Integrated membrane material design and system synthesis

•Proposed optimization-based approach to synthesize membrane systems.•Considered membrane system synthesis and material design simultaneously.•Approach accounts for trade-offs between material properties and cost.•Framework leads to the design of better membrane systems. In designing membrane system...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemical engineering science Ročník 269; číslo C; s. 118406
Hlavní autoři: Taifan, Garry S.P., Maravelias, Christos T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United Kingdom Elsevier Ltd 05.04.2023
Elsevier
Témata:
ISSN:0009-2509, 1873-4405
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Proposed optimization-based approach to synthesize membrane systems.•Considered membrane system synthesis and material design simultaneously.•Approach accounts for trade-offs between material properties and cost.•Framework leads to the design of better membrane systems. In designing membrane systems, the synergy between membrane materials and the process design is often overlooked. We present a mixed-integer nonlinear programming (MINLP) model for synthesizing membrane systems while simultaneously designing the respective membrane materials for multicomponent gas separation. The approach considers superstructure representations for systems with: (1) same, (2) potentially different, and (3) property-targeting membrane materials. In the first two systems, the selection of membrane material is a decision, while in the final type, membrane permeances are subject to optimization. Physics-based surrogate models are used to describe permeation in crossflow and countercurrent flow permeators. We show that, through a case study of biogas upgrading, our approach obtains high quality solutions. Furthermore, we use the proposed approach while considering permeance-based production cost to find the optimal membrane.
AbstractList •Proposed optimization-based approach to synthesize membrane systems.•Considered membrane system synthesis and material design simultaneously.•Approach accounts for trade-offs between material properties and cost.•Framework leads to the design of better membrane systems. In designing membrane systems, the synergy between membrane materials and the process design is often overlooked. We present a mixed-integer nonlinear programming (MINLP) model for synthesizing membrane systems while simultaneously designing the respective membrane materials for multicomponent gas separation. The approach considers superstructure representations for systems with: (1) same, (2) potentially different, and (3) property-targeting membrane materials. In the first two systems, the selection of membrane material is a decision, while in the final type, membrane permeances are subject to optimization. Physics-based surrogate models are used to describe permeation in crossflow and countercurrent flow permeators. We show that, through a case study of biogas upgrading, our approach obtains high quality solutions. Furthermore, we use the proposed approach while considering permeance-based production cost to find the optimal membrane.
ArticleNumber 118406
Author Taifan, Garry S.P.
Maravelias, Christos T.
Author_xml – sequence: 1
  givenname: Garry S.P.
  surname: Taifan
  fullname: Taifan, Garry S.P.
  organization: Department of Chemical and Biological Engineering, Princeton University, 50-70 Olden St, Princeton 08540, NJ, USA
– sequence: 2
  givenname: Christos T.
  surname: Maravelias
  fullname: Maravelias, Christos T.
  email: maravelias@princeton.edu
  organization: Department of Chemical and Biological Engineering, Princeton University, 50-70 Olden St, Princeton 08540, NJ, USA
BackLink https://www.osti.gov/biblio/1922270$$D View this record in Osti.gov
BookMark eNp9kEtLAzEUhYNUsK3-AHeD-xmTzCMJrqT4KBTc6Dpkkps2pZORJAj992YYVy66upzL-S7nnhVa-NEDQvcEVwST7vFYaYgVxZRWhPAGd1doSTiry6bB7QItMcaipC0WN2gV4zFLxgheIr71CfZBJTDFAEMflIdiyDI4dSoMRLf3hfKmiOeYYMjDp0Pexlt0bdUpwt3fXKOv15fPzXu5-3jbbp53pa47lsratq3BnegVtzVmtWJCkFZZLpqm0X1XW6MINLzHHWfYkprl-NoIyxtBCRf1Gj3Md8eYnIzaJdAHPXoPOkkiKKUMZxObTTqMMQawMvtUcqNPQbmTJFhOLcmjzC3JqSU5t5RJ8o_8Dm5Q4XyReZoZyH__OAhTLPAajAtTKjO6C_Qv_RqANQ
CitedBy_id crossref_primary_10_1016_j_memsci_2024_123574
crossref_primary_10_1016_j_compchemeng_2024_108616
crossref_primary_10_1016_j_seppur_2025_134225
crossref_primary_10_1021_acs_iecr_4c03693
Cites_doi 10.1016/j.ijggc.2019.02.010
10.1016/j.memsci.2017.11.035
10.1016/0098-1354(94)88021-2
10.1016/j.memsci.2021.119514
10.1016/j.memsci.2008.04.030
10.1021/acs.energyfuels.7b00120
10.1016/0009-2509(87)80128-8
10.1016/j.fuproc.2020.106464
10.1016/j.ces.2022.117482
10.1016/S0376-7388(02)00259-4
10.1016/0376-7388(95)00102-I
10.1590/0104-6632.20140314s00003031
10.1016/j.memsci.2015.10.007
10.1016/j.ces.2020.115769
10.1038/532435a
10.1016/j.memsci.2009.10.041
10.1016/S0376-7388(00)80721-8
10.1021/ma501488s
10.1039/C9EE01384A
10.1021/acs.chemrev.7b00629
10.1126/science.1146744
10.1016/S0098-1354(00)00625-6
10.1016/j.memsci.2022.120454
10.1016/0376-7388(91)80060-J
10.1002/1521-4125(20020709)25:7<717::AID-CEAT717>3.0.CO;2-N
10.1016/j.pecs.2017.11.002
10.1021/acs.iecr.9b05975
10.1038/nmat4805
10.1021/acs.macromol.7b02460
10.1007/s10311-020-01036-3
10.1016/j.memsci.2014.08.032
10.1016/j.gee.2016.10.003
10.1016/j.ces.2019.07.029
10.1038/nmat4939
10.1016/j.compchemeng.2019.106653
10.1016/j.memsci.2021.119691
10.1016/j.memsci.2018.08.024
10.1002/aic.690420806
10.1080/01496398508060692
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.ces.2022.118406
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4405
ExternalDocumentID 1922270
10_1016_j_ces_2022_118406
S0009250922009915
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
XPP
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIDUJ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
HVGLF
HZ~
NDZJH
R2-
SC5
T9H
VH1
WUQ
Y6R
ZY4
~HD
OTOTI
ID FETCH-LOGICAL-c367t-3f55d069ba8f3073a79915af89444cb63fda1e48b06870f137118cd9f84921893
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000923964800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0009-2509
IngestDate Mon Jan 29 05:13:10 EST 2024
Tue Nov 18 22:28:07 EST 2025
Sat Nov 29 07:31:36 EST 2025
Fri Feb 23 02:34:51 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Global optimization
Process synthesis
Membrane systems
Multicomponent gas separation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-3f55d069ba8f3073a79915af89444cb63fda1e48b06870f137118cd9f84921893
Notes SC0018409
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OpenAccessLink https://www.osti.gov/biblio/2420785
ParticipantIDs osti_scitechconnect_1922270
crossref_citationtrail_10_1016_j_ces_2022_118406
crossref_primary_10_1016_j_ces_2022_118406
elsevier_sciencedirect_doi_10_1016_j_ces_2022_118406
PublicationCentury 2000
PublicationDate 2023-04-05
PublicationDateYYYYMMDD 2023-04-05
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-05
  day: 05
PublicationDecade 2020
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle Chemical engineering science
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sholl, Lively (b0200) 2016; 532
Rose, Bezzu, Carta, Comesanã-Gándara, Lasseuguette, Ferrari, Bernardo, Clarizia, Fuoco, Jansen, Hart, Liyana-Arachchi, Colina, McKeown (b0180) 2017
Shindo, Hakuta, Yoshitome, Inoue (b0195) 1985; 20
Vrbová, Ciahotný (b0220) 2017
Baker, Low (b0025) 2014; 47
Scholz, Alders, Lohaus, Wessling (b0190) 2015; 474
Aguilar-Lugo, Álvarez, Lee, de la Campa, Lozano (b0010) 2018; 51
Ramírez-Santos, Bozorg, Addis, Piccialli, Castel, Favre (b0160) 2018; 566
Gilassi, Taghavi, Rodrigue, Kaliaguine (b0090) 2019; 83
Pettersen, Lien (b0150) 1994; 18
Haider, Lindbråthen, Hägg (b0095) 2016; 1
Robeson (b0170) 1991; 62
Zito, Brunetti, Barbieri (b0230) 2022; 652
Leigh, J.E., Fellague, K.A., Isella, G.C., Roach, P.J. Gas generating system and method for inerting aircraft fuel tanks. 2006. US Patent 7,081,153.
