Trivariate Spectral Collocation Approach for the Numerical Solution of Three-Dimensional Elliptic Partial Differential Equations
This article is concerned with the numerical solution of three-dimensional elliptic partial differential equations (PDEs) using the trivariate spectral collocation approach based on the Kronecker tensor product. By using the quasilinearization method, the nonlinear elliptic PDEs are simplified to a...
Gespeichert in:
| Veröffentlicht in: | Mathematics (Basel) Jg. 10; H. 13; S. 2260 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.07.2022
|
| Schlagworte: | |
| ISSN: | 2227-7390, 2227-7390 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This article is concerned with the numerical solution of three-dimensional elliptic partial differential equations (PDEs) using the trivariate spectral collocation approach based on the Kronecker tensor product. By using the quasilinearization method, the nonlinear elliptic PDEs are simplified to a linear system of algebraic equations that can be discretized using the spectral collocation method. The method is based on approximating the solutions using the triple Lagrange interpolating polynomials, which interpolate the unknown functions at selected Chebyshev–Gauss–Lobatto (CGL) grid points. The CGL points are preferred to ensure simplicity in the conversion of continuous derivatives to discrete derivatives at the collocation points. The collocation process is carried out at the interior points to reduce the size of differentiation matrices. This work is aimed at verifying that the algorithm based on the method is simple and easily implemented in any scientific software to produce more accurate and stable results. The effectiveness and spectral accuracy of the numerical algorithm is checked through the determination and analysis of errors, condition numbers and computational time for various classes of single or system of elliptic PDEs including those with singular behavior. The communicated results indicate that the proposed method is more accurate, stable and effective for solving elliptic PDEs. This good accuracy becomes possible with the usage of few grid points and less memory requirements for numerical computation. |
|---|---|
| AbstractList | This article is concerned with the numerical solution of three-dimensional elliptic partial differential equations (PDEs) using the trivariate spectral collocation approach based on the Kronecker tensor product. By using the quasilinearization method, the nonlinear elliptic PDEs are simplified to a linear system of algebraic equations that can be discretized using the spectral collocation method. The method is based on approximating the solutions using the triple Lagrange interpolating polynomials, which interpolate the unknown functions at selected Chebyshev–Gauss–Lobatto (CGL) grid points. The CGL points are preferred to ensure simplicity in the conversion of continuous derivatives to discrete derivatives at the collocation points. The collocation process is carried out at the interior points to reduce the size of differentiation matrices. This work is aimed at verifying that the algorithm based on the method is simple and easily implemented in any scientific software to produce more accurate and stable results. The effectiveness and spectral accuracy of the numerical algorithm is checked through the determination and analysis of errors, condition numbers and computational time for various classes of single or system of elliptic PDEs including those with singular behavior. The communicated results indicate that the proposed method is more accurate, stable and effective for solving elliptic PDEs. This good accuracy becomes possible with the usage of few grid points and less memory requirements for numerical computation. |
| Author | Mkhatshwa, Musawenkhosi Patson Khumalo, Melusi |
| Author_xml | – sequence: 1 givenname: Musawenkhosi Patson orcidid: 0000-0001-7284-8498 surname: Mkhatshwa fullname: Mkhatshwa, Musawenkhosi Patson – sequence: 2 givenname: Melusi surname: Khumalo fullname: Khumalo, Melusi |
| BookMark | eNptkU2PFCEQholZE9d1b_6ATrzaSkN_wHEzO-omGzXZ8UyqoXCYME0v0Cbe_OkyPcZsjFyAt556C6pekospTEjI64a-41zS90fI-4Y2nLGePiOXjLGhHkrg4sn5BblO6UDLkg0Xrbwkv3bR_YDoIGP1MKPOEXy1Cd4HDdmFqbqZ5xhA7ysbYpX3WH1ejhidLthD8MvKBFvt9hGxvnVHnFKRSnTrvZuz09VXiNkV4dZZixGn9bJ9XFb_9Io8t-ATXv_Zr8i3D9vd5lN9_-Xj3ebmvta8H3LNJXa61watMUzITrTWAHCN4zhq0Um0HRgzipZpBtAVFtHgILRszYDDwK_I3dnXBDioObojxJ8qgFOrEOJ3dXqn9qhGClZLyagB0_ZyFJIPPTMghDZSoi5eb85epTWPC6asDmGJ5dNJsV70lHdtf6r49kzpGFKKaP9Wbag6jUw9HVnB2T-4dnntUZmJ8_9P-g3AcqA- |
| CitedBy_id | crossref_primary_10_3390_app151810256 |
| Cites_doi | 10.1002/num.20160 10.1016/j.jco.2009.02.006 10.1023/A:1023265301820 10.4208/nmtma.2011.42s.5 10.3390/math7010090 10.1016/j.camwa.2004.02.014 10.1109/TAC.1965.1098135 10.1137/17M113767X 10.1186/s13662-019-2275-1 10.1016/j.enganabound.2008.05.001 10.1137/1.9780898719208 10.1137/050629033 10.1007/BF01935015 10.1007/978-3-642-84108-8 10.1090/S0025-5718-1981-0616366-X 10.1142/6437 10.1016/S0010-4655(02)00847-0 10.3934/dcdsb.2021220 10.1137/0916073 10.1016/j.apm.2012.02.046 10.1142/S0218396X06003050 10.1137/1.9780898719598 10.1017/S0004972700032494 10.1007/978-3-662-06406-1 10.1090/S0025-5718-1976-0395159-3 10.1016/j.camwa.2017.02.034 10.1007/s10915-020-01226-9 10.1002/num.1690080606 10.1016/j.apm.2011.11.078 10.1007/s40096-017-0220-6 10.1016/j.enganabound.2010.07.005 10.3390/math10030296 10.1016/j.camwa.2016.06.012 10.1137/0902022 10.1016/j.jcp.2010.12.041 10.1007/s12591-016-0314-x 10.1007/s10915-010-9348-3 10.1016/j.apm.2013.02.018 10.1016/j.jcp.2006.03.021 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.3390/math10132260 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_b0afc9920dad469b893762da88cd99ec 10_3390_math10132260 |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c367t-39e5c6cdefdd289584fdaa3cebbbc859ef5addb842c2aa55c6eede78c94d7e773 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000823565300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7390 |
| IngestDate | Fri Oct 03 12:50:41 EDT 2025 Fri Jul 25 12:07:24 EDT 2025 Tue Nov 18 22:21:17 EST 2025 Sat Nov 29 07:11:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-39e5c6cdefdd289584fdaa3cebbbc859ef5addb842c2aa55c6eede78c94d7e773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7284-8498 |
| OpenAccessLink | https://www.proquest.com/docview/2686035467?pq-origsite=%requestingapplication% |
| PQID | 2686035467 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b0afc9920dad469b893762da88cd99ec proquest_journals_2686035467 crossref_primary_10_3390_math10132260 crossref_citationtrail_10_3390_math10132260 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Christara (ref_15) 1994; 34 Duy (ref_12) 2009; 51 ref_36 Jain (ref_44) 1992; 8 ref_34 ref_33 Alonso (ref_18) 2009; 25 Revers (ref_35) 1998; 58 Singer (ref_7) 2006; 14 Wang (ref_25) 2018; 40 ref_30 Hu (ref_10) 2005; 50 Ali (ref_38) 2015; 5 Yang (ref_13) 2011; 35 Herbert (ref_37) 1976; 30 Gustafsson (ref_17) 1999; 14 Jha (ref_43) 2019; 2019 Gu (ref_26) 2020; 83 Mohanty (ref_41) 2006; 22 Shi (ref_20) 2012; 36 Dunham (ref_39) 1981; 37 Aziz (ref_19) 2013; 37 Liu (ref_29) 2011; 4 Ying (ref_1) 2006; 219 Boisvert (ref_6) 1981; 2 Fairweather (ref_14) 2011; 230 ref_23 Abushama (ref_16) 2008; 46 Jha (ref_42) 2018; 26 Don (ref_32) 1995; 16 Duy (ref_11) 2009; 33 Ghimire (ref_31) 2016; 72 ref_3 ref_2 Britt (ref_5) 2010; 45 Mohanty (ref_40) 2013; 37 ref_28 Singh (ref_22) 2017; 11 ref_27 ref_9 ref_8 ref_4 Pfeiffer (ref_24) 2003; 152 Aziz (ref_21) 2017; 73 |
| References_xml | – volume: 22 start-page: 1379 year: 2006 ident: ref_41 article-title: A highly accurate discretization for three-dimensional singularly perturbed nonlinear elliptic partial differential equations publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.20160 – volume: 25 start-page: 237 year: 2009 ident: ref_18 article-title: An alternating direction Sinc–Galerkin method for elliptic problems publication-title: J. Complex. doi: 10.1016/j.jco.2009.02.006 – ident: ref_3 – volume: 5 start-page: 2288 year: 2015 ident: ref_38 article-title: A highly accurate collocation algorithm for (1 + 1) and (2 + 1) fractional percolation equations publication-title: Vib. Control – volume: 14 start-page: 223 year: 1999 ident: ref_17 article-title: A fast domain decomposition high order Poisson solver publication-title: J. Sci. Comput. doi: 10.1023/A:1023265301820 – volume: 4 start-page: 197 year: 2011 ident: ref_29 article-title: Efficient Chebyshev spectral method for solving linear elliptic PDEs using Quasi-Inverse Technique publication-title: Numer. Math. Theor. Meth. Appl. doi: 10.4208/nmtma.2011.42s.5 – ident: ref_30 doi: 10.3390/math7010090 – volume: 50 start-page: 289 year: 2005 ident: ref_10 article-title: Radial basis collocation methods for elliptic boundary value problems publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2004.02.014 – ident: ref_33 doi: 10.1109/TAC.1965.1098135 – volume: 40 start-page: B1180 year: 2018 ident: ref_25 article-title: Two-level spectral methods for nonlinear elliptic equations with multiple solutions publication-title: SIAM Sci. Comput. doi: 10.1137/17M113767X – volume: 2019 start-page: 339 year: 2019 ident: ref_43 article-title: Exponential basis and exponential expanding grids third (fourth)-order compact schemes for nonlinear three-dimensional convection-diffusion-reaction equation publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-019-2275-1 – volume: 33 start-page: 191 year: 2009 ident: ref_11 article-title: An integrated RBF technique based on Galerkin formulation for elliptic differential equations publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2008.05.001 – ident: ref_8 doi: 10.1137/1.9780898719208 – volume: 46 start-page: 397 year: 2008 ident: ref_16 article-title: Modified nodal cubic spline collocation for Poisson equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/050629033 – volume: 34 start-page: 33 year: 1994 ident: ref_15 article-title: Quadratic spline collocation methods for elliptic partial differential equations publication-title: BIT Numer. Math. doi: 10.1007/BF01935015 – ident: ref_23 – ident: ref_36 doi: 10.1007/978-3-642-84108-8 – volume: 37 start-page: 135 year: 1981 ident: ref_39 article-title: Rate of convergence of discretization in chebyshev approximation publication-title: Math. Comput. doi: 10.1090/S0025-5718-1981-0616366-X – ident: ref_9 doi: 10.1142/6437 – volume: 152 start-page: 253 year: 2003 ident: ref_24 article-title: A multidomain spectral method for solving elliptic equations publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(02)00847-0 – ident: ref_27 doi: 10.3934/dcdsb.2021220 – volume: 16 start-page: 1253 year: 1995 ident: ref_32 article-title: Accuracy and Speed of Computing the Chebyshev Collocation Derivative publication-title: SIAM J. Sci. Comput. doi: 10.1137/0916073 – volume: 51 start-page: 213 year: 2009 ident: ref_12 article-title: A Cartesian-grid discretisation scheme based on local integrated RBF for two-dimensional elliptic problems publication-title: CMES Comput. Model. Eng. Sci. – volume: 37 start-page: 676 year: 2013 ident: ref_19 article-title: Wavelets collocation methods for the numerical solution of elliptic BV problems publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.02.046 – ident: ref_2 – volume: 14 start-page: 339 year: 2006 ident: ref_7 article-title: Sixth order accurate finite difference schemes for the Helmholtz equation publication-title: J. Comput. Acoust. doi: 10.1142/S0218396X06003050 – ident: ref_34 doi: 10.1137/1.9780898719598 – volume: 58 start-page: 505 year: 1998 ident: ref_35 article-title: On the approximation of certain functions by interpolating polynomials publication-title: Bull. Aust. Math. Soc. doi: 10.1017/S0004972700032494 – ident: ref_4 doi: 10.1007/978-3-662-06406-1 – volume: 30 start-page: 295 year: 1976 ident: ref_37 article-title: Converting interpolation series into Chebyshev series by recurrence formulas publication-title: Math. Comput. doi: 10.1090/S0025-5718-1976-0395159-3 – volume: 73 start-page: 2023 year: 2017 ident: ref_21 article-title: Haar wavelet collocation method for three-dimensional elliptic partial differential equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2017.02.034 – volume: 83 start-page: 42 year: 2020 ident: ref_26 article-title: Accurate and efficient spectral methods for elliptic PDEs in complex domains publication-title: J. Sci. Comput. doi: 10.1007/s10915-020-01226-9 – volume: 8 start-page: 575 year: 1992 ident: ref_44 article-title: Fourth order difference method for three-dimensional elliptic equations with nonlinear first derivative terms publication-title: Numer. Methods Partial. Differ. Equ. doi: 10.1002/num.1690080606 – volume: 36 start-page: 5143 year: 2012 ident: ref_20 article-title: Solving 2D and 3D Poisson equations and biharmonic equations by the Haar wavelet method publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.11.078 – volume: 11 start-page: 145 year: 2017 ident: ref_22 article-title: Wavelet methods for solving three-dimensional partial differential equations publication-title: Math. Sci. doi: 10.1007/s40096-017-0220-6 – volume: 35 start-page: 18 year: 2011 ident: ref_13 article-title: An improved hybrid boundary node method for solving steady fluid flow problems publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2010.07.005 – ident: ref_28 doi: 10.3390/math10030296 – volume: 72 start-page: 1042 year: 2016 ident: ref_31 article-title: Numerical Solutions of Elliptic Partial Differential Equations Using Chebyshev Polynomials publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.06.012 – volume: 2 start-page: 268 year: 1981 ident: ref_6 article-title: Families of high order accurate discretizations of some elliptic problems publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0902022 – volume: 230 start-page: 2880 year: 2011 ident: ref_14 article-title: Compact optimal quadratic spline collocation methods for the Helmholtz equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.12.041 – volume: 26 start-page: 105 year: 2018 ident: ref_42 article-title: A family of compact finite difference formulations for three-space dimensional nonlinear Poisson’s equations in Cartesian coordinates publication-title: Differ. Equ. Dyn. Syst. doi: 10.1007/s12591-016-0314-x – volume: 45 start-page: 26 year: 2010 ident: ref_5 article-title: A compact fourth order scheme for the Helmholtz equation in polar coordinates publication-title: J. Sci. Comput. doi: 10.1007/s10915-010-9348-3 – volume: 37 start-page: 6870 year: 2013 ident: ref_40 article-title: A new high order compact off-step discretization for the system of 3D quasi-linear elliptic partial differential equations publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.02.018 – volume: 219 start-page: 247 year: 2006 ident: ref_1 article-title: A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.03.021 |
| SSID | ssj0000913849 |
| Score | 2.1939764 |
| Snippet | This article is concerned with the numerical solution of three-dimensional elliptic partial differential equations (PDEs) using the trivariate spectral... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 2260 |
| SubjectTerms | Accuracy Algorithms Approximation Boundary conditions Chebyshev approximation Chebyshev–Gauss–Lobatto points Collocation methods Computing time Derivatives Differential equations Elliptic functions Kronecker tensor product Mathematics Methods Numerical analysis Partial differential equations Polynomials quasilinearization method spectral method Tensors three-dimensional elliptic PDEs trivariate Lagrange interpolating polynomial Variables |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4ikKBXmACUVNEzu2x0JbsVB1KFK3KD47olLVQl8zP52znZZKCLGwRIrlPHR3ubvPvnxHyB2TsVRJLCJmEoiYxYPkpY5SBYZro7i20jebEP2-HI3UYKfVl6sJC_TAQXBNHRclKLydKQxCOe3ia5aYQkowSllw3jcWagdMeR-sWqlkKlS6p4jrm5j_vbX8xoJno_yOQZ6q_4cn9uGld0yOqryQtsP7nJA9Oz0lhy9bUtXFGfkczsdrhLaYHVLXNt6tUVAH_Gdh2Y22K35wiokoxQtpfxX2YyZ0s_pFZyUdovps1HG0_oGSg7rCDXQdQAdOHjjQqdqm-JPuR6ADX5yT1153-PQcVQ0UIkgzsUSBWw4ZGFsag8AKc43SFEUKVmsNkitbcnRvWrIEkqLgOBcjphUSFDPCCpFekNp0NrWXhCIwY0kpNEtFybQBlcmYg4qZZS1UT1EnDxuR5lCxi7smF5McUYZTQL6rgDq5385-D6wav8x7dNrZznFc2H4ALSSvLCT_y0LqpLHRbV59oIs8yWQWpxzDxNV_POOaHCTuvwhfx9sgteV8ZW_IPqyX48X81tvmF9aw7vA priority: 102 providerName: Directory of Open Access Journals |
| Title | Trivariate Spectral Collocation Approach for the Numerical Solution of Three-Dimensional Elliptic Partial Differential Equations |
| URI | https://www.proquest.com/docview/2686035467 https://doaj.org/article/b0afc9920dad469b893762da88cd99ec |
| Volume | 10 |
| WOSCitedRecordID | wos000823565300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: K7- dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWg5QAHvhFbysoHOKGoWceO7RNq6VYg1FUEi1ROUTx2SqVq0262PVb8dGYc7xYJwYWLpdgTKdKMxzPPkzeMvZEmN1bkOpNeQCYDDka1LisseOW8VS6Y2GxCz2bm5MRWCXDrU1nl2idGR-07IIx8T5SmzAuF-_r9xWVGXaPodjW10LjLtoklYRJL975uMBbivDTSDvXuBWb3exgF_pjE64XISXl7EkXC_j_8cTxkjh797-c9Zg9TeMn3B3t4wu6ExVP24HjDzdo_Yz_ny7NrzJAxyOTUfZ6gDk74QTegd3w_0YxzjGc5vshnV8O1zjlfg2i8a_kcrSBkh9QdYGD24FT_gR4IeEX2iBOHqftKfJheDqzi_XP27Wg6__AxS30YMihKvUK9BQUl-NB6j_kZhiytb5oCgnMOjLKhVeglnZECRNMolMWDN2gDVnodtC5esK1FtwgvGcf8TopWO1noVjoPtjS5ApvLICdgbTNi79Y6qSGRlFOvjPMakxXSYP27Bkfs7Ub6YiDn-IvcAal3I0OU2nGiW57WaYfWLm9a_ASR-8bL0joK5ErhG2PAWxtgxHbXmq_TPu_rW7Xv_Hv5Fbsv6MeJWOi7y7ZWy6vwmt2D69VZvxyz7YPprPoyjogAjp91No6mTOPNFNerT8fV91-naQJj |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQlY8CxioIAXdIWipn7E9gKhwrRqNe2oEoPUXfArUKmatMm0iB1fxDdy7SRTJAS7LthESmJHlnPu0_a5AK-5ypWmucy4py7jAS9KVDZj2nlhvRY2qFRsQk6n6vhYH63Az-EsTNxWOejEpKh97WKOfJMWqsiZQLl-d3aexapRcXV1KKHRwWISvn_DkK19uz_G_7tB6e7O7MNe1lcVyBwr5AJHEYQrnA-V9xhtoAGuvDHMBWutU0KHSqDMW8Wpo8YIbItmJEjlNPcySMnwuzfgJmdKRrmayGyZ04kcm4rrbn89YzrfRK_z61ZazkgcmFeWLxUI-EP_J6O2e_9_m44HcK93n8l2h_eHsBLmj-Du4ZJ7tn0MP2bNyaVBuVoE8jGeI22wQ8yP1F12kmz3NOoE_XWCHcn0olu2OiVDkpDUFZkhykM2jtUPOuYSEve3oIZ15CjKGz4Y99Vl0s3Oecea3q7Bp2uZgiewOq_n4SkQjF85raTlTFbceqcLlQuncx74ltPajODNgIHS9STssRbIaYnBWERM-TtiRrCxbH3WkY_8pd37CKdlm0gZnh7UzZey10ClzU2FQ6C5N54X2kZHtaDeKOW81sGNYH1AWtnrsba8gtmzf79-Bbf3ZocH5cH-dPIc7tB4SCRtal6H1UVzEV7ALXe5OGmbl0lkCHy-blD-Ass9Xxg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJwoDyKWGjBB3pC0aaOk9iHChW2K1alq0gsUjmF-AWVqk2bbIu48bv66xg7zhYJwa0HLpGS2JHlfPPwePwNwCvGYy5onEdMUxUxgxeeWhklQulUapFKw32xiXw248fHoliDq_4sjEur7HWiV9S6Vi5GPqIZz-IkRbke2ZAWUYwnb87OI1dByu209uU0Oogcmh_fcfnW7k3H-K93KJ0czN-9j0KFgUglWb7EEZlUZUobqzWuPNAYW11ViTJSSsVTYWyK8i85o4pWVYpt0aSYnCvBdG7yPMHv3oJ1dMkZHcB6MT0qPq8iPI5xkzPRZdsniYhH6IN-2_WbG54R89oO-nIBf1gDb-ImG__z5DyA-8GxJvudJDyENbN4BPeOVqy07WP4OW9OLiuUuKUhH90J0wY7uMhJ3cUtyX4gWCfoyRPsSGYX3YbWKenDh6S2ZI74N9HY1UXoOE2Iy3xB3atI4SQRH4xD3Rl_c3De8am3m_DpRqbgCQwW9cI8BYIrW0ZtLlmSWya1EhmPUyViZtiuEqIawuseD6UK9OyuSshpics0h57yd_QMYWfV-qyjJflLu7cOWqs2jkzcP6ibr2XQTaWMK4tDoLGuNMuEdC5sRnXFudJCGDWErR51ZdBwbXkNuWf_fv0S7iAWyw_T2eFzuEvd6RGf7bwFg2VzYbbhtrpcnrTNiyA_BL7cNCp_AbhfaZk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trivariate+Spectral+Collocation+Approach+for+the+Numerical+Solution+of+Three-Dimensional+Elliptic+Partial+Differential+Equations&rft.jtitle=Mathematics+%28Basel%29&rft.au=Mkhatshwa%2C+Musawenkhosi+Patson&rft.au=Khumalo%2C+Melusi&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=13&rft.spage=2260&rft_id=info:doi/10.3390%2Fmath10132260&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |