A finite element based heterogeneous multiscale method for the Landau-Lifshitz equation
We present a Heterogeneous Multiscale Method for the Landau-Lifshitz equation with a highly oscillatory diffusion coefficient, a simple model for a ferromagnetic composite. A finite element macro scheme is combined with a finite difference micro model to approximate the effective equation correspond...
Gespeichert in:
| Veröffentlicht in: | Journal of computational physics Jg. 486; S. 112112 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.08.2023
|
| Schlagworte: | |
| ISSN: | 0021-9991, 1090-2716, 1090-2716 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We present a Heterogeneous Multiscale Method for the Landau-Lifshitz equation with a highly oscillatory diffusion coefficient, a simple model for a ferromagnetic composite. A finite element macro scheme is combined with a finite difference micro model to approximate the effective equation corresponding to the original problem. This makes it possible to obtain effective solutions to problems with rapid material variations on a small scale, described by ε≪1, which would be too expensive to resolve in a conventional simulation.
•Numerical homogenization using Heterogeneous Multiscale Methods.•Implementation of a new multiscale approach for the Landau-Lifshitz equation.•Finite element discretized macro model for flexibility.•Efficient finite difference micro model.•Makes it possible to treat arbitrarily small material variations. |
|---|---|
| ISSN: | 0021-9991 1090-2716 1090-2716 |
| DOI: | 10.1016/j.jcp.2023.112112 |