Meckler, Bachman, Robertson, Zhu, Long, Helms (b0130) 2018
Kookos (b0105) 2002; 208
Merkel, Lin, Wei, Baker (b0135) 2010; 359
Taifan, Maravelias (b0210) 2022; 252
Park, Jung, Lee, Hill, Pas, Mudie, Van Wagner, Freeman, Cookson (b0145) 2007
Bestuzheva, K., Besançon, M., Chen, W.K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., et al. The scip optimization suite 8.0. arXiv preprint arXiv:211208872 2021;.
Bozorg, Ramírez-Santos, Addis, Piccialli, Castel, Favre (b0045) 2020; 225
Koros, Zhang (b0110) 2017
Qi, Henson (b0155) 2000; 24
Dechnik, Gascon, Doonan, Janiak, Sumby (b0075) 2017
Low, Budd, McKeown, Patterson (b0125) 2018
Wijmans, Baker (b0225) 1995; 107
Robeson (b0175) 2008; 320
Iulianelli, Drioli (b0100) 2020; 206
Chiwaye, Majozi, Daramola (b0060) 2021; 638
Babcock, Spillman, Goddin, Cooley (b0015) 1988
Beers, K.S., Anderson, C.L. Multiple asm obiggs with different permeability and selectivity membranes. 2012. US Patent 8,245,978.
Ding (b0080) 2020; 59
Liu, Chernikova, Liu, Zhang, Belmabkhout, Shekhah, Zhang, Yi, Eddaoudi, Koros (b0120) 2018
Ryu, Kong, de Lima, Maravelias (b0185) 2020; 133
Rezakazemi, Sadrzadeh, Matsuura (b0165) 2018
Stern, Perrin, Naimon (b0205) 1984
Ohs, Lohaus, Wessling (b0140) 2016; 498
Comesaña-Gándara, Chen, Bezzu, Carta, Rose, Ferrari, Esposito, Fuoco, Jansen, McKeown (b0065) 2019; 12
Falbo, Tasselli, Brunetti, Drioli, Barbieri (b0085) 2014; 31
Castel, Favre (b0050) 2018; 548
Agrawal, Xu (b0005) 1996
Baena-Moreno, le Saché, Pastor-Pérez, Reina (b0020) 2020
Bozorg, Addis, Piccialli, Ramírez-Santos, Castel, Pinnau, Favre (b0040) 2019; 207
Chen (b0055) 1987
Davis (b0070) 2002; 25
Velasco, Gooty, Tawarmalani, Agrawal (b0215) 2021; 636
Pettersen (10.1016/j.ces.2022.118406_b0150) 1994; 18
Comesaña-Gándara (10.1016/j.ces.2022.118406_b0065) 2019; 12
Rezakazemi (10.1016/j.ces.2022.118406_b0165) 2018
Iulianelli (10.1016/j.ces.2022.118406_b0100) 2020; 206
Liu (10.1016/j.ces.2022.118406_b0120) 2018
Stern (10.1016/j.ces.2022.118406_b0205) 1984
Ryu (10.1016/j.ces.2022.118406_b0185) 2020; 133
Taifan (10.1016/j.ces.2022.118406_b0210) 2022; 252
Velasco (10.1016/j.ces.2022.118406_b0215) 2021; 636
Scholz (10.1016/j.ces.2022.118406_b0190) 2015; 474
Low (10.1016/j.ces.2022.118406_b0125) 2018
Davis (10.1016/j.ces.2022.118406_b0070) 2002; 25
Zito (10.1016/j.ces.2022.118406_b0230) 2022; 652
Kookos (10.1016/j.ces.2022.118406_b0105) 2002; 208
Chen (10.1016/j.ces.2022.118406_b0055) 1987
Robeson (10.1016/j.ces.2022.118406_b0175) 2008; 320
Qi (10.1016/j.ces.2022.118406_b0155) 2000; 24
10.1016/j.ces.2022.118406_b0030
Haider (10.1016/j.ces.2022.118406_b0095) 2016; 1
Castel (10.1016/j.ces.2022.118406_b0050) 2018; 548
10.1016/j.ces.2022.118406_b0035
Baena-Moreno (10.1016/j.ces.2022.118406_b0020) 2020
Agrawal (10.1016/j.ces.2022.118406_b0005) 1996
10.1016/j.ces.2022.118406_b0115
Gilassi (10.1016/j.ces.2022.118406_b0090) 2019; 83
Ramírez-Santos (10.1016/j.ces.2022.118406_b0160) 2018; 566
Merkel (10.1016/j.ces.2022.118406_b0135) 2010; 359
Park (10.1016/j.ces.2022.118406_b0145) 2007
Robeson (10.1016/j.ces.2022.118406_b0170) 1991; 62
Shindo (10.1016/j.ces.2022.118406_b0195) 1985; 20
Baker (10.1016/j.ces.2022.118406_b0025) 2014; 47
Wijmans (10.1016/j.ces.2022.118406_b0225) 1995; 107
Bozorg (10.1016/j.ces.2022.118406_b0045) 2020; 225
Ohs (10.1016/j.ces.2022.118406_b0140) 2016; 498
Bozorg (10.1016/j.ces.2022.118406_b0040) 2019; 207
Falbo (10.1016/j.ces.2022.118406_b0085) 2014; 31
Sholl (10.1016/j.ces.2022.118406_b0200) 2016; 532
Dechnik (10.1016/j.ces.2022.118406_b0075) 2017
Aguilar-Lugo (10.1016/j.ces.2022.118406_b0010) 2018; 51
Ding (10.1016/j.ces.2022.118406_b0080) 2020; 59
Koros (10.1016/j.ces.2022.118406_b0110) 2017
Chiwaye (10.1016/j.ces.2022.118406_b0060) 2021; 638
Meckler (10.1016/j.ces.2022.118406_b0130) 2018
Babcock (10.1016/j.ces.2022.118406_b0015) 1988
Rose (10.1016/j.ces.2022.118406_b0180) 2017
Vrbová (10.1016/j.ces.2022.118406_b0220) 2017
References_xml – reference: Beers, K.S., Anderson, C.L. Multiple asm obiggs with different permeability and selectivity membranes. 2012. US Patent 8,245,978.
– volume: 548
  start-page: 345
  year: 2018
  end-page: 357
  ident: b0050
  article-title: Membrane separations and energy efficiency
  publication-title: J. Membr. Sci.
– volume: 636
  start-page: 119514
  year: 2021
  ident: b0215
  article-title: Optimal design of membrane cascades for gaseous and liquid mixtures via minlp
  publication-title: J. Membr. Sci.
– volume: 206
  start-page: 106464
  year: 2020
  ident: b0100
  article-title: Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications
  publication-title: Fuel Process. Technol.
– volume: 638
  start-page: 119691
  year: 2021
  ident: b0060
  article-title: On optimisation of n2 and co2-selective hybrid membrane process systems for post-combustion co2 capture from coal-fired power plants
  publication-title: J. Membr. Sci.
– volume: 208
  start-page: 193
  year: 2002
  end-page: 202
  ident: b0105
  article-title: A targeting approach to the synthesis of membrane networks for gas separations
  publication-title: J. Membr. Sci.
– reference: Bestuzheva, K., Besançon, M., Chen, W.K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., et al. The scip optimization suite 8.0. arXiv preprint arXiv:211208872 2021;.
– volume: 31
  start-page: 1023
  year: 2014
  end-page: 1034
  ident: b0085
  article-title: Polyimide hollow fiber membranes for co2 separation from wet gas mixtures
  publication-title: Braz. J. Chem. Eng.
– volume: 474
  start-page: 1
  year: 2015
  end-page: 10
  ident: b0190
  article-title: Structural optimization of membrane-based biogas upgrading processes
  publication-title: J. Membr. Sci.
– volume: 252
  start-page: 117482
  year: 2022
  ident: b0210
  article-title: Generalized optimization-based synthesis of membrane systems for multicomponent gas mixture separation
  publication-title: Chem. Eng. Sci.
– volume: 83
  start-page: 195
  year: 2019
  end-page: 207
  ident: b0090
  article-title: Optimizing membrane module for biogas separation
  publication-title: Int. J. Greenhouse Gas Control
– year: 2017
  ident: b0180
  article-title: Polymer ultrapermeability from the inefficient packing of 2d chains
  publication-title: Nat. Mater.
– volume: 20
  start-page: 445
  year: 1985
  end-page: 459
  ident: b0195
  article-title: Calculation methods for multicomponent gas separation by permeation
  publication-title: Sep. Sci. Technol.
– year: 2017
  ident: b0110
  article-title: Materials for next-generation molecularly selective synthetic membranes
  publication-title: Nat. Mater.
– volume: 320
  start-page: 390
  year: 2008
  end-page: 400
  ident: b0175
  article-title: The upper bound revisited
  publication-title: J. Membr. Sci.
– year: 2017
  ident: b0220
  article-title: Upgrading biogas to biomethane using membrane separation
  publication-title: Energy Fuels
– volume: 107
  start-page: 1
  year: 1995
  end-page: 21
  ident: b0225
  article-title: The solution-diffusion model: a review
  publication-title: J. Membr. Sci.
– year: 2018
  ident: b0120
  article-title: Mixed matrix formulations with mof molecular sieving for key energy-intensive separations
  publication-title: Nat. Mater.
– volume: 207
  start-page: 1196
  year: 2019
  end-page: 1213
  ident: b0040
  article-title: Polymeric membrane materials for nitrogen production from air: A process synthesis study
  publication-title: Chem. Eng. Sci.
– volume: 51
  start-page: 1605
  year: 2018
  end-page: 1619
  ident: b0010
  article-title: Thermally rearranged polybenzoxazoles containing bulky adamantyl groups from ortho-substituted precursor copolyimides
  publication-title: Macromolecules
– volume: 1
  start-page: 222
  year: 2016
  end-page: 234
  ident: b0095
  article-title: Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology
  publication-title: Green Energy Environ.
– volume: 652
  start-page: 120454
  year: 2022
  ident: b0230
  article-title: Multi-step membrane process for biogas upgrading
  publication-title: J. Membr. Sci.
– year: 2017
  ident: b0075
  article-title: Mixed-matrix membranes
  publication-title: Angew. Chem. - Int. Ed.
– volume: 47
  start-page: 6999
  year: 2014
  end-page: 7013
  ident: b0025
  article-title: Gas separation membrane materials: A perspective
  publication-title: Macromolecules
– year: 2020
  ident: b0020
  article-title: Membrane-based technologies for biogas upgrading: a review
  publication-title: Environ. Chem. Lett.
– volume: 12
  start-page: 2733
  year: 2019
  end-page: 2740
  ident: b0065
  article-title: Redefining the robeson upper bounds for co 2/ch 4 and co 2/n 2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity
  publication-title: Energy & Environ. Sci.
– volume: 18
  start-page: 427
  year: 1994
  end-page: 439
  ident: b0150
  article-title: A new robust design model for gas separating membrane modules, based on analogy with counter-current heat exchangers
  publication-title: Comput. Chem. Eng.
– year: 2018
  ident: b0165
  article-title: Thermally stable polymers for advanced high-performance gas separation membranes
  publication-title: Prog. Energy Combust. Sci.
– year: 1996
  ident: b0005
  article-title: Gas-separation membrane cascades utilizing limited numbers of compressors
  publication-title: AIChE J.
– year: 2018
  ident: b0130
  article-title: Thermally rearranged polymer membranes containing tröger’s base units have exceptional performance for air separations
  publication-title: Angew. Chem. - Int. Ed.
– reference: Leigh, J.E., Fellague, K.A., Isella, G.C., Roach, P.J. Gas generating system and method for inerting aircraft fuel tanks. 2006. US Patent 7,081,153.
– year: 2007
  ident: b0145
  article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions
  publication-title: Science
– year: 2018
  ident: b0125
  article-title: Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers
  publication-title: Chem. Rev.
– volume: 566
  start-page: 346
  year: 2018
  end-page: 366
  ident: b0160
  article-title: Optimization of multistage membrane gas separation processes. example of application to co2 capture from blast furnace gas
  publication-title: J. Membr. Sci.
– volume: 25
  start-page: 717
  year: 2002
  end-page: 722
  ident: b0070
  article-title: Simple gas permeation and pervaporation membrane unit operation models for process simulators
  publication-title: Chem. Eng. Technol.
– volume: 133
  start-page: 106653
  year: 2020
  ident: b0185
  article-title: A generalized superstructure-based framework for process synthesis
  publication-title: Comput. Chem. Eng.
– volume: 59
  start-page: 556
  year: 2020
  end-page: 568
  ident: b0080
  article-title: Perspective on gas separation membrane materials from process economics point of view
  publication-title: Industr. Eng. Chem. Res.
– volume: 24
  start-page: 2719
  year: 2000
  end-page: 2737
  ident: b0155
  article-title: Membrane system design for multicomponent gas mixtures via mixed-integer nonlinear programming
  publication-title: Comput. Chem. Eng.
– volume: 62
  start-page: 165
  year: 1991
  end-page: 185
  ident: b0170
  article-title: Correlation of separation factor versus permeability for polymeric membranes
  publication-title: J. Membr. Sci.
– volume: 532
  start-page: 435
  year: 2016
  end-page: 437
  ident: b0200
  article-title: Seven chemical separations to change the world
  publication-title: Nature
– year: 1984
  ident: b0205
  article-title: Recycle and multimembrane permeators for gas separations
  publication-title: J. Membr. Sci.
– year: 1987
  ident: b0055
  article-title: Comments on improvements on a replacement for the logarithmic mean
  publication-title: Chem. Eng. Sci.
– volume: 359
  start-page: 126
  year: 2010
  end-page: 139
  ident: b0135
  article-title: Power plant post-combustion carbon dioxide capture: An opportunity for membranes
  publication-title: J. Membr. Sci.
– volume: 498
  start-page: 291
  year: 2016
  end-page: 301
  ident: b0140
  article-title: Optimization of membrane based nitrogen removal from natural gas
  publication-title: J. Membr. Sci.
– year: 1988
  ident: b0015
  article-title: Natural gas cleanup: A comparison of membrane and amine treatment processes
  publication-title: Energy progress
– volume: 225
  start-page: 115769
  year: 2020
  ident: b0045
  article-title: Optimal process design of biogas upgrading membrane systems: Polymeric vs high performance inorganic membrane materials
  publication-title: Chem. Eng. Sci.
– volume: 83
  start-page: 195
  year: 2019
  ident: 10.1016/j.ces.2022.118406_b0090
  article-title: Optimizing membrane module for biogas separation
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2019.02.010
– volume: 548
  start-page: 345
  year: 2018
  ident: 10.1016/j.ces.2022.118406_b0050
  article-title: Membrane separations and energy efficiency
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.11.035
– volume: 18
  start-page: 427
  issue: 5
  year: 1994
  ident: 10.1016/j.ces.2022.118406_b0150
  article-title: A new robust design model for gas separating membrane modules, based on analogy with counter-current heat exchangers
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(94)88021-2
– volume: 636
  start-page: 119514
  year: 2021
  ident: 10.1016/j.ces.2022.118406_b0215
  article-title: Optimal design of membrane cascades for gaseous and liquid mixtures via minlp
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119514
– volume: 320
  start-page: 390
  issue: 1–2
  year: 2008
  ident: 10.1016/j.ces.2022.118406_b0175
  article-title: The upper bound revisited
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.04.030
– year: 2017
  ident: 10.1016/j.ces.2022.118406_b0220
  article-title: Upgrading biogas to biomethane using membrane separation
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.7b00120
– year: 1987
  ident: 10.1016/j.ces.2022.118406_b0055
  article-title: Comments on improvements on a replacement for the logarithmic mean
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(87)80128-8
– volume: 206
  start-page: 106464
  year: 2020
  ident: 10.1016/j.ces.2022.118406_b0100
  article-title: Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2020.106464
– volume: 252
  start-page: 117482
  year: 2022
  ident: 10.1016/j.ces.2022.118406_b0210
  article-title: Generalized optimization-based synthesis of membrane systems for multicomponent gas mixture separation
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.117482
– volume: 208
  start-page: 193
  issue: 1–2
  year: 2002
  ident: 10.1016/j.ces.2022.118406_b0105
  article-title: A targeting approach to the synthesis of membrane networks for gas separations
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(02)00259-4
– volume: 107
  start-page: 1
  issue: 1–2
  year: 1995
  ident: 10.1016/j.ces.2022.118406_b0225
  article-title: The solution-diffusion model: a review
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(95)00102-I
– volume: 31
  start-page: 1023
  issue: 4
  year: 2014
  ident: 10.1016/j.ces.2022.118406_b0085
  article-title: Polyimide hollow fiber membranes for co2 separation from wet gas mixtures
  publication-title: Braz. J. Chem. Eng.
  doi: 10.1590/0104-6632.20140314s00003031
– year: 1988
  ident: 10.1016/j.ces.2022.118406_b0015
  article-title: Natural gas cleanup: A comparison of membrane and amine treatment processes
  publication-title: Energy progress
– volume: 498
  start-page: 291
  year: 2016
  ident: 10.1016/j.ces.2022.118406_b0140
  article-title: Optimization of membrane based nitrogen removal from natural gas
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.10.007
– volume: 225
  start-page: 115769
  year: 2020
  ident: 10.1016/j.ces.2022.118406_b0045
  article-title: Optimal process design of biogas upgrading membrane systems: Polymeric vs high performance inorganic membrane materials
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.115769
– volume: 532
  start-page: 435
  issue: 7600
  year: 2016
  ident: 10.1016/j.ces.2022.118406_b0200
  article-title: Seven chemical separations to change the world
  publication-title: Nature
  doi: 10.1038/532435a
– volume: 359
  start-page: 126
  issue: 1–2
  year: 2010
  ident: 10.1016/j.ces.2022.118406_b0135
  article-title: Power plant post-combustion carbon dioxide capture: An opportunity for membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.10.041
– year: 1984
  ident: 10.1016/j.ces.2022.118406_b0205
  article-title: Recycle and multimembrane permeators for gas separations
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)80721-8
– volume: 47
  start-page: 6999
  issue: 20
  year: 2014
  ident: 10.1016/j.ces.2022.118406_b0025
  article-title: Gas separation membrane materials: A perspective
  publication-title: Macromolecules
  doi: 10.1021/ma501488s
– volume: 12
  start-page: 2733
  issue: 9
  year: 2019
  ident: 10.1016/j.ces.2022.118406_b0065
  article-title: Redefining the robeson upper bounds for co 2/ch 4 and co 2/n 2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity
  publication-title: Energy & Environ. Sci.
  doi: 10.1039/C9EE01384A
– year: 2018
  ident: 10.1016/j.ces.2022.118406_b0125
  article-title: Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00629
– year: 2007
  ident: 10.1016/j.ces.2022.118406_b0145
  article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions
  publication-title: Science
  doi: 10.1126/science.1146744
– volume: 24
  start-page: 2719
  issue: 12
  year: 2000
  ident: 10.1016/j.ces.2022.118406_b0155
  article-title: Membrane system design for multicomponent gas mixtures via mixed-integer nonlinear programming
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(00)00625-6
– volume: 652
  start-page: 120454
  year: 2022
  ident: 10.1016/j.ces.2022.118406_b0230
  article-title: Multi-step membrane process for biogas upgrading
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2022.120454
– ident: 10.1016/j.ces.2022.118406_b0035
– volume: 62
  start-page: 165
  issue: 2
  year: 1991
  ident: 10.1016/j.ces.2022.118406_b0170
  article-title: Correlation of separation factor versus permeability for polymeric membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(91)80060-J
– volume: 25
  start-page: 717
  issue: 7
  year: 2002
  ident: 10.1016/j.ces.2022.118406_b0070
  article-title: Simple gas permeation and pervaporation membrane unit operation models for process simulators
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/1521-4125(20020709)25:7<717::AID-CEAT717>3.0.CO;2-N
– year: 2018
  ident: 10.1016/j.ces.2022.118406_b0165
  article-title: Thermally stable polymers for advanced high-performance gas separation membranes
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2017.11.002
– volume: 59
  start-page: 556
  issue: 2
  year: 2020
  ident: 10.1016/j.ces.2022.118406_b0080
  article-title: Perspective on gas separation membrane materials from process economics point of view
  publication-title: Industr. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b05975
– year: 2017
  ident: 10.1016/j.ces.2022.118406_b0110
  article-title: Materials for next-generation molecularly selective synthetic membranes
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4805
– ident: 10.1016/j.ces.2022.118406_b0115
– volume: 51
  start-page: 1605
  issue: 5
  year: 2018
  ident: 10.1016/j.ces.2022.118406_b0010
  article-title: Thermally rearranged polybenzoxazoles containing bulky adamantyl groups from ortho-substituted precursor copolyimides
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b02460
– year: 2020
  ident: 10.1016/j.ces.2022.118406_b0020
  article-title: Membrane-based technologies for biogas upgrading: a review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-020-01036-3
– year: 2017
  ident: 10.1016/j.ces.2022.118406_b0075
  article-title: Mixed-matrix membranes
  publication-title: Angew. Chem. - Int. Ed.
– year: 2018
  ident: 10.1016/j.ces.2022.118406_b0120
  article-title: Mixed matrix formulations with mof molecular sieving for key energy-intensive separations
  publication-title: Nat. Mater.
– volume: 474
  start-page: 1
  year: 2015
  ident: 10.1016/j.ces.2022.118406_b0190
  article-title: Structural optimization of membrane-based biogas upgrading processes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.08.032
– volume: 1
  start-page: 222
  issue: 3
  year: 2016
  ident: 10.1016/j.ces.2022.118406_b0095
  article-title: Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2016.10.003
– volume: 207
  start-page: 1196
  year: 2019
  ident: 10.1016/j.ces.2022.118406_b0040
  article-title: Polymeric membrane materials for nitrogen production from air: A process synthesis study
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.07.029
– year: 2018
  ident: 10.1016/j.ces.2022.118406_b0130
  article-title: Thermally rearranged polymer membranes containing tröger’s base units have exceptional performance for air separations
  publication-title: Angew. Chem. - Int. Ed.
– ident: 10.1016/j.ces.2022.118406_b0030
– year: 2017
  ident: 10.1016/j.ces.2022.118406_b0180
  article-title: Polymer ultrapermeability from the inefficient packing of 2d chains
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4939
– volume: 133
  start-page: 106653
  year: 2020
  ident: 10.1016/j.ces.2022.118406_b0185
  article-title: A generalized superstructure-based framework for process synthesis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106653
– volume: 638
  start-page: 119691
  year: 2021
  ident: 10.1016/j.ces.2022.118406_b0060
  article-title: On optimisation of n2 and co2-selective hybrid membrane process systems for post-combustion co2 capture from coal-fired power plants
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119691
– volume: 566
  start-page: 346
  year: 2018
  ident: 10.1016/j.ces.2022.118406_b0160
  article-title: Optimization of multistage membrane gas separation processes. example of application to co2 capture from blast furnace gas
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.08.024
– year: 1996
  ident: 10.1016/j.ces.2022.118406_b0005
  article-title: Gas-separation membrane cascades utilizing limited numbers of compressors
  publication-title: AIChE J.
  doi: 10.1002/aic.690420806
– volume: 20
  start-page: 445
  issue: 5–6
  year: 1985
  ident: 10.1016/j.ces.2022.118406_b0195
  article-title: Calculation methods for multicomponent gas separation by permeation
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496398508060692
SSID ssj0007710
Score 2.4296217
Snippet •Proposed optimization-based approach to synthesize membrane systems.•Considered membrane system synthesis and material design simultaneously.•Approach...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 118406
SubjectTerms Global optimization
Membrane systems
Multicomponent gas separation
Process synthesis
Title Integrated membrane material design and system synthesis
URI https://dx.doi.org/10.1016/j.ces.2022.118406
https://www.osti.gov/biblio/1922270
Volume 269
WOSCitedRecordID wos000923964800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-4405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007710
  issn: 0009-2509
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELagMMCAeIpSQBmYqBLl4cT2WKHyGhBDkbpFru1IrSCtmoL68znHeVFRBAOLFSWx4-RzPt85l-8QulLaBmWS2q7A4KB4HNuMUmVzTgVnQkp3RPNkE-TpiQ6H7LnI4Z7l6QRImtLlks3-FWrYB2DrX2f_AHfVKOyAbQAdSoAdyl8B_1AKQMjum3oDZzjVMaqL_NJdmQds5F8MjIazliwAGzAbZ00ztZIRULVcYbeYLGtff5yY1dM7Pp8DBTnPTr2-rbMavY55U8Ag6w6c5iKDH-SxKeEX4mQ2WEusSZy-SbJSUJ-nfcXoW1Y2CwQTB5gPPHLfd-pzvypgr8xMVbxgGYo2iaGJWDcRmyY20ZZPQgZ0ttV76A8fq0mYEM8tk-jpfpcftPPQvpV-rDNJWlNg2Ya1MdhHe4WbYPUMvAdoQ6WHaLchHnmEaA20VQJtlUBbBmgLgLYM0FYF9DF6ue0Pbu7tIg-GLYKILOwgCUPpRmzEaaIpmRMw6kOeUIYxFqMoSCT3FKYjNwL2TbyAwH0JyRKKGVhwLDhBrXSaqlNkaZLl8NIyOIojCqVgkiusQi4TX4Zt5JaPIhaFSLzOVfIar4Wgja6rKjOjkPLTybh8vnExao3pFsNY-alaR2Ohq2hpY6FjwKAOeCe-T9yzv_Sgg3bqAX6OWov5u7pA2-JjMc7ml8Uw-gRvK3ls
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+membrane+material+design+and+system+synthesis&rft.jtitle=Chemical+engineering+science&rft.au=Taifan%2C+Garry+S.P.&rft.au=Maravelias%2C+Christos+T.&rft.date=2023-04-05&rft.issn=0009-2509&rft.volume=269&rft.spage=118406&rft_id=info:doi/10.1016%2Fj.ces.2022.118406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ces_2022_118406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon