Trivariate Spectral Collocation Approach for the Numerical Solution of Three-Dimensional Elliptic Partial Differential Equations

This article is concerned with the numerical solution of three-dimensional elliptic partial differential equations (PDEs) using the trivariate spectral collocation approach based on the Kronecker tensor product. By using the quasilinearization method, the nonlinear elliptic PDEs are simplified to a...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 10; no. 13; p. 2260
Main Authors: Mkhatshwa, Musawenkhosi Patson, Khumalo, Melusi
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.07.2022
Subjects:
ISSN:2227-7390, 2227-7390
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article is concerned with the numerical solution of three-dimensional elliptic partial differential equations (PDEs) using the trivariate spectral collocation approach based on the Kronecker tensor product. By using the quasilinearization method, the nonlinear elliptic PDEs are simplified to a linear system of algebraic equations that can be discretized using the spectral collocation method. The method is based on approximating the solutions using the triple Lagrange interpolating polynomials, which interpolate the unknown functions at selected Chebyshev–Gauss–Lobatto (CGL) grid points. The CGL points are preferred to ensure simplicity in the conversion of continuous derivatives to discrete derivatives at the collocation points. The collocation process is carried out at the interior points to reduce the size of differentiation matrices. This work is aimed at verifying that the algorithm based on the method is simple and easily implemented in any scientific software to produce more accurate and stable results. The effectiveness and spectral accuracy of the numerical algorithm is checked through the determination and analysis of errors, condition numbers and computational time for various classes of single or system of elliptic PDEs including those with singular behavior. The communicated results indicate that the proposed method is more accurate, stable and effective for solving elliptic PDEs. This good accuracy becomes possible with the usage of few grid points and less memory requirements for numerical computation.
AbstractList This article is concerned with the numerical solution of three-dimensional elliptic partial differential equations (PDEs) using the trivariate spectral collocation approach based on the Kronecker tensor product. By using the quasilinearization method, the nonlinear elliptic PDEs are simplified to a linear system of algebraic equations that can be discretized using the spectral collocation method. The method is based on approximating the solutions using the triple Lagrange interpolating polynomials, which interpolate the unknown functions at selected Chebyshev–Gauss–Lobatto (CGL) grid points. The CGL points are preferred to ensure simplicity in the conversion of continuous derivatives to discrete derivatives at the collocation points. The collocation process is carried out at the interior points to reduce the size of differentiation matrices. This work is aimed at verifying that the algorithm based on the method is simple and easily implemented in any scientific software to produce more accurate and stable results. The effectiveness and spectral accuracy of the numerical algorithm is checked through the determination and analysis of errors, condition numbers and computational time for various classes of single or system of elliptic PDEs including those with singular behavior. The communicated results indicate that the proposed method is more accurate, stable and effective for solving elliptic PDEs. This good accuracy becomes possible with the usage of few grid points and less memory requirements for numerical computation.
Author Mkhatshwa, Musawenkhosi Patson
Khumalo, Melusi
Author_xml – sequence: 1
  givenname: Musawenkhosi Patson
  orcidid: 0000-0001-7284-8498
  surname: Mkhatshwa
  fullname: Mkhatshwa, Musawenkhosi Patson
– sequence: 2
  givenname: Melusi
  surname: Khumalo
  fullname: Khumalo, Melusi
BookMark eNptkU2PFCEQholZE9d1b_6ATrzaSkN_wHEzO-omGzXZ8UyqoXCYME0v0Cbe_OkyPcZsjFyAt556C6pekospTEjI64a-41zS90fI-4Y2nLGePiOXjLGhHkrg4sn5BblO6UDLkg0Xrbwkv3bR_YDoIGP1MKPOEXy1Cd4HDdmFqbqZ5xhA7ysbYpX3WH1ejhidLthD8MvKBFvt9hGxvnVHnFKRSnTrvZuz09VXiNkV4dZZixGn9bJ9XFb_9Io8t-ATXv_Zr8i3D9vd5lN9_-Xj3ebmvta8H3LNJXa61watMUzITrTWAHCN4zhq0Um0HRgzipZpBtAVFtHgILRszYDDwK_I3dnXBDioObojxJ8qgFOrEOJ3dXqn9qhGClZLyagB0_ZyFJIPPTMghDZSoi5eb85epTWPC6asDmGJ5dNJsV70lHdtf6r49kzpGFKKaP9Wbag6jUw9HVnB2T-4dnntUZmJ8_9P-g3AcqA-
CitedBy_id crossref_primary_10_3390_app151810256
Cites_doi 10.1002/num.20160
10.1016/j.jco.2009.02.006
10.1023/A:1023265301820
10.4208/nmtma.2011.42s.5
10.3390/math7010090
10.1016/j.camwa.2004.02.014
10.1109/TAC.1965.1098135
10.1137/17M113767X
10.1186/s13662-019-2275-1
10.1016/j.enganabound.2008.05.001
10.1137/1.9780898719208
10.1137/050629033
10.1007/BF01935015
10.1007/978-3-642-84108-8
10.1090/S0025-5718-1981-0616366-X
10.1142/6437
10.1016/S0010-4655(02)00847-0
10.3934/dcdsb.2021220
10.1137/0916073
10.1016/j.apm.2012.02.046
10.1142/S0218396X06003050
10.1137/1.9780898719598
10.1017/S0004972700032494
10.1007/978-3-662-06406-1
10.1090/S0025-5718-1976-0395159-3
10.1016/j.camwa.2017.02.034
10.1007/s10915-020-01226-9
10.1002/num.1690080606
10.1016/j.apm.2011.11.078
10.1007/s40096-017-0220-6
10.1016/j.enganabound.2010.07.005
10.3390/math10030296
10.1016/j.camwa.2016.06.012
10.1137/0902022
10.1016/j.jcp.2010.12.041
10.1007/s12591-016-0314-x
10.1007/s10915-010-9348-3
10.1016/j.apm.2013.02.018
10.1016/j.jcp.2006.03.021
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math10132260
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_b0afc9920dad469b893762da88cd99ec
10_3390_math10132260
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c367t-39e5c6cdefdd289584fdaa3cebbbc859ef5addb842c2aa55c6eede78c94d7e773
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000823565300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Fri Oct 03 12:50:41 EDT 2025
Fri Jul 25 12:07:24 EDT 2025
Tue Nov 18 22:21:17 EST 2025
Sat Nov 29 07:11:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-39e5c6cdefdd289584fdaa3cebbbc859ef5addb842c2aa55c6eede78c94d7e773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7284-8498
OpenAccessLink https://doaj.org/article/b0afc9920dad469b893762da88cd99ec
PQID 2686035467
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_b0afc9920dad469b893762da88cd99ec
proquest_journals_2686035467
crossref_primary_10_3390_math10132260
crossref_citationtrail_10_3390_math10132260
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Christara (ref_15) 1994; 34
Duy (ref_12) 2009; 51
ref_36
Jain (ref_44) 1992; 8
ref_34
ref_33
Alonso (ref_18) 2009; 25
Revers (ref_35) 1998; 58
Singer (ref_7) 2006; 14
Wang (ref_25) 2018; 40
ref_30
Hu (ref_10) 2005; 50
Ali (ref_38) 2015; 5
Yang (ref_13) 2011; 35
Herbert (ref_37) 1976; 30
Gustafsson (ref_17) 1999; 14
Jha (ref_43) 2019; 2019
Gu (ref_26) 2020; 83
Mohanty (ref_41) 2006; 22
Shi (ref_20) 2012; 36
Dunham (ref_39) 1981; 37
Aziz (ref_19) 2013; 37
Liu (ref_29) 2011; 4
Ying (ref_1) 2006; 219
Boisvert (ref_6) 1981; 2
Fairweather (ref_14) 2011; 230
ref_23
Abushama (ref_16) 2008; 46
Jha (ref_42) 2018; 26
Don (ref_32) 1995; 16
Duy (ref_11) 2009; 33
Ghimire (ref_31) 2016; 72
ref_3
ref_2
Britt (ref_5) 2010; 45
Mohanty (ref_40) 2013; 37
ref_28
Singh (ref_22) 2017; 11
ref_27
ref_9
ref_8
ref_4
Pfeiffer (ref_24) 2003; 152
Aziz (ref_21) 2017; 73
References_xml – volume: 22
  start-page: 1379
  year: 2006
  ident: ref_41
  article-title: A highly accurate discretization for three-dimensional singularly perturbed nonlinear elliptic partial differential equations
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20160
– volume: 25
  start-page: 237
  year: 2009
  ident: ref_18
  article-title: An alternating direction Sinc–Galerkin method for elliptic problems
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2009.02.006
– ident: ref_3
– volume: 5
  start-page: 2288
  year: 2015
  ident: ref_38
  article-title: A highly accurate collocation algorithm for (1 + 1) and (2 + 1) fractional percolation equations
  publication-title: Vib. Control
– volume: 14
  start-page: 223
  year: 1999
  ident: ref_17
  article-title: A fast domain decomposition high order Poisson solver
  publication-title: J. Sci. Comput.
  doi: 10.1023/A:1023265301820
– volume: 4
  start-page: 197
  year: 2011
  ident: ref_29
  article-title: Efficient Chebyshev spectral method for solving linear elliptic PDEs using Quasi-Inverse Technique
  publication-title: Numer. Math. Theor. Meth. Appl.
  doi: 10.4208/nmtma.2011.42s.5
– ident: ref_30
  doi: 10.3390/math7010090
– volume: 50
  start-page: 289
  year: 2005
  ident: ref_10
  article-title: Radial basis collocation methods for elliptic boundary value problems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2004.02.014
– ident: ref_33
  doi: 10.1109/TAC.1965.1098135
– volume: 40
  start-page: B1180
  year: 2018
  ident: ref_25
  article-title: Two-level spectral methods for nonlinear elliptic equations with multiple solutions
  publication-title: SIAM Sci. Comput.
  doi: 10.1137/17M113767X
– volume: 2019
  start-page: 339
  year: 2019
  ident: ref_43
  article-title: Exponential basis and exponential expanding grids third (fourth)-order compact schemes for nonlinear three-dimensional convection-diffusion-reaction equation
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-019-2275-1
– volume: 33
  start-page: 191
  year: 2009
  ident: ref_11
  article-title: An integrated RBF technique based on Galerkin formulation for elliptic differential equations
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2008.05.001
– ident: ref_8
  doi: 10.1137/1.9780898719208
– volume: 46
  start-page: 397
  year: 2008
  ident: ref_16
  article-title: Modified nodal cubic spline collocation for Poisson equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/050629033
– volume: 34
  start-page: 33
  year: 1994
  ident: ref_15
  article-title: Quadratic spline collocation methods for elliptic partial differential equations
  publication-title: BIT Numer. Math.
  doi: 10.1007/BF01935015
– ident: ref_23
– ident: ref_36
  doi: 10.1007/978-3-642-84108-8
– volume: 37
  start-page: 135
  year: 1981
  ident: ref_39
  article-title: Rate of convergence of discretization in chebyshev approximation
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1981-0616366-X
– ident: ref_9
  doi: 10.1142/6437
– volume: 152
  start-page: 253
  year: 2003
  ident: ref_24
  article-title: A multidomain spectral method for solving elliptic equations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(02)00847-0
– ident: ref_27
  doi: 10.3934/dcdsb.2021220
– volume: 16
  start-page: 1253
  year: 1995
  ident: ref_32
  article-title: Accuracy and Speed of Computing the Chebyshev Collocation Derivative
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0916073
– volume: 51
  start-page: 213
  year: 2009
  ident: ref_12
  article-title: A Cartesian-grid discretisation scheme based on local integrated RBF for two-dimensional elliptic problems
  publication-title: CMES Comput. Model. Eng. Sci.
– volume: 37
  start-page: 676
  year: 2013
  ident: ref_19
  article-title: Wavelets collocation methods for the numerical solution of elliptic BV problems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.02.046
– ident: ref_2
– volume: 14
  start-page: 339
  year: 2006
  ident: ref_7
  article-title: Sixth order accurate finite difference schemes for the Helmholtz equation
  publication-title: J. Comput. Acoust.
  doi: 10.1142/S0218396X06003050
– ident: ref_34
  doi: 10.1137/1.9780898719598
– volume: 58
  start-page: 505
  year: 1998
  ident: ref_35
  article-title: On the approximation of certain functions by interpolating polynomials
  publication-title: Bull. Aust. Math. Soc.
  doi: 10.1017/S0004972700032494
– ident: ref_4
  doi: 10.1007/978-3-662-06406-1
– volume: 30
  start-page: 295
  year: 1976
  ident: ref_37
  article-title: Converting interpolation series into Chebyshev series by recurrence formulas
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1976-0395159-3
– volume: 73
  start-page: 2023
  year: 2017
  ident: ref_21
  article-title: Haar wavelet collocation method for three-dimensional elliptic partial differential equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2017.02.034
– volume: 83
  start-page: 42
  year: 2020
  ident: ref_26
  article-title: Accurate and efficient spectral methods for elliptic PDEs in complex domains
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-020-01226-9
– volume: 8
  start-page: 575
  year: 1992
  ident: ref_44
  article-title: Fourth order difference method for three-dimensional elliptic equations with nonlinear first derivative terms
  publication-title: Numer. Methods Partial. Differ. Equ.
  doi: 10.1002/num.1690080606
– volume: 36
  start-page: 5143
  year: 2012
  ident: ref_20
  article-title: Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.11.078
– volume: 11
  start-page: 145
  year: 2017
  ident: ref_22
  article-title: Wavelet methods for solving three-dimensional partial differential equations
  publication-title: Math. Sci.
  doi: 10.1007/s40096-017-0220-6
– volume: 35
  start-page: 18
  year: 2011
  ident: ref_13
  article-title: An improved hybrid boundary node method for solving steady fluid flow problems
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2010.07.005
– ident: ref_28
  doi: 10.3390/math10030296
– volume: 72
  start-page: 1042
  year: 2016
  ident: ref_31
  article-title: Numerical Solutions of Elliptic Partial Differential Equations Using Chebyshev Polynomials
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.06.012
– volume: 2
  start-page: 268
  year: 1981
  ident: ref_6
  article-title: Families of high order accurate discretizations of some elliptic problems
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0902022
– volume: 230
  start-page: 2880
  year: 2011
  ident: ref_14
  article-title: Compact optimal quadratic spline collocation methods for the Helmholtz equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.12.041
– volume: 26
  start-page: 105
  year: 2018
  ident: ref_42
  article-title: A family of compact finite difference formulations for three-space dimensional nonlinear Poisson’s equations in Cartesian coordinates
  publication-title: Differ. Equ. Dyn. Syst.
  doi: 10.1007/s12591-016-0314-x
– volume: 45
  start-page: 26
  year: 2010
  ident: ref_5
  article-title: A compact fourth order scheme for the Helmholtz equation in polar coordinates
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-010-9348-3
– volume: 37
  start-page: 6870
  year: 2013
  ident: ref_40
  article-title: A new high order compact off-step discretization for the system of 3D quasi-linear elliptic partial differential equations
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.02.018
– volume: 219
  start-page: 247
  year: 2006
  ident: ref_1
  article-title: A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.03.021
SSID ssj0000913849
Score 2.1938734
Snippet This article is concerned with the numerical solution of three-dimensional elliptic partial differential equations (PDEs) using the trivariate spectral...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2260
SubjectTerms Accuracy
Algorithms
Approximation
Boundary conditions
Chebyshev approximation
Chebyshev–Gauss–Lobatto points
Collocation methods
Computing time
Derivatives
Differential equations
Elliptic functions
Kronecker tensor product
Mathematics
Methods
Numerical analysis
Partial differential equations
Polynomials
quasilinearization method
spectral method
Tensors
three-dimensional elliptic PDEs
trivariate Lagrange interpolating polynomial
Variables
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYo7aE99I3YliIf4FRZZOM87FNFC4gDrJC6SNwiZzwuK6ENbBbO_emdcbxLpaq99BhnIkWa8Tw-j78RYg84ZptaKy6XVaHDWBlEUIV3aDyZEYZImX9WTybm6speJMCtT22VK58YHbXvgDHyg7wyVaZL2tdfbu8UT43i09U0QuOJeMosCePYuvd9jbEw56Up7NDvrqm6P6As8HocjxciJ-VjJIqE_X_44xhkTl797--9Fi9TeikPB3t4IzZw_la8OF9zs_bvxM_pYvZAFTIlmZKnzzPUIRk_6Ab0Th4mmnFJ-aykD-XkfjjWuZErEE12QU7JClAd8XSAgdlDcv8HeSCQF2yPtHCUpq_Eh-O7gVW8fy8uT46n305VmsOgQFf1UmmLJVTgMXhP9RmlLME7pwHbtgVTWgwlecnWFDnkzpUkS4EXawO28DXWtd4Sm_NujttCZiG0VTFG7SosSpMZ7y04qDXaNkONI_F5pZMGEkk5z8q4aahYYQ02v2twJPbX0rcDOcdf5L6yetcyTKkdF7rFjybt0KbNXABr88w7X1S25USuyr0zBry1CCOxs9J8k_Z53zyq_cO_X38Uz3O-OBEbfXfE5nJxj5_EM3hYzvrFbjTbX-Ex_LA
  priority: 102
  providerName: ProQuest
Title Trivariate Spectral Collocation Approach for the Numerical Solution of Three-Dimensional Elliptic Partial Differential Equations
URI https://www.proquest.com/docview/2686035467
https://doaj.org/article/b0afc9920dad469b893762da88cd99ec
Volume 10
WOSCitedRecordID wos000823565300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swELYQ7GF7QDA2rYxVfhhPk0UaJ7H9CKOIaaOKRiexp8ixzwIJtVtbeJz46dzZaak0TXvhxVKSixL5Lnf32ZfvGPvoKGZrJQXBZVHIMBAawInCW9AezQhCpMz_pkYjfXVl6rVWX1QTluiB08QdtZkNzpg889YjlGspvla5t1o7bww48r6ZMmtgKvpgM5C6MKnSXSKuP8L873oQNxYiG-VTDIpU_X954hheznbYdpcX8uP0PrtsAyav2auLFanqfI89jGc39whtMTvk1Dae1ig4Af9pWnbjxx0_OMdElOONfHSX9mNu-XL1i08DH6P6QJwSrX-i5OBUuIGuw_Ga5gNPnHZtU-LB8HeiA5-_YT_OhuPP56JroCCcrNRCSAOlq5yH4D0CK8w1grdWOmjb1unSQCjRvbW6yF1ubYmyGDFBaWcKr0Ap-ZZtTqYTeMd4FkJbFQOQtoKi1Jn23jjrlATTZiChxz4tp7RxHbs4Nbm4bRBlkAKadQX02OFK-ldi1fiH3AlpZyVDXNjxBFpI01lI8z8L6bGDpW6b7gOdN3mlq0yWGCb2n-MZ79nLnP6LiHW8B2xzMbuDD-yFu1_czGd9tnUyHNXf-9FGcfyqRJ-KTC9p_DPE6_WXi_rnI1QX9dM
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ98CzqQgEf6AlZzcZ52AeECtuqVberSixSb8GxJ1Cp2rTZbRE3fhG_kRkn2SIhuPXAMc4kUpxvnra_AXjt2GfrXElOl2WiqqHUiE4m3qL2BCOsAmX-OJ9M9MmJOV6Bn_1ZGN5W2dvEYKh97bhGvh1nOotUSnr97vxCctcoXl3tW2i0sDjE798oZZu_PRjR_92K473d6Yd92XUVkE5l-UIqg6nLnMfKe8o2yAFX3lrlsCxLp1ODVUo6X-okdrG1KcmSG8FcO5P4HPNc0Xtvwe1E0RfyInAulzUd5tjUiWn31ytlom2KOr8Ow3JG4MC89nyhQcAf9j84tb0H_9t0PIT7Xfgsdlq8P4IVnD2GtaMl9-z8CfyYNqdXlvRqgeIjnyNt6AGuj9RtdVLsdDTqguJ1QQ-KyWW7bHUm-iKhqCsxJZSjHHH3g5a5RPD-FrKwThyzvtHAqOsuEy52L1rW9Pk6fLqRKXgKq7N6hhsgoqoqs2SIymaYpDrS3htnXa7QlBEqHMCbHgOF60jYuRfIWUHJGCOm-B0xA9haSp-35CN_kXvPcFrKMGV4GKibL0VngYoyspUzJo689UlmSg5Us9hbrZ03Bt0ANnukFZ0dmxfXMHv279uv4O7-9GhcjA8mh8_hXsyHRMKm5k1YXTSX-ALuuKvF6bx5GVRGwOebBuUv8Exftg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLULlwBt1oYAP9ISizdp52AeECtsVq7arSCxSOQXHHkOlatMm2yJu_C5-HeM8tkgIbj1wjDPOwfnm4fH4G4CXxvtsmYrAb5eDSLhxIBFNEFmN0hKM0DWU-YfpfC6Pj1W2AT_7uzC-rLK3iY2htqXxOfIRT2QSipj0euS6sohsMn1zdh74DlL-pLVvp9FC5AC_f6PtW_16NqF_vcv5dH_x7n3QdRgIjEjSVSAUxiYxFp21tPMgZ-ys1sJgURRGxgpdTPpfyIgbrnVMsuRSMJVGRTbFNBX03RuwSSF5xAewmc2Osk_rDI9n3JSRaqvthVDhiGLQr-PmcKNhxLzyg027gD-8QePipnf_58W5B3e6wJrttZpwHzZw-QBuH61ZaeuH8GNRnVxq0rgVsg_-hmlFE3zmpGzzlmyvI1hnFMkzmsjmF-2B1inr04esdGxB-Mdg4vsitJwmzFe-kO01LPOaSAOTru9M87B_3vKp14_g47UswWMYLMslbgMLnSuSaIxCJxjFMpTWKqNNKlAVIQocwqseD7np6Nl9l5DTnLZpHj357-gZwu5a-qylJfmL3FsPrbWMJxNvBsrqS97ZprwItTNK8dBqGyWq8CFswq2W0lil0Axhp0dd3lm4Or-C3JN_v34BtwiL-eFsfvAUtri_PdJUO-_AYFVd4DO4aS5XJ3X1vNMfBp-vG5W_ANc-ajc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trivariate+Spectral+Collocation+Approach+for+the+Numerical+Solution+of+Three-Dimensional+Elliptic+Partial+Differential+Equations&rft.jtitle=Mathematics+%28Basel%29&rft.au=Musawenkhosi+Patson+Mkhatshwa&rft.au=Melusi+Khumalo&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=13&rft.spage=2260&rft_id=info:doi/10.3390%2Fmath10132260&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b0afc9920dad469b893762da88cd99ec
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon