A type-II fuzzy collaborative forecasting approach for productivity forecasting under an uncertainty environment

Forecasting factory productivity is a critical task. However, it is not easy owing to the uncertainty of productivity. Existing methods often forecast productivity using a fuzzy number. However, the range of a fuzzy productivity forecast is wide owing to the consideration of extreme cases. In this s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ambient intelligence and humanized computing Jg. 12; H. 2; S. 2751 - 2763
Hauptverfasser: Chen, Toly, Wang, Yu-Cheng, Chiu, Min-Chi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2021
Springer Nature B.V
Schlagworte:
ISSN:1868-5137, 1868-5145
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Forecasting factory productivity is a critical task. However, it is not easy owing to the uncertainty of productivity. Existing methods often forecast productivity using a fuzzy number. However, the range of a fuzzy productivity forecast is wide owing to the consideration of extreme cases. In this study, a fuzzy collaborative forecasting approach is proposed to forecast factory productivity using a type-II fuzzy number and by narrowing the forecast’s range. The outer section of the type-II fuzzy number determines the range of productivity, while the inner section is defuzzified to derive the most likely value. Based on the experimental results, the proposed methodology surpassed existing methods in improving forecasting precision and accuracy, with a reduction in the mean absolute percentage error (MAPE) of up to 74%.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1868-5137
1868-5145
DOI:10.1007/s12652-020-02435-8