Integrated membrane material design and system synthesis
•Proposed optimization-based approach to synthesize membrane systems.•Considered membrane system synthesis and material design simultaneously.•Approach accounts for trade-offs between material properties and cost.•Framework leads to the design of better membrane systems. In designing membrane system...
Uloženo v:
| Vydáno v: | Chemical engineering science Ročník 269; číslo C; s. 118406 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United Kingdom
Elsevier Ltd
05.04.2023
Elsevier |
| Témata: | |
| ISSN: | 0009-2509, 1873-4405 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Proposed optimization-based approach to synthesize membrane systems.•Considered membrane system synthesis and material design simultaneously.•Approach accounts for trade-offs between material properties and cost.•Framework leads to the design of better membrane systems.
In designing membrane systems, the synergy between membrane materials and the process design is often overlooked. We present a mixed-integer nonlinear programming (MINLP) model for synthesizing membrane systems while simultaneously designing the respective membrane materials for multicomponent gas separation. The approach considers superstructure representations for systems with: (1) same, (2) potentially different, and (3) property-targeting membrane materials. In the first two systems, the selection of membrane material is a decision, while in the final type, membrane permeances are subject to optimization. Physics-based surrogate models are used to describe permeation in crossflow and countercurrent flow permeators. We show that, through a case study of biogas upgrading, our approach obtains high quality solutions. Furthermore, we use the proposed approach while considering permeance-based production cost to find the optimal membrane. |
|---|---|
| AbstractList | •Proposed optimization-based approach to synthesize membrane systems.•Considered membrane system synthesis and material design simultaneously.•Approach accounts for trade-offs between material properties and cost.•Framework leads to the design of better membrane systems.
In designing membrane systems, the synergy between membrane materials and the process design is often overlooked. We present a mixed-integer nonlinear programming (MINLP) model for synthesizing membrane systems while simultaneously designing the respective membrane materials for multicomponent gas separation. The approach considers superstructure representations for systems with: (1) same, (2) potentially different, and (3) property-targeting membrane materials. In the first two systems, the selection of membrane material is a decision, while in the final type, membrane permeances are subject to optimization. Physics-based surrogate models are used to describe permeation in crossflow and countercurrent flow permeators. We show that, through a case study of biogas upgrading, our approach obtains high quality solutions. Furthermore, we use the proposed approach while considering permeance-based production cost to find the optimal membrane. |
| ArticleNumber | 118406 |
| Author | Taifan, Garry S.P. Maravelias, Christos T. |
| Author_xml | – sequence: 1 givenname: Garry S.P. surname: Taifan fullname: Taifan, Garry S.P. organization: Department of Chemical and Biological Engineering, Princeton University, 50-70 Olden St, Princeton 08540, NJ, USA – sequence: 2 givenname: Christos T. surname: Maravelias fullname: Maravelias, Christos T. email: maravelias@princeton.edu organization: Department of Chemical and Biological Engineering, Princeton University, 50-70 Olden St, Princeton 08540, NJ, USA |
| BackLink | https://www.osti.gov/biblio/1922270$$D View this record in Osti.gov |
| BookMark | eNp9kEtLAzEUhYNUsK3-AHeD-xmTzCMJrqT4KBTc6Dpkkps2pZORJAj992YYVy66upzL-S7nnhVa-NEDQvcEVwST7vFYaYgVxZRWhPAGd1doSTiry6bB7QItMcaipC0WN2gV4zFLxgheIr71CfZBJTDFAEMflIdiyDI4dSoMRLf3hfKmiOeYYMjDp0Pexlt0bdUpwt3fXKOv15fPzXu5-3jbbp53pa47lsratq3BnegVtzVmtWJCkFZZLpqm0X1XW6MINLzHHWfYkprl-NoIyxtBCRf1Gj3Md8eYnIzaJdAHPXoPOkkiKKUMZxObTTqMMQawMvtUcqNPQbmTJFhOLcmjzC3JqSU5t5RJ8o_8Dm5Q4XyReZoZyH__OAhTLPAajAtTKjO6C_Qv_RqANQ |
| CitedBy_id | crossref_primary_10_1016_j_memsci_2024_123574 crossref_primary_10_1016_j_compchemeng_2024_108616 crossref_primary_10_1016_j_seppur_2025_134225 crossref_primary_10_1021_acs_iecr_4c03693 |
| Cites_doi | 10.1016/j.ijggc.2019.02.010 10.1016/j.memsci.2017.11.035 10.1016/0098-1354(94)88021-2 10.1016/j.memsci.2021.119514 10.1016/j.memsci.2008.04.030 10.1021/acs.energyfuels.7b00120 10.1016/0009-2509(87)80128-8 10.1016/j.fuproc.2020.106464 10.1016/j.ces.2022.117482 10.1016/S0376-7388(02)00259-4 10.1016/0376-7388(95)00102-I 10.1590/0104-6632.20140314s00003031 10.1016/j.memsci.2015.10.007 10.1016/j.ces.2020.115769 10.1038/532435a 10.1016/j.memsci.2009.10.041 10.1016/S0376-7388(00)80721-8 10.1021/ma501488s 10.1039/C9EE01384A 10.1021/acs.chemrev.7b00629 10.1126/science.1146744 10.1016/S0098-1354(00)00625-6 10.1016/j.memsci.2022.120454 10.1016/0376-7388(91)80060-J 10.1002/1521-4125(20020709)25:7<717::AID-CEAT717>3.0.CO;2-N 10.1016/j.pecs.2017.11.002 10.1021/acs.iecr.9b05975 10.1038/nmat4805 10.1021/acs.macromol.7b02460 10.1007/s10311-020-01036-3 10.1016/j.memsci.2014.08.032 10.1016/j.gee.2016.10.003 10.1016/j.ces.2019.07.029 10.1038/nmat4939 10.1016/j.compchemeng.2019.106653 10.1016/j.memsci.2021.119691 10.1016/j.memsci.2018.08.024 10.1002/aic.690420806 10.1080/01496398508060692 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION OTOTI |
| DOI | 10.1016/j.ces.2022.118406 |
| DatabaseName | CrossRef OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-4405 |
| ExternalDocumentID | 1922270 10_1016_j_ces_2022_118406 S0009250922009915 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLY IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K XPP ZMT ~02 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIDUJ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB HVGLF HZ~ NDZJH R2- SC5 T9H VH1 WUQ Y6R ZY4 ~HD OTOTI |
| ID | FETCH-LOGICAL-c367t-3f55d069ba8f3073a79915af89444cb63fda1e48b06870f137118cd9f84921893 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000923964800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0009-2509 |
| IngestDate | Mon Jan 29 05:13:10 EST 2024 Tue Nov 18 22:28:07 EST 2025 Sat Nov 29 07:31:36 EST 2025 Fri Feb 23 02:34:51 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | Global optimization Process synthesis Membrane systems Multicomponent gas separation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-3f55d069ba8f3073a79915af89444cb63fda1e48b06870f137118cd9f84921893 |
| Notes | SC0018409 USDOE Office of Science (SC), Biological and Environmental Research (BER) |
| OpenAccessLink | https://www.osti.gov/biblio/2420785 |
| ParticipantIDs | osti_scitechconnect_1922270 crossref_citationtrail_10_1016_j_ces_2022_118406 crossref_primary_10_1016_j_ces_2022_118406 elsevier_sciencedirect_doi_10_1016_j_ces_2022_118406 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-05 |
| PublicationDateYYYYMMDD | 2023-04-05 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | United Kingdom |
| PublicationPlace_xml | – name: United Kingdom |
| PublicationTitle | Chemical engineering science |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Sholl, Lively (b0200) 2016; 532 Rose, Bezzu, Carta, Comesanã-Gándara, Lasseuguette, Ferrari, Bernardo, Clarizia, Fuoco, Jansen, Hart, Liyana-Arachchi, Colina, McKeown (b0180) 2017 Shindo, Hakuta, Yoshitome, Inoue (b0195) 1985; 20 Vrbová, Ciahotný (b0220) 2017 Baker, Low (b0025) 2014; 47 Scholz, Alders, Lohaus, Wessling (b0190) 2015; 474 Aguilar-Lugo, Álvarez, Lee, de la Campa, Lozano (b0010) 2018; 51 Ramírez-Santos, Bozorg, Addis, Piccialli, Castel, Favre (b0160) 2018; 566 Gilassi, Taghavi, Rodrigue, Kaliaguine (b0090) 2019; 83 Pettersen, Lien (b0150) 1994; 18 Haider, Lindbråthen, Hägg (b0095) 2016; 1 Robeson (b0170) 1991; 62 Zito, Brunetti, Barbieri (b0230) 2022; 652 Leigh, J.E., Fellague, K.A., Isella, G.C., Roach, P.J. Gas generating system and method for inerting aircraft fuel tanks. 2006. US Patent 7,081,153. Meckler, Bachman, Robertson, Zhu, Long, Helms (b0130) 2018 Kookos (b0105) 2002; 208 Merkel, Lin, Wei, Baker (b0135) 2010; 359 Taifan, Maravelias (b0210) 2022; 252 Park, Jung, Lee, Hill, Pas, Mudie, Van Wagner, Freeman, Cookson (b0145) 2007 Bestuzheva, K., Besançon, M., Chen, W.K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., et al. The scip optimization suite 8.0. arXiv preprint arXiv:211208872 2021;. Bozorg, Ramírez-Santos, Addis, Piccialli, Castel, Favre (b0045) 2020; 225 Koros, Zhang (b0110) 2017 Qi, Henson (b0155) 2000; 24 Dechnik, Gascon, Doonan, Janiak, Sumby (b0075) 2017 Low, Budd, McKeown, Patterson (b0125) 2018 Wijmans, Baker (b0225) 1995; 107 Robeson (b0175) 2008; 320 Iulianelli, Drioli (b0100) 2020; 206 Chiwaye, Majozi, Daramola (b0060) 2021; 638 Babcock, Spillman, Goddin, Cooley (b0015) 1988 Beers, K.S., Anderson, C.L. Multiple asm obiggs with different permeability and selectivity membranes. 2012. US Patent 8,245,978. Ding (b0080) 2020; 59 Liu, Chernikova, Liu, Zhang, Belmabkhout, Shekhah, Zhang, Yi, Eddaoudi, Koros (b0120) 2018 Ryu, Kong, de Lima, Maravelias (b0185) 2020; 133 Rezakazemi, Sadrzadeh, Matsuura (b0165) 2018 Stern, Perrin, Naimon (b0205) 1984 Ohs, Lohaus, Wessling (b0140) 2016; 498 Comesaña-Gándara, Chen, Bezzu, Carta, Rose, Ferrari, Esposito, Fuoco, Jansen, McKeown (b0065) 2019; 12 Falbo, Tasselli, Brunetti, Drioli, Barbieri (b0085) 2014; 31 Castel, Favre (b0050) 2018; 548 Agrawal, Xu (b0005) 1996 Baena-Moreno, le Saché, Pastor-Pérez, Reina (b0020) 2020 Bozorg, Addis, Piccialli, Ramírez-Santos, Castel, Pinnau, Favre (b0040) 2019; 207 Chen (b0055) 1987 Davis (b0070) 2002; 25 Velasco, Gooty, Tawarmalani, Agrawal (b0215) 2021; 636 Pettersen (10.1016/j.ces.2022.118406_b0150) 1994; 18 Comesaña-Gándara (10.1016/j.ces.2022.118406_b0065) 2019; 12 Rezakazemi (10.1016/j.ces.2022.118406_b0165) 2018 Iulianelli (10.1016/j.ces.2022.118406_b0100) 2020; 206 Liu (10.1016/j.ces.2022.118406_b0120) 2018 Stern (10.1016/j.ces.2022.118406_b0205) 1984 Ryu (10.1016/j.ces.2022.118406_b0185) 2020; 133 Taifan (10.1016/j.ces.2022.118406_b0210) 2022; 252 Velasco (10.1016/j.ces.2022.118406_b0215) 2021; 636 Scholz (10.1016/j.ces.2022.118406_b0190) 2015; 474 Low (10.1016/j.ces.2022.118406_b0125) 2018 Davis (10.1016/j.ces.2022.118406_b0070) 2002; 25 Zito (10.1016/j.ces.2022.118406_b0230) 2022; 652 Kookos (10.1016/j.ces.2022.118406_b0105) 2002; 208 Chen (10.1016/j.ces.2022.118406_b0055) 1987 Robeson (10.1016/j.ces.2022.118406_b0175) 2008; 320 Qi (10.1016/j.ces.2022.118406_b0155) 2000; 24 10.1016/j.ces.2022.118406_b0030 Haider (10.1016/j.ces.2022.118406_b0095) 2016; 1 Castel (10.1016/j.ces.2022.118406_b0050) 2018; 548 10.1016/j.ces.2022.118406_b0035 Baena-Moreno (10.1016/j.ces.2022.118406_b0020) 2020 Agrawal (10.1016/j.ces.2022.118406_b0005) 1996 10.1016/j.ces.2022.118406_b0115 Gilassi (10.1016/j.ces.2022.118406_b0090) 2019; 83 Ramírez-Santos (10.1016/j.ces.2022.118406_b0160) 2018; 566 Merkel (10.1016/j.ces.2022.118406_b0135) 2010; 359 Park (10.1016/j.ces.2022.118406_b0145) 2007 Robeson (10.1016/j.ces.2022.118406_b0170) 1991; 62 Shindo (10.1016/j.ces.2022.118406_b0195) 1985; 20 Baker (10.1016/j.ces.2022.118406_b0025) 2014; 47 Wijmans (10.1016/j.ces.2022.118406_b0225) 1995; 107 Bozorg (10.1016/j.ces.2022.118406_b0045) 2020; 225 Ohs (10.1016/j.ces.2022.118406_b0140) 2016; 498 Bozorg (10.1016/j.ces.2022.118406_b0040) 2019; 207 Falbo (10.1016/j.ces.2022.118406_b0085) 2014; 31 Sholl (10.1016/j.ces.2022.118406_b0200) 2016; 532 Dechnik (10.1016/j.ces.2022.118406_b0075) 2017 Aguilar-Lugo (10.1016/j.ces.2022.118406_b0010) 2018; 51 Ding (10.1016/j.ces.2022.118406_b0080) 2020; 59 Koros (10.1016/j.ces.2022.118406_b0110) 2017 Chiwaye (10.1016/j.ces.2022.118406_b0060) 2021; 638 Meckler (10.1016/j.ces.2022.118406_b0130) 2018 Babcock (10.1016/j.ces.2022.118406_b0015) 1988 Rose (10.1016/j.ces.2022.118406_b0180) 2017 Vrbová (10.1016/j.ces.2022.118406_b0220) 2017 |
| References_xml | – reference: Beers, K.S., Anderson, C.L. Multiple asm obiggs with different permeability and selectivity membranes. 2012. US Patent 8,245,978. – volume: 548 start-page: 345 year: 2018 end-page: 357 ident: b0050 article-title: Membrane separations and energy efficiency publication-title: J. Membr. Sci. – volume: 636 start-page: 119514 year: 2021 ident: b0215 article-title: Optimal design of membrane cascades for gaseous and liquid mixtures via minlp publication-title: J. Membr. Sci. – volume: 206 start-page: 106464 year: 2020 ident: b0100 article-title: Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications publication-title: Fuel Process. Technol. – volume: 638 start-page: 119691 year: 2021 ident: b0060 article-title: On optimisation of n2 and co2-selective hybrid membrane process systems for post-combustion co2 capture from coal-fired power plants publication-title: J. Membr. Sci. – volume: 208 start-page: 193 year: 2002 end-page: 202 ident: b0105 article-title: A targeting approach to the synthesis of membrane networks for gas separations publication-title: J. Membr. Sci. – reference: Bestuzheva, K., Besançon, M., Chen, W.K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., et al. The scip optimization suite 8.0. arXiv preprint arXiv:211208872 2021;. – volume: 31 start-page: 1023 year: 2014 end-page: 1034 ident: b0085 article-title: Polyimide hollow fiber membranes for co2 separation from wet gas mixtures publication-title: Braz. J. Chem. Eng. – volume: 474 start-page: 1 year: 2015 end-page: 10 ident: b0190 article-title: Structural optimization of membrane-based biogas upgrading processes publication-title: J. Membr. Sci. – volume: 252 start-page: 117482 year: 2022 ident: b0210 article-title: Generalized optimization-based synthesis of membrane systems for multicomponent gas mixture separation publication-title: Chem. Eng. Sci. – volume: 83 start-page: 195 year: 2019 end-page: 207 ident: b0090 article-title: Optimizing membrane module for biogas separation publication-title: Int. J. Greenhouse Gas Control – year: 2017 ident: b0180 article-title: Polymer ultrapermeability from the inefficient packing of 2d chains publication-title: Nat. Mater. – volume: 20 start-page: 445 year: 1985 end-page: 459 ident: b0195 article-title: Calculation methods for multicomponent gas separation by permeation publication-title: Sep. Sci. Technol. – year: 2017 ident: b0110 article-title: Materials for next-generation molecularly selective synthetic membranes publication-title: Nat. Mater. – volume: 320 start-page: 390 year: 2008 end-page: 400 ident: b0175 article-title: The upper bound revisited publication-title: J. Membr. Sci. – year: 2017 ident: b0220 article-title: Upgrading biogas to biomethane using membrane separation publication-title: Energy Fuels – volume: 107 start-page: 1 year: 1995 end-page: 21 ident: b0225 article-title: The solution-diffusion model: a review publication-title: J. Membr. Sci. – year: 2018 ident: b0120 article-title: Mixed matrix formulations with mof molecular sieving for key energy-intensive separations publication-title: Nat. Mater. – volume: 207 start-page: 1196 year: 2019 end-page: 1213 ident: b0040 article-title: Polymeric membrane materials for nitrogen production from air: A process synthesis study publication-title: Chem. Eng. Sci. – volume: 51 start-page: 1605 year: 2018 end-page: 1619 ident: b0010 article-title: Thermally rearranged polybenzoxazoles containing bulky adamantyl groups from ortho-substituted precursor copolyimides publication-title: Macromolecules – volume: 1 start-page: 222 year: 2016 end-page: 234 ident: b0095 article-title: Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology publication-title: Green Energy Environ. – volume: 652 start-page: 120454 year: 2022 ident: b0230 article-title: Multi-step membrane process for biogas upgrading publication-title: J. Membr. Sci. – year: 2017 ident: b0075 article-title: Mixed-matrix membranes publication-title: Angew. Chem. - Int. Ed. – volume: 47 start-page: 6999 year: 2014 end-page: 7013 ident: b0025 article-title: Gas separation membrane materials: A perspective publication-title: Macromolecules – year: 2020 ident: b0020 article-title: Membrane-based technologies for biogas upgrading: a review publication-title: Environ. Chem. Lett. – volume: 12 start-page: 2733 year: 2019 end-page: 2740 ident: b0065 article-title: Redefining the robeson upper bounds for co 2/ch 4 and co 2/n 2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity publication-title: Energy & Environ. Sci. – volume: 18 start-page: 427 year: 1994 end-page: 439 ident: b0150 article-title: A new robust design model for gas separating membrane modules, based on analogy with counter-current heat exchangers publication-title: Comput. Chem. Eng. – year: 2018 ident: b0165 article-title: Thermally stable polymers for advanced high-performance gas separation membranes publication-title: Prog. Energy Combust. Sci. – year: 1996 ident: b0005 article-title: Gas-separation membrane cascades utilizing limited numbers of compressors publication-title: AIChE J. – year: 2018 ident: b0130 article-title: Thermally rearranged polymer membranes containing tröger’s base units have exceptional performance for air separations publication-title: Angew. Chem. - Int. Ed. – reference: Leigh, J.E., Fellague, K.A., Isella, G.C., Roach, P.J. Gas generating system and method for inerting aircraft fuel tanks. 2006. US Patent 7,081,153. – year: 2007 ident: b0145 article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions publication-title: Science – year: 2018 ident: b0125 article-title: Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers publication-title: Chem. Rev. – volume: 566 start-page: 346 year: 2018 end-page: 366 ident: b0160 article-title: Optimization of multistage membrane gas separation processes. example of application to co2 capture from blast furnace gas publication-title: J. Membr. Sci. – volume: 25 start-page: 717 year: 2002 end-page: 722 ident: b0070 article-title: Simple gas permeation and pervaporation membrane unit operation models for process simulators publication-title: Chem. Eng. Technol. – volume: 133 start-page: 106653 year: 2020 ident: b0185 article-title: A generalized superstructure-based framework for process synthesis publication-title: Comput. Chem. Eng. – volume: 59 start-page: 556 year: 2020 end-page: 568 ident: b0080 article-title: Perspective on gas separation membrane materials from process economics point of view publication-title: Industr. Eng. Chem. Res. – volume: 24 start-page: 2719 year: 2000 end-page: 2737 ident: b0155 article-title: Membrane system design for multicomponent gas mixtures via mixed-integer nonlinear programming publication-title: Comput. Chem. Eng. – volume: 62 start-page: 165 year: 1991 end-page: 185 ident: b0170 article-title: Correlation of separation factor versus permeability for polymeric membranes publication-title: J. Membr. Sci. – volume: 532 start-page: 435 year: 2016 end-page: 437 ident: b0200 article-title: Seven chemical separations to change the world publication-title: Nature – year: 1984 ident: b0205 article-title: Recycle and multimembrane permeators for gas separations publication-title: J. Membr. Sci. – year: 1987 ident: b0055 article-title: Comments on improvements on a replacement for the logarithmic mean publication-title: Chem. Eng. Sci. – volume: 359 start-page: 126 year: 2010 end-page: 139 ident: b0135 article-title: Power plant post-combustion carbon dioxide capture: An opportunity for membranes publication-title: J. Membr. Sci. – volume: 498 start-page: 291 year: 2016 end-page: 301 ident: b0140 article-title: Optimization of membrane based nitrogen removal from natural gas publication-title: J. Membr. Sci. – year: 1988 ident: b0015 article-title: Natural gas cleanup: A comparison of membrane and amine treatment processes publication-title: Energy progress – volume: 225 start-page: 115769 year: 2020 ident: b0045 article-title: Optimal process design of biogas upgrading membrane systems: Polymeric vs high performance inorganic membrane materials publication-title: Chem. Eng. Sci. – volume: 83 start-page: 195 year: 2019 ident: 10.1016/j.ces.2022.118406_b0090 article-title: Optimizing membrane module for biogas separation publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2019.02.010 – volume: 548 start-page: 345 year: 2018 ident: 10.1016/j.ces.2022.118406_b0050 article-title: Membrane separations and energy efficiency publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.11.035 – volume: 18 start-page: 427 issue: 5 year: 1994 ident: 10.1016/j.ces.2022.118406_b0150 article-title: A new robust design model for gas separating membrane modules, based on analogy with counter-current heat exchangers publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(94)88021-2 – volume: 636 start-page: 119514 year: 2021 ident: 10.1016/j.ces.2022.118406_b0215 article-title: Optimal design of membrane cascades for gaseous and liquid mixtures via minlp publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119514 – volume: 320 start-page: 390 issue: 1–2 year: 2008 ident: 10.1016/j.ces.2022.118406_b0175 article-title: The upper bound revisited publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.04.030 – year: 2017 ident: 10.1016/j.ces.2022.118406_b0220 article-title: Upgrading biogas to biomethane using membrane separation publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b00120 – year: 1987 ident: 10.1016/j.ces.2022.118406_b0055 article-title: Comments on improvements on a replacement for the logarithmic mean publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(87)80128-8 – volume: 206 start-page: 106464 year: 2020 ident: 10.1016/j.ces.2022.118406_b0100 article-title: Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2020.106464 – volume: 252 start-page: 117482 year: 2022 ident: 10.1016/j.ces.2022.118406_b0210 article-title: Generalized optimization-based synthesis of membrane systems for multicomponent gas mixture separation publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2022.117482 – volume: 208 start-page: 193 issue: 1–2 year: 2002 ident: 10.1016/j.ces.2022.118406_b0105 article-title: A targeting approach to the synthesis of membrane networks for gas separations publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(02)00259-4 – volume: 107 start-page: 1 issue: 1–2 year: 1995 ident: 10.1016/j.ces.2022.118406_b0225 article-title: The solution-diffusion model: a review publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(95)00102-I – volume: 31 start-page: 1023 issue: 4 year: 2014 ident: 10.1016/j.ces.2022.118406_b0085 article-title: Polyimide hollow fiber membranes for co2 separation from wet gas mixtures publication-title: Braz. J. Chem. Eng. doi: 10.1590/0104-6632.20140314s00003031 – year: 1988 ident: 10.1016/j.ces.2022.118406_b0015 article-title: Natural gas cleanup: A comparison of membrane and amine treatment processes publication-title: Energy progress – volume: 498 start-page: 291 year: 2016 ident: 10.1016/j.ces.2022.118406_b0140 article-title: Optimization of membrane based nitrogen removal from natural gas publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.10.007 – volume: 225 start-page: 115769 year: 2020 ident: 10.1016/j.ces.2022.118406_b0045 article-title: Optimal process design of biogas upgrading membrane systems: Polymeric vs high performance inorganic membrane materials publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.115769 – volume: 532 start-page: 435 issue: 7600 year: 2016 ident: 10.1016/j.ces.2022.118406_b0200 article-title: Seven chemical separations to change the world publication-title: Nature doi: 10.1038/532435a – volume: 359 start-page: 126 issue: 1–2 year: 2010 ident: 10.1016/j.ces.2022.118406_b0135 article-title: Power plant post-combustion carbon dioxide capture: An opportunity for membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.10.041 – year: 1984 ident: 10.1016/j.ces.2022.118406_b0205 article-title: Recycle and multimembrane permeators for gas separations publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)80721-8 – volume: 47 start-page: 6999 issue: 20 year: 2014 ident: 10.1016/j.ces.2022.118406_b0025 article-title: Gas separation membrane materials: A perspective publication-title: Macromolecules doi: 10.1021/ma501488s – volume: 12 start-page: 2733 issue: 9 year: 2019 ident: 10.1016/j.ces.2022.118406_b0065 article-title: Redefining the robeson upper bounds for co 2/ch 4 and co 2/n 2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity publication-title: Energy & Environ. Sci. doi: 10.1039/C9EE01384A – year: 2018 ident: 10.1016/j.ces.2022.118406_b0125 article-title: Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00629 – year: 2007 ident: 10.1016/j.ces.2022.118406_b0145 article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions publication-title: Science doi: 10.1126/science.1146744 – volume: 24 start-page: 2719 issue: 12 year: 2000 ident: 10.1016/j.ces.2022.118406_b0155 article-title: Membrane system design for multicomponent gas mixtures via mixed-integer nonlinear programming publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(00)00625-6 – volume: 652 start-page: 120454 year: 2022 ident: 10.1016/j.ces.2022.118406_b0230 article-title: Multi-step membrane process for biogas upgrading publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2022.120454 – ident: 10.1016/j.ces.2022.118406_b0035 – volume: 62 start-page: 165 issue: 2 year: 1991 ident: 10.1016/j.ces.2022.118406_b0170 article-title: Correlation of separation factor versus permeability for polymeric membranes publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(91)80060-J – volume: 25 start-page: 717 issue: 7 year: 2002 ident: 10.1016/j.ces.2022.118406_b0070 article-title: Simple gas permeation and pervaporation membrane unit operation models for process simulators publication-title: Chem. Eng. Technol. doi: 10.1002/1521-4125(20020709)25:7<717::AID-CEAT717>3.0.CO;2-N – year: 2018 ident: 10.1016/j.ces.2022.118406_b0165 article-title: Thermally stable polymers for advanced high-performance gas separation membranes publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2017.11.002 – volume: 59 start-page: 556 issue: 2 year: 2020 ident: 10.1016/j.ces.2022.118406_b0080 article-title: Perspective on gas separation membrane materials from process economics point of view publication-title: Industr. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b05975 – year: 2017 ident: 10.1016/j.ces.2022.118406_b0110 article-title: Materials for next-generation molecularly selective synthetic membranes publication-title: Nat. Mater. doi: 10.1038/nmat4805 – ident: 10.1016/j.ces.2022.118406_b0115 – volume: 51 start-page: 1605 issue: 5 year: 2018 ident: 10.1016/j.ces.2022.118406_b0010 article-title: Thermally rearranged polybenzoxazoles containing bulky adamantyl groups from ortho-substituted precursor copolyimides publication-title: Macromolecules doi: 10.1021/acs.macromol.7b02460 – year: 2020 ident: 10.1016/j.ces.2022.118406_b0020 article-title: Membrane-based technologies for biogas upgrading: a review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-020-01036-3 – year: 2017 ident: 10.1016/j.ces.2022.118406_b0075 article-title: Mixed-matrix membranes publication-title: Angew. Chem. - Int. Ed. – year: 2018 ident: 10.1016/j.ces.2022.118406_b0120 article-title: Mixed matrix formulations with mof molecular sieving for key energy-intensive separations publication-title: Nat. Mater. – volume: 474 start-page: 1 year: 2015 ident: 10.1016/j.ces.2022.118406_b0190 article-title: Structural optimization of membrane-based biogas upgrading processes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.08.032 – volume: 1 start-page: 222 issue: 3 year: 2016 ident: 10.1016/j.ces.2022.118406_b0095 article-title: Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology publication-title: Green Energy Environ. doi: 10.1016/j.gee.2016.10.003 – volume: 207 start-page: 1196 year: 2019 ident: 10.1016/j.ces.2022.118406_b0040 article-title: Polymeric membrane materials for nitrogen production from air: A process synthesis study publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.07.029 – year: 2018 ident: 10.1016/j.ces.2022.118406_b0130 article-title: Thermally rearranged polymer membranes containing tröger’s base units have exceptional performance for air separations publication-title: Angew. Chem. - Int. Ed. – ident: 10.1016/j.ces.2022.118406_b0030 – year: 2017 ident: 10.1016/j.ces.2022.118406_b0180 article-title: Polymer ultrapermeability from the inefficient packing of 2d chains publication-title: Nat. Mater. doi: 10.1038/nmat4939 – volume: 133 start-page: 106653 year: 2020 ident: 10.1016/j.ces.2022.118406_b0185 article-title: A generalized superstructure-based framework for process synthesis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106653 – volume: 638 start-page: 119691 year: 2021 ident: 10.1016/j.ces.2022.118406_b0060 article-title: On optimisation of n2 and co2-selective hybrid membrane process systems for post-combustion co2 capture from coal-fired power plants publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119691 – volume: 566 start-page: 346 year: 2018 ident: 10.1016/j.ces.2022.118406_b0160 article-title: Optimization of multistage membrane gas separation processes. example of application to co2 capture from blast furnace gas publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.08.024 – year: 1996 ident: 10.1016/j.ces.2022.118406_b0005 article-title: Gas-separation membrane cascades utilizing limited numbers of compressors publication-title: AIChE J. doi: 10.1002/aic.690420806 – volume: 20 start-page: 445 issue: 5–6 year: 1985 ident: 10.1016/j.ces.2022.118406_b0195 article-title: Calculation methods for multicomponent gas separation by permeation publication-title: Sep. Sci. Technol. doi: 10.1080/01496398508060692 |
| SSID | ssj0007710 |
| Score | 2.4296217 |
| Snippet | •Proposed optimization-based approach to synthesize membrane systems.•Considered membrane system synthesis and material design simultaneously.•Approach... |
| SourceID | osti crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 118406 |
| SubjectTerms | Global optimization Membrane systems Multicomponent gas separation Process synthesis |
| Title | Integrated membrane material design and system synthesis |
| URI | https://dx.doi.org/10.1016/j.ces.2022.118406 https://www.osti.gov/biblio/1922270 |
| Volume | 269 |
| WOSCitedRecordID | wos000923964800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-4405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007710 issn: 0009-2509 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELagMMCAeIpSQBmYqBLl4cT2WKHyGhBDkbpFru1IrSCtmoL68znHeVFRBAOLFSWx4-RzPt85l-8QulLaBmWS2q7A4KB4HNuMUmVzTgVnQkp3RPNkE-TpiQ6H7LnI4Z7l6QRImtLlks3-FWrYB2DrX2f_AHfVKOyAbQAdSoAdyl8B_1AKQMjum3oDZzjVMaqL_NJdmQds5F8MjIazliwAGzAbZ00ztZIRULVcYbeYLGtff5yY1dM7Pp8DBTnPTr2-rbMavY55U8Ag6w6c5iKDH-SxKeEX4mQ2WEusSZy-SbJSUJ-nfcXoW1Y2CwQTB5gPPHLfd-pzvypgr8xMVbxgGYo2iaGJWDcRmyY20ZZPQgZ0ttV76A8fq0mYEM8tk-jpfpcftPPQvpV-rDNJWlNg2Ya1MdhHe4WbYPUMvAdoQ6WHaLchHnmEaA20VQJtlUBbBmgLgLYM0FYF9DF6ue0Pbu7tIg-GLYKILOwgCUPpRmzEaaIpmRMw6kOeUIYxFqMoSCT3FKYjNwL2TbyAwH0JyRKKGVhwLDhBrXSaqlNkaZLl8NIyOIojCqVgkiusQi4TX4Zt5JaPIhaFSLzOVfIar4Wgja6rKjOjkPLTybh8vnExao3pFsNY-alaR2Ohq2hpY6FjwKAOeCe-T9yzv_Sgg3bqAX6OWov5u7pA2-JjMc7ml8Uw-gRvK3ls |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+membrane+material+design+and+system+synthesis&rft.jtitle=Chemical+engineering+science&rft.au=Taifan%2C+Garry+S.P.&rft.au=Maravelias%2C+Christos+T.&rft.date=2023-04-05&rft.issn=0009-2509&rft.volume=269&rft.spage=118406&rft_id=info:doi/10.1016%2Fj.ces.2022.118406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ces_2022_118406 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon |