Multi-Step-Ahead Electricity Price Forecasting Based on Temporal Graph Convolutional Network
Traditional electricity price forecasting tends to adopt time-domain forecasting methods based on time series, which fail to make full use of the regional information of the electricity market, and ignore the extra-territorial factors affecting electricity price within the region under cross-regiona...
Gespeichert in:
| Veröffentlicht in: | Mathematics (Basel) Jg. 10; H. 14; S. 2366 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.07.2022
|
| Schlagworte: | |
| ISSN: | 2227-7390, 2227-7390 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Traditional electricity price forecasting tends to adopt time-domain forecasting methods based on time series, which fail to make full use of the regional information of the electricity market, and ignore the extra-territorial factors affecting electricity price within the region under cross-regional transmission conditions. In order to improve the accuracy of electricity price forecasting, this paper proposes a novel spatio-temporal prediction model, which is combined with the graph convolutional network (GCN) and the temporal convolutional network (TCN). First, the model automatically extracts the relationships between price areas through the graph construction module. Then, the mix-jump GCN is used to capture the spatial dependence, and the dilated splicing TCN is used to capture the temporal dependence and forecast electricity price for all price areas. The results show that the model outperforms other models in both one-step forecasting and multi-step forecasting, indicating that the model has superior performance in electricity price forecasting. |
|---|---|
| AbstractList | Traditional electricity price forecasting tends to adopt time-domain forecasting methods based on time series, which fail to make full use of the regional information of the electricity market, and ignore the extra-territorial factors affecting electricity price within the region under cross-regional transmission conditions. In order to improve the accuracy of electricity price forecasting, this paper proposes a novel spatio-temporal prediction model, which is combined with the graph convolutional network (GCN) and the temporal convolutional network (TCN). First, the model automatically extracts the relationships between price areas through the graph construction module. Then, the mix-jump GCN is used to capture the spatial dependence, and the dilated splicing TCN is used to capture the temporal dependence and forecast electricity price for all price areas. The results show that the model outperforms other models in both one-step forecasting and multi-step forecasting, indicating that the model has superior performance in electricity price forecasting. |
| Author | Peng, Xiangang Quan, Huan Wu, Kaitong Chen, Zhiwen Su, Haokun Liu, Hanyu |
| Author_xml | – sequence: 1 givenname: Haokun orcidid: 0000-0003-0552-6178 surname: Su fullname: Su, Haokun – sequence: 2 givenname: Xiangang surname: Peng fullname: Peng, Xiangang – sequence: 3 givenname: Hanyu surname: Liu fullname: Liu, Hanyu – sequence: 4 givenname: Huan surname: Quan fullname: Quan, Huan – sequence: 5 givenname: Kaitong surname: Wu fullname: Wu, Kaitong – sequence: 6 givenname: Zhiwen surname: Chen fullname: Chen, Zhiwen |
| BookMark | eNptUdtKJDEQDYvCuurbfkCDr9uaS1-SR3fwBt5AfVsI1Um1k9meTm-SUfx7M46ILNbLKapOnaLq_CBbox-RkJ-MHgqh6NES0pxRVnHRNN_IDue8Ldvc2PqUfyf7MS5oDsWErNQO-XO1GpIr7xJO5fEcwRYnA5oUnHHppbjNiMWpD2ggJjc-Fr8hoi38WNzjcvIBhuIswDQvZn588sMqOT_m2jWmZx_-7pHtHoaI---4Sx5OT-5n5-XlzdnF7PiyNKJpUyls11PDgXYtlVaCpT1HCVJ1dYVNbaSQjURZ1QwRWtWxhoNppVGWGSuEEbvkYqNrPSz0FNwSwov24PRbwYdHDSE5M6DuBRWcroUFVq2ADmtQsmOWiV4w5FnrYKM1Bf9vhTHphV-FfFTUvFEVZW1NVWb92rBM8DEG7D-2MqrXdujPdmQ6_4-e3wvrZ6UAbvh66BVghpAb |
| CitedBy_id | crossref_primary_10_55071_ticaretfbd_1578209 crossref_primary_10_1016_j_apenergy_2025_126082 crossref_primary_10_3390_math10234420 crossref_primary_10_1016_j_segan_2024_101436 crossref_primary_10_3390_math10162971 crossref_primary_10_1016_j_apr_2023_101717 crossref_primary_10_3390_en16196767 crossref_primary_10_1016_j_mex_2024_102923 crossref_primary_10_1016_j_measurement_2025_117596 crossref_primary_10_1016_j_procs_2025_08_045 |
| Cites_doi | 10.3390/e19020052 10.1016/j.cosrev.2020.100356 10.1016/j.eneco.2021.105742 10.1016/j.apenergy.2021.117242 10.1109/TPWRS.2021.3064277 10.1016/j.rcim.2014.12.015 10.1109/TITS.2019.2950416 10.1007/s10994-019-05815-0 10.1016/j.scs.2020.102275 10.1016/j.eswa.2012.01.039 10.1109/TKDE.2020.2981333 10.1002/pa.2065 10.1016/j.jclepro.2019.118671 10.1016/j.apenergy.2021.116983 10.1162/neco.1997.9.8.1735 10.1016/j.apenergy.2021.116688 10.1016/j.apenergy.2020.116405 10.1016/j.energy.2020.118368 10.1016/j.energy.2021.121543 10.1016/j.neucom.2020.10.109 10.1016/j.rser.2022.112317 10.1109/TIA.2021.3051105 10.1088/1755-1315/467/1/012186 10.1016/j.patcog.2021.108039 10.3390/en12122241 10.1023/B:STCO.0000035301.49549.88 10.3390/forecast1010003 10.1016/j.procs.2022.01.273 10.1007/s40565-018-0496-z 10.1109/TNNLS.2020.2978386 10.3390/su132212653 10.1016/j.ejor.2020.10.055 10.1109/ACCESS.2021.3071274 10.1016/j.jenvman.2020.110194 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/math10142366 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ: Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_f30320b54e3e473abe5a98b1d13f31e2 10_3390_math10142366 |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c367t-3dbf0c2a0b708d8ad0f2e8a89b54e65c83868e8451eea79b162ac78c9d1cd33c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831562800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Tue Oct 14 19:07:07 EDT 2025 Fri Jul 25 12:15:11 EDT 2025 Sat Nov 29 07:11:43 EST 2025 Tue Nov 18 22:43:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-3dbf0c2a0b708d8ad0f2e8a89b54e65c83868e8451eea79b162ac78c9d1cd33c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0552-6178 |
| OpenAccessLink | https://www.proquest.com/docview/2694017509?pq-origsite=%requestingapplication% |
| PQID | 2694017509 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f30320b54e3e473abe5a98b1d13f31e2 proquest_journals_2694017509 crossref_primary_10_3390_math10142366 crossref_citationtrail_10_3390_math10142366 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Hardi (ref_20) 2020; 261 Shih (ref_25) 2019; 108 Zhou (ref_29) 2020; 424 Radhakrishnan (ref_10) 2018; 1 ref_36 ref_13 Hochreiter (ref_32) 1997; 9 ref_35 ref_34 Lu (ref_6) 2021; 39 ref_33 Sujit (ref_9) 2019; 7 ref_18 Lehna (ref_14) 2022; 106 ref_16 Lago (ref_8) 2021; 293 Liu (ref_1) 2022; 161 Lin (ref_31) 2021; 118 Tessoni (ref_23) 2022; 200 Souhaib (ref_37) 2012; 39 Xiao (ref_19) 2021; 57 Shamsi (ref_2) 2021; 36 Mashlakov (ref_3) 2021; 285 ref_24 Cui (ref_28) 2019; 21 Fraunholz (ref_5) 2021; 290 Rabiya (ref_7) 2020; 61 Egerer (ref_22) 2020; 292 Zhang (ref_26) 2020; 34 Zheng (ref_12) 2020; 467 Jorge (ref_21) 2020; 208 Wu (ref_30) 2020; 32 Yang (ref_17) 2021; 299 Asif (ref_27) 2021; 9 Shibalal (ref_11) 2020; 20 Li (ref_15) 2021; 237 Nicolau (ref_38) 2015; 34 Alex (ref_39) 2004; 14 Sun (ref_4) 2020; 243 |
| References_xml | – ident: ref_13 doi: 10.3390/e19020052 – volume: 39 start-page: 100356 year: 2021 ident: ref_6 article-title: Energy price prediction using data-driven models: A decade review publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2020.100356 – ident: ref_24 – volume: 106 start-page: 105742 year: 2022 ident: ref_14 article-title: Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account publication-title: Energ Econ. doi: 10.1016/j.eneco.2021.105742 – ident: ref_34 – volume: 299 start-page: 117242 year: 2021 ident: ref_17 article-title: Real-time electricity price forecasting of wind farms with deep neural network transfer learning and hybrid datasets publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2021.117242 – volume: 36 start-page: 4513 year: 2021 ident: ref_2 article-title: A Prediction Market Trading Strategy to Hedge Financial Risks of Wind Power Producers in Electricity Markets publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2021.3064277 – volume: 34 start-page: 151 year: 2015 ident: ref_38 article-title: Performance of state space and ARIMA models for consumer retail sales forecasting publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2014.12.015 – volume: 21 start-page: 4883 year: 2019 ident: ref_28 article-title: Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2950416 – volume: 108 start-page: 1421 year: 2019 ident: ref_25 article-title: Temporal pattern attention for multivariate time series forecasting publication-title: Mach. Learn. doi: 10.1007/s10994-019-05815-0 – volume: 61 start-page: 102275 year: 2020 ident: ref_7 article-title: A survey on hyperparameters optimization algorithms of forecasting models in smart grid publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102275 – volume: 39 start-page: 7067 year: 2012 ident: ref_37 article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.039 – volume: 34 start-page: 249 year: 2020 ident: ref_26 article-title: Deep Learning on Graphs: A Survey publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2020.2981333 – ident: ref_35 – volume: 20 start-page: e2065 year: 2020 ident: ref_11 article-title: Estimating and forecasting residential electricity demand in Odisha publication-title: J. Public Aff. doi: 10.1002/pa.2065 – volume: 243 start-page: 118671 year: 2020 ident: ref_4 article-title: A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118671 – volume: 293 start-page: 116983 year: 2021 ident: ref_8 article-title: Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2021.116983 – volume: 9 start-page: 1735 year: 1997 ident: ref_32 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 290 start-page: 116688 year: 2021 ident: ref_5 article-title: Advanced price forecasting in agent-based electricity market simulation publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2021.116688 – volume: 285 start-page: 116405 year: 2021 ident: ref_3 article-title: Assessing the performance of deep learning models for multivariate probabilistic energy forecasting publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2020.116405 – volume: 208 start-page: 118368 year: 2020 ident: ref_21 article-title: Characterizing electricity market integration in Nord Pool publication-title: Energy doi: 10.1016/j.energy.2020.118368 – ident: ref_33 – volume: 237 start-page: 121543 year: 2021 ident: ref_15 article-title: Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling publication-title: Energy doi: 10.1016/j.energy.2021.121543 – volume: 424 start-page: 97 year: 2020 ident: ref_29 article-title: The Generalization Error of Graph Convolutional Networks May Enlarge with More Layers publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.109 – volume: 161 start-page: 112317 year: 2022 ident: ref_1 article-title: Evolution and reform of UK electricity market publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112317 – volume: 57 start-page: 1860 year: 2021 ident: ref_19 article-title: Online Sequential Extreme Learning Machine Algorithm for Better Predispatch Electricity Price Forecasting Grids publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2021.3051105 – volume: 467 start-page: 012186 year: 2020 ident: ref_12 article-title: Short-term electricity price forecasting G-LSTM model and economic dispatch for distribution system publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/467/1/012186 – volume: 118 start-page: 108039 year: 2021 ident: ref_31 article-title: Deep graph learning for semi-supervised classification publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2021.108039 – ident: ref_36 – ident: ref_18 doi: 10.3390/en12122241 – volume: 14 start-page: 199 year: 2004 ident: ref_39 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 1 start-page: 26 year: 2018 ident: ref_10 article-title: A Multi-Stage Price Forecasting Model for Day-Ahead Electricity Markets publication-title: Forecasting doi: 10.3390/forecast1010003 – volume: 200 start-page: 748 year: 2022 ident: ref_23 article-title: Advanced statistical and machine learning methods for multi-step multivariate time series forecasting in predictive maintenance publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.01.273 – volume: 7 start-page: 1241 year: 2019 ident: ref_9 article-title: Short-term mixed electricity demand and price forecasting using adaptive autoregressive moving average and functional link neural network publication-title: J. Mod. Power Syst. Clean doi: 10.1007/s40565-018-0496-z – volume: 32 start-page: 4 year: 2020 ident: ref_30 article-title: A Comprehensive Survey on Graph Neural Networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2978386 – ident: ref_16 doi: 10.3390/su132212653 – volume: 292 start-page: 696 year: 2020 ident: ref_22 article-title: The impact of neighboring markets on renewable locations, transmission expansion, and generation investment publication-title: Eur. J. Oper Res. doi: 10.1016/j.ejor.2020.10.055 – volume: 9 start-page: 60588 year: 2021 ident: ref_27 article-title: Graph Neural Network: A Comprehensive Review on Non-Euclidean Space publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3071274 – volume: 261 start-page: 110194 year: 2020 ident: ref_20 article-title: The role of cross-border power transmission in a renewable-rich power system—A model analysis for Northwestern Europe publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.110194 |
| SSID | ssj0000913849 |
| Score | 2.259625 |
| Snippet | Traditional electricity price forecasting tends to adopt time-domain forecasting methods based on time series, which fail to make full use of the regional... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 2366 |
| SubjectTerms | Artificial intelligence Artificial neural networks Data analysis Deep learning Electricity electricity price forecasting Electricity pricing Forecasting graph convolutional network Mathematical models Mathematics Neural networks Prediction models Prices spatio-temporal forecasting algorithm Splicing Supply & demand temporal convolutional network Time domain analysis Time series |
| SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iHvQg_sTplBz0JGFN0jbJ0cmmF4eHCR6EkrwkOJBOtunfb5J2cyDixVMhBNp-L30_6Hvfh9ClN1zoXBbE55yR3BpNtPCeQEgOymB_5gGS2IQYjeTzs3pck_qKPWENPXADXM_zKPFtitxxlwuujSu0koZayj2nLnnfTKi1Yir5YEW5zFXT6c5DXd8L-d9r1KVlPBEifsegRNX_wxOn8DLcQ7ttXohvmufZRxuuPkA7DytS1fkheknDsiT2ZZGb4EMtHiQNmwmETBon_XYclTZBz2MvM-6HAGXxtMbjhn7qDd9Fdmp8O60_2wMX1kZNH_gRehoOxrf3pBVHIMBLsSDcGp8B05kRmbRS28wzJ7VUEaqyAMllKZ3MC-qcFsrQkmkQEpSlYDkHfow262ntThDWRrCsyIDGf5JAnY51oZThykDosuig6yVcFbTM4VHA4q0KFUQEt1oHt4OuVrvfG8aMX_b1I_KrPZHnOi0E61et9au_rN9B3aXdqvbjm1dxODe8QkiFTv_jHmdom8WZh9Sj20Wbi9mHO0db8LmYzGcX6dx9AauN3eI priority: 102 providerName: Directory of Open Access Journals |
| Title | Multi-Step-Ahead Electricity Price Forecasting Based on Temporal Graph Convolutional Network |
| URI | https://www.proquest.com/docview/2694017509 https://doaj.org/article/f30320b54e3e473abe5a98b1d13f31e2 |
| Volume | 10 |
| WOSCitedRecordID | wos000831562800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZt0kN7SN9003TRoT0VEVuyLflUsmHThJBlaVNIoWCkkZQGgp2utznmt0cjazeF0l5ykUHSwfaM5iGNvo-Q994IqQtVMl8IzgprNNPSewYhOKiC_LkHiGQTcjZTZ2f1PG249amscmUTo6G2HeAe-S7euAzaE_zbp6tfDFmj8HQ1UWg8JJuIVBb0fHMync2_rHdZEPVSFfVQ8S5Cfr8b4sCfyE_LRQRGvPNFEbL_L4sc3czB0_u-4DOylQJMujdoxHPywLUvyJOTNTpr_5L8iLduGRZ4sb1gjC2dRjKcCwghOY1E8BQpO0H3WBRNJ8HTWdq19HTAsbqknxHmmu537XXS3NA3GwrKX5FvB9PT_UOWWBYYiEoumbDGZ8B1ZmSmrNI289wprWpTFq4qQQlVKaeKMndOy9rkFdcgFdQ2BysEiNdko-1a94ZQbSTPygxyPNyE3GlMMJUKTw5SV-WIfFz97wYSBDkyYVw2IRVB6TR_SmdEPqxnXw3QG_-YN0HRrecgYHbs6BbnTVp_jRfIFI-fJFwhhTau1LUyuc2FF7njI7KzkmqTVnHf3Il0-__Db8ljjtciYhnvDtlYLn67d-QRXC8v-sU4KeU45vuhPZZsjDWmX7G9mYbx-dHJ_PstkyHy8g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRL0wDdioYAP9ISsJnYSOweEumVLq7ZRhRapB6Tg-AMqVUnZbIv4U_2N9TjJFgnBrQdOkRwrkuPnmbE98x7AG1dxoRKZUpdwRhNTKaqEc1T74CDz88-c1kFsQhSFPD7Oj1bgcqiFwbTKwSYGQ20ajWfkm1hx6dHj_dv7sx8UVaPwdnWQ0OhgsW9__fRbtvbd3gc_vxuM7Uxn27u0VxWgmmdiQbmpXKSZiioRSSOViRyzUsm8ShObpVpymUkrkzS2Vom8ijOmtJA6N7E2nGvuv3sLVhOeZOkIVifT4ujT8lQHWTZlkncZ9pzn0aaPO7-jHi7jgYjx2vcFiYA_PEBwazv3_7cf8gDu9QE02eoQ_xBWbP0I1g6X7LPtY_gSqoopJrDRLe9sDJkGsZ8T7bccJAjdE5Qk1arFpG8y8Z7ckKYms46n65R8RBpvst3UF_3K9G1FlzD_BD7fyPCewqhuavsMiKoEi9JIx3h5q2OrcAMtpX8yLVSWjuHtML-l7inWUenjtPRbLURD-TsaxrCx7H3WUYv8pd8EobLsg4TgoaGZfyt7-1I6H4qwCIfEbSK4qmyqclnFJuaOx5aNYX1AUdlbqba8htDzf79-DXd2Z4cH5cFesf8C7jIsAQkpy-swWszP7Uu4rS8WJ-38Vb8gCHy9achdATrlS9c |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFiE48EYsFPCBnpC1jp3EzqFCfS1UhdVKFKkHpNTxAypVSdksRfy1_jo8TrJFquDWA6dIjhXJ8eeZsT3zfQCvfSWkTlVGfSo4TW2lqZbeUxOCgzzMP_fGRLEJOZ2qo6NitgIXQy0MplUONjEaatsYPCMfY8VlQE_wb2Pfp0XMdidvz75TVJDCm9ZBTqODyIH79TNs39rN_d0w1xucT_YOd97TXmGAGpHLBRW28sxwzSrJlFXaMs-d0qqostTlmVFC5cqpNEuc07KokpxrI5UpbGKsEEaE796ANZnmLI1pg5-W5zvIt6nSosu1F6Jg4xCBfkNlXC4iJeOlF4xiAVd8QXRwk3v_86-5D3f7sJpsdevgAay4-iHc-bjkpG0fwZdYa0wxrY1uBRdkyV6UADoxYSNCZkiuRFCo1OgWU8HJdvDvljQ1OezYu07JOyT3JjtNfd6v19A27dLoH8PnaxneE1itm9o9BaIryVnGTIJXuiZxGrfVSoUnN1Ln2QjeDHNdmp54HfU_TsuwAUNklH8iYwQby95nHeHIX_ptI2yWfZAmPDY0869lb3VKHwIUznBIwqVS6MplulBVYhPhReL4CNYHRJW97WrLSzg9-_frV3Ar4Kz8sD89eA63OdaFxDzmdVhdzH-4F3DTnC9O2vnLuDIIHF833n4DzddTUA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Step-Ahead+Electricity+Price+Forecasting+Based+on+Temporal+Graph+Convolutional+Network&rft.jtitle=Mathematics+%28Basel%29&rft.au=Su%2C+Haokun&rft.au=Peng%2C+Xiangang&rft.au=Liu%2C+Hanyu&rft.au=Quan%2C+Huan&rft.date=2022-07-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=10&rft.issue=14&rft.spage=2366&rft_id=info:doi/10.3390%2Fmath10142366&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math10142366 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |