Multi-Step-Ahead Electricity Price Forecasting Based on Temporal Graph Convolutional Network

Traditional electricity price forecasting tends to adopt time-domain forecasting methods based on time series, which fail to make full use of the regional information of the electricity market, and ignore the extra-territorial factors affecting electricity price within the region under cross-regiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) Jg. 10; H. 14; S. 2366
Hauptverfasser: Su, Haokun, Peng, Xiangang, Liu, Hanyu, Quan, Huan, Wu, Kaitong, Chen, Zhiwen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.07.2022
Schlagworte:
ISSN:2227-7390, 2227-7390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Traditional electricity price forecasting tends to adopt time-domain forecasting methods based on time series, which fail to make full use of the regional information of the electricity market, and ignore the extra-territorial factors affecting electricity price within the region under cross-regional transmission conditions. In order to improve the accuracy of electricity price forecasting, this paper proposes a novel spatio-temporal prediction model, which is combined with the graph convolutional network (GCN) and the temporal convolutional network (TCN). First, the model automatically extracts the relationships between price areas through the graph construction module. Then, the mix-jump GCN is used to capture the spatial dependence, and the dilated splicing TCN is used to capture the temporal dependence and forecast electricity price for all price areas. The results show that the model outperforms other models in both one-step forecasting and multi-step forecasting, indicating that the model has superior performance in electricity price forecasting.
AbstractList Traditional electricity price forecasting tends to adopt time-domain forecasting methods based on time series, which fail to make full use of the regional information of the electricity market, and ignore the extra-territorial factors affecting electricity price within the region under cross-regional transmission conditions. In order to improve the accuracy of electricity price forecasting, this paper proposes a novel spatio-temporal prediction model, which is combined with the graph convolutional network (GCN) and the temporal convolutional network (TCN). First, the model automatically extracts the relationships between price areas through the graph construction module. Then, the mix-jump GCN is used to capture the spatial dependence, and the dilated splicing TCN is used to capture the temporal dependence and forecast electricity price for all price areas. The results show that the model outperforms other models in both one-step forecasting and multi-step forecasting, indicating that the model has superior performance in electricity price forecasting.
Author Peng, Xiangang
Quan, Huan
Wu, Kaitong
Chen, Zhiwen
Su, Haokun
Liu, Hanyu
Author_xml – sequence: 1
  givenname: Haokun
  orcidid: 0000-0003-0552-6178
  surname: Su
  fullname: Su, Haokun
– sequence: 2
  givenname: Xiangang
  surname: Peng
  fullname: Peng, Xiangang
– sequence: 3
  givenname: Hanyu
  surname: Liu
  fullname: Liu, Hanyu
– sequence: 4
  givenname: Huan
  surname: Quan
  fullname: Quan, Huan
– sequence: 5
  givenname: Kaitong
  surname: Wu
  fullname: Wu, Kaitong
– sequence: 6
  givenname: Zhiwen
  surname: Chen
  fullname: Chen, Zhiwen
BookMark eNptUdtKJDEQDYvCuurbfkCDr9uaS1-SR3fwBt5AfVsI1Um1k9meTm-SUfx7M46ILNbLKapOnaLq_CBbox-RkJ-MHgqh6NES0pxRVnHRNN_IDue8Ldvc2PqUfyf7MS5oDsWErNQO-XO1GpIr7xJO5fEcwRYnA5oUnHHppbjNiMWpD2ggJjc-Fr8hoi38WNzjcvIBhuIswDQvZn588sMqOT_m2jWmZx_-7pHtHoaI---4Sx5OT-5n5-XlzdnF7PiyNKJpUyls11PDgXYtlVaCpT1HCVJ1dYVNbaSQjURZ1QwRWtWxhoNppVGWGSuEEbvkYqNrPSz0FNwSwov24PRbwYdHDSE5M6DuBRWcroUFVq2ADmtQsmOWiV4w5FnrYKM1Bf9vhTHphV-FfFTUvFEVZW1NVWb92rBM8DEG7D-2MqrXdujPdmQ6_4-e3wvrZ6UAbvh66BVghpAb
CitedBy_id crossref_primary_10_55071_ticaretfbd_1578209
crossref_primary_10_1016_j_apenergy_2025_126082
crossref_primary_10_3390_math10234420
crossref_primary_10_1016_j_segan_2024_101436
crossref_primary_10_3390_math10162971
crossref_primary_10_1016_j_apr_2023_101717
crossref_primary_10_3390_en16196767
crossref_primary_10_1016_j_mex_2024_102923
crossref_primary_10_1016_j_measurement_2025_117596
crossref_primary_10_1016_j_procs_2025_08_045
Cites_doi 10.3390/e19020052
10.1016/j.cosrev.2020.100356
10.1016/j.eneco.2021.105742
10.1016/j.apenergy.2021.117242
10.1109/TPWRS.2021.3064277
10.1016/j.rcim.2014.12.015
10.1109/TITS.2019.2950416
10.1007/s10994-019-05815-0
10.1016/j.scs.2020.102275
10.1016/j.eswa.2012.01.039
10.1109/TKDE.2020.2981333
10.1002/pa.2065
10.1016/j.jclepro.2019.118671
10.1016/j.apenergy.2021.116983
10.1162/neco.1997.9.8.1735
10.1016/j.apenergy.2021.116688
10.1016/j.apenergy.2020.116405
10.1016/j.energy.2020.118368
10.1016/j.energy.2021.121543
10.1016/j.neucom.2020.10.109
10.1016/j.rser.2022.112317
10.1109/TIA.2021.3051105
10.1088/1755-1315/467/1/012186
10.1016/j.patcog.2021.108039
10.3390/en12122241
10.1023/B:STCO.0000035301.49549.88
10.3390/forecast1010003
10.1016/j.procs.2022.01.273
10.1007/s40565-018-0496-z
10.1109/TNNLS.2020.2978386
10.3390/su132212653
10.1016/j.ejor.2020.10.055
10.1109/ACCESS.2021.3071274
10.1016/j.jenvman.2020.110194
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math10142366
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_f30320b54e3e473abe5a98b1d13f31e2
10_3390_math10142366
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c367t-3dbf0c2a0b708d8ad0f2e8a89b54e65c83868e8451eea79b162ac78c9d1cd33c3
IEDL.DBID BENPR
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831562800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Tue Oct 14 19:07:07 EDT 2025
Fri Jul 25 12:15:11 EDT 2025
Sat Nov 29 07:11:43 EST 2025
Tue Nov 18 22:43:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-3dbf0c2a0b708d8ad0f2e8a89b54e65c83868e8451eea79b162ac78c9d1cd33c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0552-6178
OpenAccessLink https://www.proquest.com/docview/2694017509?pq-origsite=%requestingapplication%
PQID 2694017509
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_f30320b54e3e473abe5a98b1d13f31e2
proquest_journals_2694017509
crossref_primary_10_3390_math10142366
crossref_citationtrail_10_3390_math10142366
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hardi (ref_20) 2020; 261
Shih (ref_25) 2019; 108
Zhou (ref_29) 2020; 424
Radhakrishnan (ref_10) 2018; 1
ref_36
ref_13
Hochreiter (ref_32) 1997; 9
ref_35
ref_34
Lu (ref_6) 2021; 39
ref_33
Sujit (ref_9) 2019; 7
ref_18
Lehna (ref_14) 2022; 106
ref_16
Lago (ref_8) 2021; 293
Liu (ref_1) 2022; 161
Lin (ref_31) 2021; 118
Tessoni (ref_23) 2022; 200
Souhaib (ref_37) 2012; 39
Xiao (ref_19) 2021; 57
Shamsi (ref_2) 2021; 36
Mashlakov (ref_3) 2021; 285
ref_24
Cui (ref_28) 2019; 21
Fraunholz (ref_5) 2021; 290
Rabiya (ref_7) 2020; 61
Egerer (ref_22) 2020; 292
Zhang (ref_26) 2020; 34
Zheng (ref_12) 2020; 467
Jorge (ref_21) 2020; 208
Wu (ref_30) 2020; 32
Yang (ref_17) 2021; 299
Asif (ref_27) 2021; 9
Shibalal (ref_11) 2020; 20
Li (ref_15) 2021; 237
Nicolau (ref_38) 2015; 34
Alex (ref_39) 2004; 14
Sun (ref_4) 2020; 243
References_xml – ident: ref_13
  doi: 10.3390/e19020052
– volume: 39
  start-page: 100356
  year: 2021
  ident: ref_6
  article-title: Energy price prediction using data-driven models: A decade review
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2020.100356
– ident: ref_24
– volume: 106
  start-page: 105742
  year: 2022
  ident: ref_14
  article-title: Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account
  publication-title: Energ Econ.
  doi: 10.1016/j.eneco.2021.105742
– ident: ref_34
– volume: 299
  start-page: 117242
  year: 2021
  ident: ref_17
  article-title: Real-time electricity price forecasting of wind farms with deep neural network transfer learning and hybrid datasets
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2021.117242
– volume: 36
  start-page: 4513
  year: 2021
  ident: ref_2
  article-title: A Prediction Market Trading Strategy to Hedge Financial Risks of Wind Power Producers in Electricity Markets
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2021.3064277
– volume: 34
  start-page: 151
  year: 2015
  ident: ref_38
  article-title: Performance of state space and ARIMA models for consumer retail sales forecasting
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2014.12.015
– volume: 21
  start-page: 4883
  year: 2019
  ident: ref_28
  article-title: Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2950416
– volume: 108
  start-page: 1421
  year: 2019
  ident: ref_25
  article-title: Temporal pattern attention for multivariate time series forecasting
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-019-05815-0
– volume: 61
  start-page: 102275
  year: 2020
  ident: ref_7
  article-title: A survey on hyperparameters optimization algorithms of forecasting models in smart grid
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102275
– volume: 39
  start-page: 7067
  year: 2012
  ident: ref_37
  article-title: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.039
– volume: 34
  start-page: 249
  year: 2020
  ident: ref_26
  article-title: Deep Learning on Graphs: A Survey
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.2981333
– ident: ref_35
– volume: 20
  start-page: e2065
  year: 2020
  ident: ref_11
  article-title: Estimating and forecasting residential electricity demand in Odisha
  publication-title: J. Public Aff.
  doi: 10.1002/pa.2065
– volume: 243
  start-page: 118671
  year: 2020
  ident: ref_4
  article-title: A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118671
– volume: 293
  start-page: 116983
  year: 2021
  ident: ref_8
  article-title: Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2021.116983
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_32
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 290
  start-page: 116688
  year: 2021
  ident: ref_5
  article-title: Advanced price forecasting in agent-based electricity market simulation
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2021.116688
– volume: 285
  start-page: 116405
  year: 2021
  ident: ref_3
  article-title: Assessing the performance of deep learning models for multivariate probabilistic energy forecasting
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2020.116405
– volume: 208
  start-page: 118368
  year: 2020
  ident: ref_21
  article-title: Characterizing electricity market integration in Nord Pool
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118368
– ident: ref_33
– volume: 237
  start-page: 121543
  year: 2021
  ident: ref_15
  article-title: Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121543
– volume: 424
  start-page: 97
  year: 2020
  ident: ref_29
  article-title: The Generalization Error of Graph Convolutional Networks May Enlarge with More Layers
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.109
– volume: 161
  start-page: 112317
  year: 2022
  ident: ref_1
  article-title: Evolution and reform of UK electricity market
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112317
– volume: 57
  start-page: 1860
  year: 2021
  ident: ref_19
  article-title: Online Sequential Extreme Learning Machine Algorithm for Better Predispatch Electricity Price Forecasting Grids
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2021.3051105
– volume: 467
  start-page: 012186
  year: 2020
  ident: ref_12
  article-title: Short-term electricity price forecasting G-LSTM model and economic dispatch for distribution system
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/467/1/012186
– volume: 118
  start-page: 108039
  year: 2021
  ident: ref_31
  article-title: Deep graph learning for semi-supervised classification
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2021.108039
– ident: ref_36
– ident: ref_18
  doi: 10.3390/en12122241
– volume: 14
  start-page: 199
  year: 2004
  ident: ref_39
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 1
  start-page: 26
  year: 2018
  ident: ref_10
  article-title: A Multi-Stage Price Forecasting Model for Day-Ahead Electricity Markets
  publication-title: Forecasting
  doi: 10.3390/forecast1010003
– volume: 200
  start-page: 748
  year: 2022
  ident: ref_23
  article-title: Advanced statistical and machine learning methods for multi-step multivariate time series forecasting in predictive maintenance
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2022.01.273
– volume: 7
  start-page: 1241
  year: 2019
  ident: ref_9
  article-title: Short-term mixed electricity demand and price forecasting using adaptive autoregressive moving average and functional link neural network
  publication-title: J. Mod. Power Syst. Clean
  doi: 10.1007/s40565-018-0496-z
– volume: 32
  start-page: 4
  year: 2020
  ident: ref_30
  article-title: A Comprehensive Survey on Graph Neural Networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– ident: ref_16
  doi: 10.3390/su132212653
– volume: 292
  start-page: 696
  year: 2020
  ident: ref_22
  article-title: The impact of neighboring markets on renewable locations, transmission expansion, and generation investment
  publication-title: Eur. J. Oper Res.
  doi: 10.1016/j.ejor.2020.10.055
– volume: 9
  start-page: 60588
  year: 2021
  ident: ref_27
  article-title: Graph Neural Network: A Comprehensive Review on Non-Euclidean Space
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071274
– volume: 261
  start-page: 110194
  year: 2020
  ident: ref_20
  article-title: The role of cross-border power transmission in a renewable-rich power system—A model analysis for Northwestern Europe
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.110194
SSID ssj0000913849
Score 2.259625
Snippet Traditional electricity price forecasting tends to adopt time-domain forecasting methods based on time series, which fail to make full use of the regional...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2366
SubjectTerms Artificial intelligence
Artificial neural networks
Data analysis
Deep learning
Electricity
electricity price forecasting
Electricity pricing
Forecasting
graph convolutional network
Mathematical models
Mathematics
Neural networks
Prediction models
Prices
spatio-temporal forecasting algorithm
Splicing
Supply & demand
temporal convolutional network
Time domain analysis
Time series
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iHvQg_sTplBz0JGFN0jbJ0cmmF4eHCR6EkrwkOJBOtunfb5J2cyDixVMhBNp-L30_6Hvfh9ClN1zoXBbE55yR3BpNtPCeQEgOymB_5gGS2IQYjeTzs3pck_qKPWENPXADXM_zKPFtitxxlwuujSu0koZayj2nLnnfTKi1Yir5YEW5zFXT6c5DXd8L-d9r1KVlPBEifsegRNX_wxOn8DLcQ7ttXohvmufZRxuuPkA7DytS1fkheknDsiT2ZZGb4EMtHiQNmwmETBon_XYclTZBz2MvM-6HAGXxtMbjhn7qDd9Fdmp8O60_2wMX1kZNH_gRehoOxrf3pBVHIMBLsSDcGp8B05kRmbRS28wzJ7VUEaqyAMllKZ3MC-qcFsrQkmkQEpSlYDkHfow262ntThDWRrCsyIDGf5JAnY51oZThykDosuig6yVcFbTM4VHA4q0KFUQEt1oHt4OuVrvfG8aMX_b1I_KrPZHnOi0E61et9au_rN9B3aXdqvbjm1dxODe8QkiFTv_jHmdom8WZh9Sj20Wbi9mHO0db8LmYzGcX6dx9AauN3eI
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Step-Ahead Electricity Price Forecasting Based on Temporal Graph Convolutional Network
URI https://www.proquest.com/docview/2694017509
https://doaj.org/article/f30320b54e3e473abe5a98b1d13f31e2
Volume 10
WOSCitedRecordID wos000831562800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZt0kN7SN9003TRoT0VEVuyLflUsmHThJBlaVNIoWCkkZQGgp2utznmt0cjazeF0l5ykUHSwfaM5iGNvo-Q994IqQtVMl8IzgprNNPSewYhOKiC_LkHiGQTcjZTZ2f1PG249amscmUTo6G2HeAe-S7euAzaE_zbp6tfDFmj8HQ1UWg8JJuIVBb0fHMync2_rHdZEPVSFfVQ8S5Cfr8b4sCfyE_LRQRGvPNFEbL_L4sc3czB0_u-4DOylQJMujdoxHPywLUvyJOTNTpr_5L8iLduGRZ4sb1gjC2dRjKcCwghOY1E8BQpO0H3WBRNJ8HTWdq19HTAsbqknxHmmu537XXS3NA3GwrKX5FvB9PT_UOWWBYYiEoumbDGZ8B1ZmSmrNI289wprWpTFq4qQQlVKaeKMndOy9rkFdcgFdQ2BysEiNdko-1a94ZQbSTPygxyPNyE3GlMMJUKTw5SV-WIfFz97wYSBDkyYVw2IRVB6TR_SmdEPqxnXw3QG_-YN0HRrecgYHbs6BbnTVp_jRfIFI-fJFwhhTau1LUyuc2FF7njI7KzkmqTVnHf3Il0-__Db8ljjtciYhnvDtlYLn67d-QRXC8v-sU4KeU45vuhPZZsjDWmX7G9mYbx-dHJ_PstkyHy8g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRL0wDdioYAP9ISsJnYSOweEumVLq7ZRhRapB6Tg-AMqVUnZbIv4U_2N9TjJFgnBrQdOkRwrkuPnmbE98x7AG1dxoRKZUpdwRhNTKaqEc1T74CDz88-c1kFsQhSFPD7Oj1bgcqiFwbTKwSYGQ20ajWfkm1hx6dHj_dv7sx8UVaPwdnWQ0OhgsW9__fRbtvbd3gc_vxuM7Uxn27u0VxWgmmdiQbmpXKSZiioRSSOViRyzUsm8ShObpVpymUkrkzS2Vom8ijOmtJA6N7E2nGvuv3sLVhOeZOkIVifT4ujT8lQHWTZlkncZ9pzn0aaPO7-jHi7jgYjx2vcFiYA_PEBwazv3_7cf8gDu9QE02eoQ_xBWbP0I1g6X7LPtY_gSqoopJrDRLe9sDJkGsZ8T7bccJAjdE5Qk1arFpG8y8Z7ckKYms46n65R8RBpvst3UF_3K9G1FlzD_BD7fyPCewqhuavsMiKoEi9JIx3h5q2OrcAMtpX8yLVSWjuHtML-l7inWUenjtPRbLURD-TsaxrCx7H3WUYv8pd8EobLsg4TgoaGZfyt7-1I6H4qwCIfEbSK4qmyqclnFJuaOx5aNYX1AUdlbqba8htDzf79-DXd2Z4cH5cFesf8C7jIsAQkpy-swWszP7Uu4rS8WJ-38Vb8gCHy9achdATrlS9c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFiE48EYsFPCBnpC1jp3EzqFCfS1UhdVKFKkHpNTxAypVSdksRfy1_jo8TrJFquDWA6dIjhXJ8eeZsT3zfQCvfSWkTlVGfSo4TW2lqZbeUxOCgzzMP_fGRLEJOZ2qo6NitgIXQy0MplUONjEaatsYPCMfY8VlQE_wb2Pfp0XMdidvz75TVJDCm9ZBTqODyIH79TNs39rN_d0w1xucT_YOd97TXmGAGpHLBRW28sxwzSrJlFXaMs-d0qqostTlmVFC5cqpNEuc07KokpxrI5UpbGKsEEaE796ANZnmLI1pg5-W5zvIt6nSosu1F6Jg4xCBfkNlXC4iJeOlF4xiAVd8QXRwk3v_86-5D3f7sJpsdevgAay4-iHc-bjkpG0fwZdYa0wxrY1uBRdkyV6UADoxYSNCZkiuRFCo1OgWU8HJdvDvljQ1OezYu07JOyT3JjtNfd6v19A27dLoH8PnaxneE1itm9o9BaIryVnGTIJXuiZxGrfVSoUnN1Ln2QjeDHNdmp54HfU_TsuwAUNklH8iYwQby95nHeHIX_ptI2yWfZAmPDY0869lb3VKHwIUznBIwqVS6MplulBVYhPhReL4CNYHRJW97WrLSzg9-_frV3Ar4Kz8sD89eA63OdaFxDzmdVhdzH-4F3DTnC9O2vnLuDIIHF833n4DzddTUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Step-Ahead+Electricity+Price+Forecasting+Based+on+Temporal+Graph+Convolutional+Network&rft.jtitle=Mathematics+%28Basel%29&rft.au=Su%2C+Haokun&rft.au=Peng%2C+Xiangang&rft.au=Liu%2C+Hanyu&rft.au=Quan%2C+Huan&rft.date=2022-07-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=10&rft.issue=14&rft.spage=2366&rft_id=info:doi/10.3390%2Fmath10142366&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math10142366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon