Multi-Step-Ahead Electricity Price Forecasting Based on Temporal Graph Convolutional Network

Traditional electricity price forecasting tends to adopt time-domain forecasting methods based on time series, which fail to make full use of the regional information of the electricity market, and ignore the extra-territorial factors affecting electricity price within the region under cross-regiona...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 10; číslo 14; s. 2366
Hlavní autoři: Su, Haokun, Peng, Xiangang, Liu, Hanyu, Quan, Huan, Wu, Kaitong, Chen, Zhiwen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.07.2022
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Traditional electricity price forecasting tends to adopt time-domain forecasting methods based on time series, which fail to make full use of the regional information of the electricity market, and ignore the extra-territorial factors affecting electricity price within the region under cross-regional transmission conditions. In order to improve the accuracy of electricity price forecasting, this paper proposes a novel spatio-temporal prediction model, which is combined with the graph convolutional network (GCN) and the temporal convolutional network (TCN). First, the model automatically extracts the relationships between price areas through the graph construction module. Then, the mix-jump GCN is used to capture the spatial dependence, and the dilated splicing TCN is used to capture the temporal dependence and forecast electricity price for all price areas. The results show that the model outperforms other models in both one-step forecasting and multi-step forecasting, indicating that the model has superior performance in electricity price forecasting.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math10142366