A finite element based heterogeneous multiscale method for the Landau-Lifshitz equation

We present a Heterogeneous Multiscale Method for the Landau-Lifshitz equation with a highly oscillatory diffusion coefficient, a simple model for a ferromagnetic composite. A finite element macro scheme is combined with a finite difference micro model to approximate the effective equation correspond...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational physics Ročník 486; s. 112112
Hlavní autoři: Leitenmaier, Lena, Nazarov, Murtazo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.08.2023
Témata:
ISSN:0021-9991, 1090-2716, 1090-2716
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a Heterogeneous Multiscale Method for the Landau-Lifshitz equation with a highly oscillatory diffusion coefficient, a simple model for a ferromagnetic composite. A finite element macro scheme is combined with a finite difference micro model to approximate the effective equation corresponding to the original problem. This makes it possible to obtain effective solutions to problems with rapid material variations on a small scale, described by ε≪1, which would be too expensive to resolve in a conventional simulation. •Numerical homogenization using Heterogeneous Multiscale Methods.•Implementation of a new multiscale approach for the Landau-Lifshitz equation.•Finite element discretized macro model for flexibility.•Efficient finite difference micro model.•Makes it possible to treat arbitrarily small material variations.
ISSN:0021-9991
1090-2716
1090-2716
DOI:10.1016/j.jcp.2023.112112