– volume: 305
  start-page: 758
  year: 2016
  end-page: 774
  article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning
  publication-title: J. Comput. Phys.
– volume: 8
  start-page: 1
  year: 2007
  end-page: 27
  article-title: Presentation of anisotropy properties of turbulence invariants versus eigenvalue approaches
  publication-title: J. Turbul.
– volume: 681
  start-page: 205
  year: 2011
  end-page: 240
  article-title: Instability of streaks in wall turbulence with adverse pressure gradient
  publication-title: J. Fluid Mech.
– volume: 27
  year: 2015
  article-title: Evaluation of machine learning algorithms for prediction of regions of high RANS uncertainty
  publication-title: Phys. Fluids
– volume: 403
  start-page: 89
  year: 2000
  end-page: 132
  article-title: An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows
  publication-title: J. Fluid Mech.
– volume: 72
  start-page: 331
  year: 1975
  end-page: 340
  article-title: A more general effective-viscosity hypothesis
  publication-title: J. Fluid Mech.
– volume: 138
  year: 2016c
  article-title: Analysis of turbulent scalar flux models for a discrete hole film cooling flow
  publication-title: J. Turbomach.
– volume: 25
  start-page: 2951
  year: 2012
  end-page: 2959
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inform. Proc. Syst.
– volume: 17
  start-page: 108
  year: 1996
  end-page: 115
  article-title: Development and application of a cubic eddy-viscosity model of turbulence
  publication-title: Intl J. Heat Fluid Flow
– volume: 30
  start-page: 1
  year: 2013
  end-page: 6
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc. ICML
– ident: S0022112016006157_r17
  doi: 10.1016/j.jcp.2015.11.012
– ident: S0022112016006157_r2
  doi: 10.1016/0142-727X(95)00079-6
– volume-title: ASME Turbo Expo 2016
  year: 2016b
  ident: S0022112016006157_r10
– ident: S0022112016006157_r6
  doi: 10.1017/S0022112093002034
– ident: S0022112016006157_r9
  doi: 10.1016/j.jcp.2016.05.003
– ident: S0022112016006157_r3
  doi: 10.1038/nature16961
– ident: S0022112016006157_r22
  doi: 10.1063/1.4915065
– ident: S0022112016006157_r20
  doi: 10.2514/6.2014-2085
– ident: S0022112016006157_r8
  doi: 10.1038/nature14539
– ident: S0022112016006157_r26
  doi: 10.2514/6.2015-1287
– ident: S0022112016006157_r14
  doi: 10.1017/jfm.2011.193
– ident: S0022112016006157_r4
  doi: 10.2514/6.2003-149
– volume: 25
  start-page: 2951
  year: 2012
  ident: S0022112016006157_r24
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inform. Proc. Syst.
– start-page: 1725
  volume-title: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
  year: 2014
  ident: S0022112016006157_r7
– volume: 30
  start-page: 1
  year: 2013
  ident: S0022112016006157_r13
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc. ICML
– ident: S0022112016006157_r12
  doi: 10.1063/1.4927765
– ident: S0022112016006157_r18
  doi: 10.1017/S0022112009992242
– ident: S0022112016006157_r15
  doi: 10.1006/jcph.2002.7146
– ident: S0022112016006157_r23
  doi: 10.1007/BF00251667
– ident: S0022112016006157_r19
  doi: 10.1017/S0022112075003382
– ident: S0022112016006157_r27
  doi: 10.1017/S0022112099007004
– ident: S0022112016006157_r5
  doi: 10.1109/MSP.2012.2205597
– ident: S0022112016006157_r21
  doi: 10.1016/j.ijheatfluidflow.2010.05.006
– volume: 138
  year: 2016c
  ident: S0022112016006157_r11
  article-title: Analysis of turbulent scalar flux models for a discrete hole film cooling flow
  publication-title: J. Turbomach.
  doi: 10.1115/1.4031698
– volume: 8
  start-page: 1
  year: 2007
  ident: S0022112016006157_r1
  article-title: Presentation of anisotropy properties of turbulence invariants versus eigenvalue approaches
  publication-title: J. Turbul.
– ident: S0022112016006157_r28
  doi: 10.2514/6.2015-2460
– ident: S0022112016006157_r25
  doi: 10.2514/6.2013-259
– ident: S0022112016006157_r16
  doi: 10.1063/1.869966
SSID ssj0013097
Score 2.6936703
Snippet There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of...
There exists significant demand for improved Reynolds-averaged Navier-Stokes (RANS) turbulence models that are informed by and can represent a richer set of...
SourceID osti
proquest
crossref
cambridge
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 155
SubjectTerms Anisotropy
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Fluid mechanics
Navier-Stokes equations
Reynolds number
Turbulence
Viscosity
Title Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
URI https://www.cambridge.org/core/product/identifier/S0022112016006157/type/journal_article
https://www.proquest.com/docview/1884540899
https://www.osti.gov/servlets/purl/1333570
Volume 807
WOSCitedRecordID wos000386452000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: PCBAR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_0tFAfql5bej2VPFR8KFuzX8nuU9Gi9KFeD7UgvizZSbZY7N7VPQ_87zuzlzstYl98CQsbSOA3mY9k5jcAH0onc5PoKshiTIKETDJ9lTpIUOswx1KhaguFv-nBILu4yIf-wq3xaZVzndgqajtCviPfD7OMyeIoPPg8_hNw1yh-XfUtNJZhhZnKkg6sHB4Nhqf37wgy13O-cPIspE99Z9LoXxUXoofqk-KWuPfECv8YqM6IDtojNd3anuP15-56A155r1MczMRkE5Zc3YV174EKf76bLqw9oCfswos2PRSb13B56u7q0bVthCHRJxVkBZmq8ratWBJtNx0uaxecRf9TWOfGgokyacl6lmbeCL7wFe536UjTWXFVTylIZ4l7Az-Oj86_fA18V4YAY6UnFHBmSV5FVpaVUZE1YRVjHjmJ2lDo4lSGaSVRmjhUJlMYRmVKYZ1NnU1VieSNvIVOPardOxCKNYBFpSObJLmVpjI2TnVkcrQUOac92FvAUviz1RSzvDRdEIAFA1gQgD34OAetQE9uzj02rp-YvbuYPZ6Rejwxr8_4F-SMMKMucuoRTgoK62mXsgdbc8wfbG4B-Pv__-7DS16GyxqjdAs6k5tbtw2rOJ1cNTc7Xo53YPkk-t6OQx71GY3D9PIvgMv_aA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9RADLWqBQQcKCwglhaYAxUHFJhMkpnkgBACqlbdripUpIpLOvFMUFHJLpttUf8UvxE7H9siVG49cIuUkfL1_GxP7GeA54WXmY1NGaQRxkFMLpmOChPEaEyYYaFRN43CYzOZpAcH2d4K_Op7YbissufEhqjdFHmP_HWYpiwWR-nB29mPgKdG8d_VfoRGC4sdf_aTUrb6zfYH-r4bSm1-3H-_FXRTBQKMtFlQwpTGWamcLEqrlbNhGWGmvERjKfT2OsWklChtFGqbagxVkVBa4hLvEl2gYqEDovxrMWVCbFe7au_8r4XMTK9OTnGM7ArtWaL6W8lt76F-pXkA77mMwx_ucDAls_7LKTSebnP1f3tHd-FOF1OLd60R3IMVXw1htYuvRcde9RBuXxBfHMKNpvgV6_vw5ZM_q6bHrhaWDJsI1glyxMVJ048lmllB3LQvuEfgq3DezwTLgNIlq7aIvha8nS3898ITjztxVJ3aOe8W-Qfw-Uqe_CEMqmnlH4HQzG8OtVEujjMnbWldlBhlM3QRBb4jeLGEQd4xR523VXcmJ8DkDJicADOClz1Icuyk23mCyPElqzeWq2etZMkl69YYbzmFWqwXjFxYhYs8jCK6SzmC9R5jF25uCbDH_z79DG5u7e-O8_H2ZGcNbvEluYFTJeswWMxP_BO4jqeLo3r-tLEgAYdXDcffjJRXUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reynolds+averaged+turbulence+modelling+using+deep+neural+networks+with+embedded+invariance&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Ling%2C+Julia&rft.au=Kurzawski%2C+Andrew&rft.au=Templeton%2C+Jeremy&rft.date=2016-11-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=807&rft.spage=155&rft.epage=166&rft_id=info:doi/10.1017%2Fjfm.2016.615&rft.externalDocID=10_1017_jfm_2016_615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon