Obtaining Efficient Solutions of Interval Multi-objective Linear Programming Problems

In this paper, we consider interval multi-objective linear programming (IMOLP) models which are used to deal with uncertainties of real-world problems. So far, a variety of approaches for obtaining efficient solutions (ESs) of these problems have been developed. In this paper, we propose a new and t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of fuzzy systems Vol. 22; no. 3; pp. 873 - 890
Main Authors: Batamiz, Aida, Allahdadi, Mehdi, Hladík, Milan
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2020
Springer Nature B.V
Subjects:
ISSN:1562-2479, 2199-3211
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we consider interval multi-objective linear programming (IMOLP) models which are used to deal with uncertainties of real-world problems. So far, a variety of approaches for obtaining efficient solutions (ESs) of these problems have been developed. In this paper, we propose a new and two generalized methods. In the new method, converting IMOLP into an interval linear programming (ILP) and then obtaining its optimal solutions (OSs), ESs of the IMOLP are determined. This method has several advantages: (i) This method is the only method which obtains a solution box for IMOLP models. (ii) The solving process is not time consuming. (iii) The number of ESs is higher than for other methods. (V) The method is applicable for large-scale problems. Also, we generalize the ε -constraint and lexicographic methods which are used for obtaining ESs of the multi-objective linear programming (MOLP) models which do not have any problems such as lengthy and time-consuming and are applicable for large-scale problems. Some examples were solved to show the efficiency of the proposed methods. Finally, by the proposed method, we solve the IMOLP model corresponding to the problem of the facilities and non-return funds in a bank.
AbstractList In this paper, we consider interval multi-objective linear programming (IMOLP) models which are used to deal with uncertainties of real-world problems. So far, a variety of approaches for obtaining efficient solutions (ESs) of these problems have been developed. In this paper, we propose a new and two generalized methods. In the new method, converting IMOLP into an interval linear programming (ILP) and then obtaining its optimal solutions (OSs), ESs of the IMOLP are determined. This method has several advantages: (i) This method is the only method which obtains a solution box for IMOLP models. (ii) The solving process is not time consuming. (iii) The number of ESs is higher than for other methods. (V) The method is applicable for large-scale problems. Also, we generalize the ε-constraint and lexicographic methods which are used for obtaining ESs of the multi-objective linear programming (MOLP) models which do not have any problems such as lengthy and time-consuming and are applicable for large-scale problems. Some examples were solved to show the efficiency of the proposed methods. Finally, by the proposed method, we solve the IMOLP model corresponding to the problem of the facilities and non-return funds in a bank.
In this paper, we consider interval multi-objective linear programming (IMOLP) models which are used to deal with uncertainties of real-world problems. So far, a variety of approaches for obtaining efficient solutions (ESs) of these problems have been developed. In this paper, we propose a new and two generalized methods. In the new method, converting IMOLP into an interval linear programming (ILP) and then obtaining its optimal solutions (OSs), ESs of the IMOLP are determined. This method has several advantages: (i) This method is the only method which obtains a solution box for IMOLP models. (ii) The solving process is not time consuming. (iii) The number of ESs is higher than for other methods. (V) The method is applicable for large-scale problems. Also, we generalize the ε -constraint and lexicographic methods which are used for obtaining ESs of the multi-objective linear programming (MOLP) models which do not have any problems such as lengthy and time-consuming and are applicable for large-scale problems. Some examples were solved to show the efficiency of the proposed methods. Finally, by the proposed method, we solve the IMOLP model corresponding to the problem of the facilities and non-return funds in a bank.
Author Batamiz, Aida
Allahdadi, Mehdi
Hladík, Milan
Author_xml – sequence: 1
  givenname: Aida
  surname: Batamiz
  fullname: Batamiz, Aida
  organization: Mathematics Faculty, University of Sistan and Baluchestan
– sequence: 2
  givenname: Mehdi
  orcidid: 0000-0002-0574-0580
  surname: Allahdadi
  fullname: Allahdadi, Mehdi
  email: m_allahdadi@math.usb.ac.ir
  organization: Mathematics Faculty, University of Sistan and Baluchestan
– sequence: 3
  givenname: Milan
  surname: Hladík
  fullname: Hladík, Milan
  organization: Department of Applied Mathematics, Charles University, Department of Econometrics, University of Economics
BookMark eNp9kEtLAzEQgINUsNb-AU8LnqOTzWYfRylVC5UK2nNIsklJ2SY1SQv-e7euIHjoaQZmvnl812jkvNMI3RK4JwDVQyygJgxDDhigBsDsAo1z0jSY5oSM0JiwMsd5UTVXaBqjlUBJXlJW0jFar2QS1lm3yebGWGW1S9m77w7Jehczb7KFSzocRZe9HrpksZdbrZI96mxpnRYhewt-E8RudxrR57LTu3iDLo3oop7-xglaP80_Zi94uXpezB6XWNGySpjWUgoglEgjFZMETMGYqDUo3baibRQrW6lIqRWQ0piGKVPJggpGi75gSjpBd8PcffCfBx0T3_pDcP1Knjf09DHQuu_Khy4VfIxBG74PdifCFyfATwb5YJD3BvmPQc56qP4HKZvEyUoKwnbnUTqgsd_jNjr8XXWG-ga_JojX
CitedBy_id crossref_primary_10_1007_s12597_021_00512_w
crossref_primary_10_1007_s40815_022_01348_2
crossref_primary_10_1016_j_fss_2023_03_004
crossref_primary_10_1016_j_dajour_2021_100005
crossref_primary_10_3390_axioms14080569
crossref_primary_10_4018_IJDSST_286695
crossref_primary_10_3390_su14094943
crossref_primary_10_1080_16168658_2021_2002544
Cites_doi 10.1016/j.ejor.2018.08.020
10.1016/0377-2217(94)00093-R
10.1057/palgrave.jors.2600891
10.1002/zamm.200108115114
10.1137/S0895479896310743
10.1007/s11590-012-0530-4
10.2298/YJOR180117020A
10.1016/j.ejor.2005.12.042
10.1016/j.eswa.2017.10.020
10.1016/j.ins.2015.12.037
10.1007/s12351-018-0383-4
10.1007/s11590-011-0315-1
10.1057/palgrave.jors.2600322
10.1109/IFSA-NAFIPS.2013.6608401
10.1007/s10100-012-0252-9
10.1007/s40815-019-00655-5
10.1007/s10700-015-9226-4
10.1016/0377-2217(91)90169-V
10.1007/s40815-018-0541-0
10.1016/0377-2217(94)00092-Q
10.1080/00207729308949477
10.1016/0165-0114(95)00169-7
10.1108/03684921311323707
10.1007/s11590-012-0589-y
10.1016/0165-0114(94)90097-3
10.1007/s40815-019-00646-6
10.1016/j.ins.2019.02.012
10.1111/itor.12216
10.1016/j.ejor.2008.12.019
10.1016/j.laa.2013.02.012
10.1016/j.ins.2014.05.019
ContentType Journal Article
Copyright Taiwan Fuzzy Systems Association 2020
Taiwan Fuzzy Systems Association 2020.
Copyright_xml – notice: Taiwan Fuzzy Systems Association 2020
– notice: Taiwan Fuzzy Systems Association 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s40815-020-00800-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2199-3211
EndPage 890
ExternalDocumentID 10_1007_s40815_020_00800_5
GroupedDBID -EM
.4S
.DC
0R~
188
203
2UF
4.4
406
5GY
9RA
A8Z
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AINHJ
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ARAPS
ARCSS
ATFKH
AVXWI
AXYYD
BENPR
BGLVJ
BGNMA
CCPQU
CNMHZ
CSCUP
CVCKV
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GJIRD
HCIFZ
HG6
HRMNR
I-F
IKXTQ
IWAJR
IXD
J-C
J9A
JBSCW
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9J
OK1
P2P
PT4
PTHSS
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
TUXDW
UG4
UOJIU
UTJUX
UZ4
UZXMN
VFIZW
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ESTFP
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c367t-38bba0131bfbc5b10f455a8e0ceddad9c56dbc16ec016ff95cf7b43a5346dbf63
IEDL.DBID M7S
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516485700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1562-2479
IngestDate Wed Nov 05 08:08:06 EST 2025
Sat Nov 29 05:19:47 EST 2025
Tue Nov 18 21:14:27 EST 2025
Fri Feb 21 02:32:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Interval multi-objective linear programming
Uncertainty
constraint
Weighted sum
Lexicographic
Efficient solution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-38bba0131bfbc5b10f455a8e0ceddad9c56dbc16ec016ff95cf7b43a5346dbf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0574-0580
PQID 2932479038
PQPubID 2043640
PageCount 18
ParticipantIDs proquest_journals_2932479038
crossref_primary_10_1007_s40815_020_00800_5
crossref_citationtrail_10_1007_s40815_020_00800_5
springer_journals_10_1007_s40815_020_00800_5
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of fuzzy systems
PublicationTitleAbbrev Int. J. Fuzzy Syst
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References EhrgottMMulticriteria Optimization2005BerlinSpringer1132.90001
HuangGHBaetzBWPatryGGGrey integer programming: an application to waste management planning under uncertaintyEur. J. Oper. Res.19958359462010.1016/0377-2217(94)00093-R
HladíkMComplexity of necessary efficiency in interval linear programming and multiobjective linear programmingOptim. Lett.201265893899292562510.1007/s11590-011-0315-1
ZhouFHuangGHChenGGuoHEnhanced-interval linear programmingEur. J. Oper. Res.2009199323333253327810.1016/j.ejor.2008.12.019
Inuiguchi, M.: Necessary efficiency is partitioned into possible an necessary optimalities, IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 209–214. Edmonton, AB, Canada (2013)
XuJFangHZengFChenYHGuoHRobust observer design and fuzzy optimization for uncertain dynamic systemsInt. J. Fuzzy Syst.201921515111523397769310.1007/s40815-019-00646-6
InuiguchiMSakawaMPossible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency testFuzzy Sets Syst.199678321341137938810.1016/0165-0114(95)00169-7
RohnJForty necessary and sufficient conditions for regularity of interval matrices: a surveyElectron J. Linear Algebra20091850051225386191189.65088
RivazSYaghoobiMAHladíkMUsing modified maximum regret for finding a necessarily efficient solution in an interval MOLP problemFuzzy Optim. Decis. Mak.2016153237253353596710.1007/s10700-015-9226-4
Dechao LiLLeungYWeizhiWMultiobjective interval linear programming in admissible-order vector spaceInf. Sci.201948611910.1016/j.ins.2019.02.012
HladíkMWeak and strong solvability of interval linear systems of equations and inequalitiesLinear Algebra Appl.20134381141564165303452210.1016/j.laa.2013.02.012
YangYZhaoJXiaJZhuangGZhangWMultiobjective optimization control for uncertain nonlinear stochastic system with state-delayInt. J. Fuzzy Syst.20182117283393359410.1007/s40815-018-0541-0
RexJRohnJSufficient conditions for regularity and singularity of interval matricesSIAM J. Matrix Anal. Appl.1998202437445165139610.1137/S0895479896310743
BotteaMSchöbelADominance for multi-objective robust optimization conceptsEur. J. Oper. Res.20192732430440390712010.1016/j.ejor.2018.08.020
DouradoADPLobatoFSAp CavaliniASteffenVFuzzy reliability-based optimization for engineering system designInt. J. Fuzzy Syst.20192151418142910.1007/s40815-019-00655-5
TongSCInterval number, fuzzy number linear programmingFuzzy Sets Syst.199466301306130028610.1016/0165-0114(94)90097-3
SteuerREMultiple criteria optimization: theory, computation and application1989New YorkWiley0742.90068
AllahdadiMDengCAn improved three-step method for solving the interval linear programming problemYugoslav J. Oper. Res.2018284435451388444910.2298/YJOR180117020A
RivazSYaghoobiMAMinimax regret solution to linear programming problems with an interval objective functionEur. J. Oper. Res.2013213625649309285110.1007/s10100-012-0252-9
Hladík, M.: One necessarily efficient solutions in interval multi objective linear programming, Proceedings of the 25th Mini-EURO Conference Uncertainty and Robustness in Planning and Decision Making URPDM 2010, pp. 1–10. Coimbra, Portugal (2010)
Razavi HajiaghaSHProgramming with interval multi-objective linear coefficients: a fuzzy set based approachKybernetes2013423482496308915510.1108/03684921311323707
AshayerinasabHANehiHMAllahdadiMSolving the interval linear programming problem: a new algorithm for a general caseExpert Syst. Appl.201893394910.1016/j.eswa.2017.10.020
AlefeldGHerzbergerJIntroduction to Interval Computations1983New YorkAcademic Press0552.65041
InuiguchiMSakawaMAn achievement rate approach to linear programming problems with an interval objective functionJ. Oper. Res. Soc.199748253310.1057/palgrave.jors.2600322
InuiguchiMSakawaMMinimax regret solution to multi objective linear programming problems with interval objective function coefficientsEur. J. Oper. Res.19958652653610.1016/0377-2217(94)00092-Q
HuangGHMooreRDGrey linear programming, its solving approach, and its applicationInt. J. Syst. Sci.199324159172120212710.1080/00207729308949477
KoníčkováJSufficient condition of basis stability of an interval linear programming problemZAMM. Z. Angew. Math. Mech.200181367767810.1002/zamm.200108115114
AllahdadiMNehiHMThe optimal value bounds of the objective function in the interval linear programming problemChiang Mai. J. Sci.20154225015111349.90600
WangXHuangGViolation analysis on two-step method for interval linear programmingInf. Sci.20142818596323092210.1016/j.ins.2014.05.019
HladíkMMannZAInterval linear programming: a surveyLinear Programming, New Frontiers in Theory and Applications, Chapter 22012New YorkNova Science Publishers85120
RivazSYaghoobiMAWeighted sum of maximum regrets in an interval MOLP problemInt. Trans. Oper. Res.201525516591676380773410.1111/itor.12216
InuiguchiMKumeYGoal programming approach for solving IMOLP problemsEur. J. Oper. Res.19915234536010.1016/0377-2217(91)90169-V
HladíkMHow to determine basis stability in interval linear programmingOptim. Lett.20148375389315292410.1007/s11590-012-0589-y
AllahdadiMNehiHMThe optimal solutions set of the interval linear programming problemsOptim. Lett.201378931911305739710.1007/s11590-012-0530-4
ChinneckJWRamadanKLinear programming with interval coefficientsJ. Oper. Res. Soc.20005120922010.1057/palgrave.jors.2600891
Garajová, E., Hladík, M., Rada, M.: The effects of transformations on the optimal set in interval linear programming, In: Proceedings of the 14th international symposium on operational research, SOR’17, Bled, Slovenian Society Informatika, Ljubljana, Slovenia, pp. 487–492 (2017)
RohnJCheap and tight bound: the recent result by E. Hansen can be made more efficientInterval Comput.19934132113058560830.65019
AllahdadiMNehiHMAshayerinasabHAJavanmardMImproving the modified interval linear programming method by new techniquesInf. Sci.201633922423610.1016/j.ins.2015.12.037
Mishmast NehiHAshayerinasabHAAllahdadiMSolving methods for interval linear programming problem: a review and an improved methodOper. Res.201810.1007/s12351-018-0383-4
OliveiraCAntunesCHMultiple objective linear programming models with interval coefficient-an illustrated overviewEur. J. Oper. Res.20071811434146310.1016/j.ejor.2005.12.042
ADP Dourado (800_CR10) 2019; 21
M Inuiguchi (800_CR23) 1995; 86
S Rivaz (800_CR31) 2015; 25
GH Huang (800_CR18) 1995; 83
C Oliveira (800_CR27) 2007; 181
GH Huang (800_CR19) 1993; 24
RE Steuer (800_CR35) 1989
J Rohn (800_CR34) 2009; 18
S Rivaz (800_CR30) 2013; 21
L Dechao Li (800_CR9) 2019; 486
M Allahdadi (800_CR2) 2018; 28
S Rivaz (800_CR32) 2016; 15
M Allahdadi (800_CR4) 2015; 42
800_CR16
H Mishmast Nehi (800_CR26) 2018
J Koníčková (800_CR25) 2001; 81
M Inuiguchi (800_CR24) 1996; 78
800_CR12
M Allahdadi (800_CR3) 2013; 7
J Xu (800_CR38) 2019; 21
G Alefeld (800_CR1) 1983
J Rex (800_CR29) 1998; 20
M Hladík (800_CR17) 2013; 438
M Hladík (800_CR14) 2014; 8
Y Yang (800_CR39) 2018; 21
M Inuiguchi (800_CR21) 1991; 52
X Wang (800_CR37) 2014; 281
HA Ashayerinasab (800_CR6) 2018; 93
M Allahdadi (800_CR5) 2016; 339
SH Razavi Hajiagha (800_CR28) 2013; 42
M Hladík (800_CR15) 2012
SC Tong (800_CR36) 1994; 66
J Rohn (800_CR33) 1993; 4
M Inuiguchi (800_CR22) 1997; 48
M Bottea (800_CR7) 2019; 273
JW Chinneck (800_CR8) 2000; 51
800_CR20
M Ehrgott (800_CR11) 2005
F Zhou (800_CR40) 2009; 199
M Hladík (800_CR13) 2012; 6
References_xml – reference: RivazSYaghoobiMAHladíkMUsing modified maximum regret for finding a necessarily efficient solution in an interval MOLP problemFuzzy Optim. Decis. Mak.2016153237253353596710.1007/s10700-015-9226-4
– reference: BotteaMSchöbelADominance for multi-objective robust optimization conceptsEur. J. Oper. Res.20192732430440390712010.1016/j.ejor.2018.08.020
– reference: HladíkMHow to determine basis stability in interval linear programmingOptim. Lett.20148375389315292410.1007/s11590-012-0589-y
– reference: HladíkMWeak and strong solvability of interval linear systems of equations and inequalitiesLinear Algebra Appl.20134381141564165303452210.1016/j.laa.2013.02.012
– reference: InuiguchiMSakawaMMinimax regret solution to multi objective linear programming problems with interval objective function coefficientsEur. J. Oper. Res.19958652653610.1016/0377-2217(94)00092-Q
– reference: DouradoADPLobatoFSAp CavaliniASteffenVFuzzy reliability-based optimization for engineering system designInt. J. Fuzzy Syst.20192151418142910.1007/s40815-019-00655-5
– reference: InuiguchiMKumeYGoal programming approach for solving IMOLP problemsEur. J. Oper. Res.19915234536010.1016/0377-2217(91)90169-V
– reference: Mishmast NehiHAshayerinasabHAAllahdadiMSolving methods for interval linear programming problem: a review and an improved methodOper. Res.201810.1007/s12351-018-0383-4
– reference: Razavi HajiaghaSHProgramming with interval multi-objective linear coefficients: a fuzzy set based approachKybernetes2013423482496308915510.1108/03684921311323707
– reference: AllahdadiMNehiHMThe optimal solutions set of the interval linear programming problemsOptim. Lett.201378931911305739710.1007/s11590-012-0530-4
– reference: InuiguchiMSakawaMAn achievement rate approach to linear programming problems with an interval objective functionJ. Oper. Res. Soc.199748253310.1057/palgrave.jors.2600322
– reference: Dechao LiLLeungYWeizhiWMultiobjective interval linear programming in admissible-order vector spaceInf. Sci.201948611910.1016/j.ins.2019.02.012
– reference: HuangGHBaetzBWPatryGGGrey integer programming: an application to waste management planning under uncertaintyEur. J. Oper. Res.19958359462010.1016/0377-2217(94)00093-R
– reference: Inuiguchi, M.: Necessary efficiency is partitioned into possible an necessary optimalities, IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 209–214. Edmonton, AB, Canada (2013)
– reference: AlefeldGHerzbergerJIntroduction to Interval Computations1983New YorkAcademic Press0552.65041
– reference: AllahdadiMNehiHMAshayerinasabHAJavanmardMImproving the modified interval linear programming method by new techniquesInf. Sci.201633922423610.1016/j.ins.2015.12.037
– reference: AllahdadiMNehiHMThe optimal value bounds of the objective function in the interval linear programming problemChiang Mai. J. Sci.20154225015111349.90600
– reference: RexJRohnJSufficient conditions for regularity and singularity of interval matricesSIAM J. Matrix Anal. Appl.1998202437445165139610.1137/S0895479896310743
– reference: RivazSYaghoobiMAMinimax regret solution to linear programming problems with an interval objective functionEur. J. Oper. Res.2013213625649309285110.1007/s10100-012-0252-9
– reference: SteuerREMultiple criteria optimization: theory, computation and application1989New YorkWiley0742.90068
– reference: HuangGHMooreRDGrey linear programming, its solving approach, and its applicationInt. J. Syst. Sci.199324159172120212710.1080/00207729308949477
– reference: InuiguchiMSakawaMPossible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency testFuzzy Sets Syst.199678321341137938810.1016/0165-0114(95)00169-7
– reference: RivazSYaghoobiMAWeighted sum of maximum regrets in an interval MOLP problemInt. Trans. Oper. Res.201525516591676380773410.1111/itor.12216
– reference: AshayerinasabHANehiHMAllahdadiMSolving the interval linear programming problem: a new algorithm for a general caseExpert Syst. Appl.201893394910.1016/j.eswa.2017.10.020
– reference: ChinneckJWRamadanKLinear programming with interval coefficientsJ. Oper. Res. Soc.20005120922010.1057/palgrave.jors.2600891
– reference: HladíkMMannZAInterval linear programming: a surveyLinear Programming, New Frontiers in Theory and Applications, Chapter 22012New YorkNova Science Publishers85120
– reference: XuJFangHZengFChenYHGuoHRobust observer design and fuzzy optimization for uncertain dynamic systemsInt. J. Fuzzy Syst.201921515111523397769310.1007/s40815-019-00646-6
– reference: Garajová, E., Hladík, M., Rada, M.: The effects of transformations on the optimal set in interval linear programming, In: Proceedings of the 14th international symposium on operational research, SOR’17, Bled, Slovenian Society Informatika, Ljubljana, Slovenia, pp. 487–492 (2017)
– reference: TongSCInterval number, fuzzy number linear programmingFuzzy Sets Syst.199466301306130028610.1016/0165-0114(94)90097-3
– reference: RohnJForty necessary and sufficient conditions for regularity of interval matrices: a surveyElectron J. Linear Algebra20091850051225386191189.65088
– reference: ZhouFHuangGHChenGGuoHEnhanced-interval linear programmingEur. J. Oper. Res.2009199323333253327810.1016/j.ejor.2008.12.019
– reference: RohnJCheap and tight bound: the recent result by E. Hansen can be made more efficientInterval Comput.19934132113058560830.65019
– reference: WangXHuangGViolation analysis on two-step method for interval linear programmingInf. Sci.20142818596323092210.1016/j.ins.2014.05.019
– reference: OliveiraCAntunesCHMultiple objective linear programming models with interval coefficient-an illustrated overviewEur. J. Oper. Res.20071811434146310.1016/j.ejor.2005.12.042
– reference: AllahdadiMDengCAn improved three-step method for solving the interval linear programming problemYugoslav J. Oper. Res.2018284435451388444910.2298/YJOR180117020A
– reference: YangYZhaoJXiaJZhuangGZhangWMultiobjective optimization control for uncertain nonlinear stochastic system with state-delayInt. J. Fuzzy Syst.20182117283393359410.1007/s40815-018-0541-0
– reference: HladíkMComplexity of necessary efficiency in interval linear programming and multiobjective linear programmingOptim. Lett.201265893899292562510.1007/s11590-011-0315-1
– reference: EhrgottMMulticriteria Optimization2005BerlinSpringer1132.90001
– reference: KoníčkováJSufficient condition of basis stability of an interval linear programming problemZAMM. Z. Angew. Math. Mech.200181367767810.1002/zamm.200108115114
– reference: Hladík, M.: One necessarily efficient solutions in interval multi objective linear programming, Proceedings of the 25th Mini-EURO Conference Uncertainty and Robustness in Planning and Decision Making URPDM 2010, pp. 1–10. Coimbra, Portugal (2010)
– volume: 273
  start-page: 430
  issue: 2
  year: 2019
  ident: 800_CR7
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.08.020
– volume: 83
  start-page: 594
  year: 1995
  ident: 800_CR18
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(94)00093-R
– volume-title: Multiple criteria optimization: theory, computation and application
  year: 1989
  ident: 800_CR35
– volume: 51
  start-page: 209
  year: 2000
  ident: 800_CR8
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2600891
– volume: 81
  start-page: 677
  issue: 3
  year: 2001
  ident: 800_CR25
  publication-title: ZAMM. Z. Angew. Math. Mech.
  doi: 10.1002/zamm.200108115114
– volume: 20
  start-page: 437
  issue: 2
  year: 1998
  ident: 800_CR29
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896310743
– volume: 7
  start-page: 893
  year: 2013
  ident: 800_CR3
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-012-0530-4
– volume: 28
  start-page: 435
  issue: 4
  year: 2018
  ident: 800_CR2
  publication-title: Yugoslav J. Oper. Res.
  doi: 10.2298/YJOR180117020A
– volume: 181
  start-page: 1434
  year: 2007
  ident: 800_CR27
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.12.042
– volume: 93
  start-page: 39
  year: 2018
  ident: 800_CR6
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.10.020
– volume: 339
  start-page: 224
  year: 2016
  ident: 800_CR5
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.12.037
– year: 2018
  ident: 800_CR26
  publication-title: Oper. Res.
  doi: 10.1007/s12351-018-0383-4
– volume: 6
  start-page: 893
  issue: 5
  year: 2012
  ident: 800_CR13
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-011-0315-1
– volume: 48
  start-page: 25
  year: 1997
  ident: 800_CR22
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2600322
– ident: 800_CR20
  doi: 10.1109/IFSA-NAFIPS.2013.6608401
– volume: 21
  start-page: 625
  issue: 3
  year: 2013
  ident: 800_CR30
  publication-title: Eur. J. Oper. Res.
  doi: 10.1007/s10100-012-0252-9
– volume: 21
  start-page: 1418
  issue: 5
  year: 2019
  ident: 800_CR10
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-019-00655-5
– volume: 42
  start-page: 501
  issue: 2
  year: 2015
  ident: 800_CR4
  publication-title: Chiang Mai. J. Sci.
– volume-title: Introduction to Interval Computations
  year: 1983
  ident: 800_CR1
– volume: 15
  start-page: 237
  issue: 3
  year: 2016
  ident: 800_CR32
  publication-title: Fuzzy Optim. Decis. Mak.
  doi: 10.1007/s10700-015-9226-4
– volume-title: Multicriteria Optimization
  year: 2005
  ident: 800_CR11
– volume: 52
  start-page: 345
  year: 1991
  ident: 800_CR21
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(91)90169-V
– ident: 800_CR12
– volume: 21
  start-page: 72
  issue: 1
  year: 2018
  ident: 800_CR39
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-018-0541-0
– ident: 800_CR16
– volume: 86
  start-page: 526
  year: 1995
  ident: 800_CR23
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(94)00092-Q
– volume: 24
  start-page: 159
  year: 1993
  ident: 800_CR19
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207729308949477
– volume: 78
  start-page: 321
  year: 1996
  ident: 800_CR24
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(95)00169-7
– volume: 42
  start-page: 482
  issue: 3
  year: 2013
  ident: 800_CR28
  publication-title: Kybernetes
  doi: 10.1108/03684921311323707
– volume: 8
  start-page: 375
  year: 2014
  ident: 800_CR14
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-012-0589-y
– volume: 18
  start-page: 500
  year: 2009
  ident: 800_CR34
  publication-title: Electron J. Linear Algebra
– volume: 66
  start-page: 301
  year: 1994
  ident: 800_CR36
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(94)90097-3
– start-page: 85
  volume-title: Linear Programming, New Frontiers in Theory and Applications, Chapter 2
  year: 2012
  ident: 800_CR15
– volume: 21
  start-page: 1511
  issue: 5
  year: 2019
  ident: 800_CR38
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-019-00646-6
– volume: 486
  start-page: 1
  year: 2019
  ident: 800_CR9
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.02.012
– volume: 25
  start-page: 1659
  issue: 5
  year: 2015
  ident: 800_CR31
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12216
– volume: 199
  start-page: 323
  year: 2009
  ident: 800_CR40
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2008.12.019
– volume: 438
  start-page: 4156
  issue: 11
  year: 2013
  ident: 800_CR17
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2013.02.012
– volume: 4
  start-page: 13
  year: 1993
  ident: 800_CR33
  publication-title: Interval Comput.
– volume: 281
  start-page: 85
  year: 2014
  ident: 800_CR37
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.05.019
SSID ssib031263563
ssib053833614
ssib026410675
ssj0002147029
ssib008679421
Score 2.2200205
Snippet In this paper, we consider interval multi-objective linear programming (IMOLP) models which are used to deal with uncertainties of real-world problems. So far,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 873
SubjectTerms Artificial Intelligence
Computational Intelligence
Engineering
Linear programming
Management Science
Methods
Multiple objective analysis
Operations Research
Optimization
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8R4KQduEKltkj6OCG3igMbES7tVSZpIINjQNvj9OOljAwESnJNGre3YTuPvM8CJsFyg67U0jGRAOQ8UlSJMqWHSRNpmTPlqwoerpNdLB4OsX4HCJnW1e30l6T11A3bjGL0cmtghoTHNoWIRljDcpa5hw83tQ2NFjkJuDr2JEd_RpDVWy0LHvzIjncIdz1gVpLz_dp17At_eDM82EY14klVom-9f43NEm6WpX25WfcDqrv_vUzdgrUpQyXlpUZuwYIZbsDpHW7gN99dqWjaWIB3PQIGBizT_18jIEv-fEW2YeHwvHamn0q8SPPri1iL9sirsxS3RL1vaTHbgvtu5u7ikVXsGqlmcTClLlZKOrkdZpYUKA1S7kKkJtCkKWWRaxIXSYWw0ppXWZkLbRHEmBeM4YGO2C63haGj2gBSxYNJKITPriNOFipRUiTUFZ4onxrYhrEWc64q73LXQeM4b1mUvshxFlnuR5aINp80zryVzx6-zD2vN5dUunuSYCjntByxtw1mtqdnwz6vt_236AaxEXtmuIOgQWtPxmzmCZf0-fZyMj711fwD8Ye1-
  priority: 102
  providerName: Springer Nature
Title Obtaining Efficient Solutions of Interval Multi-objective Linear Programming Problems
URI https://link.springer.com/article/10.1007/s40815-020-00800-5
https://www.proquest.com/docview/2932479038
Volume 22
WOSCitedRecordID wos000516485700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: P5Z
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: K7-
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: M7S
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: BENPR
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: RSV
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VlgMcaHmpC3TlAzewSGI7jxOi1a4qtVoiHqsVl8h2bAlEd4Hd9vczdrxZilQuveTixFEy45nxeOb7AI6E5QJNr6VxIiPKeaSoFHFODZMm0bZgylcTjn5mw2E-HhdlSLjNQlnlwiZ6Q11PtcuRn6JbSnhWRCw_e3yijjXKna4GCo0V6DiUhNiX7l21-uTA5F71caLvd4Bprf6y2CGxLOGncO0zFtyVt-SOwyfyRGe4y0moe3_ou_HddxzdqWtvdq3ZGHdR8bdvWwasb85YvesafPzfj_4EmyFoJeeNlm3BBzPZho1XUIY7cHOh5g3ZBOl7VAp0ZqTNuZGpJT73iHpNfM8vnar7xtYS3A7jciNlUyn2y01RNjQ3s124GfSvv32ngbKBapZmc8pypaSD8FFWaaHiCFVByNxE2tS1rAst0lrpODUaQ01rC6FtpjiTgnEcsCnbg9XJdGI-A6lTwaSVQhbWgakLlSipMmtqzhTPjO1CvPjZlQ545o5W46FqkZi9gCoUUOUFVIkuHLfPPDZoHu_efbiQShVW9qxaiqQLJwu5Lof_Pdv--7MdwHriVckVBR3C6vz5t_kCa_rP_G723IPO1_6wvOzByo-M9ryW47UUt3i9vBq9AKCg_D4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RqNRyoC9Qt9DWh_bUWiSxnccBVRUPgXa73QNU3FLbsSVQuwvsQtU_1d_IjPNYilRuHHp2Morjbx62Z74BeKe8VGh6PY8THXEpI8O1inPuhHaJ9YUwIZvw2yAbDvPj42K0AH_aWhhKq2xtYjDU1cTSGfkmuqVEZkUk8k9n55y6RtHtattCo4ZF3_3-hVu26dbBDq7v-yTZ2z3c3udNVwFuRZrNuMiN0cQyY7yxysQRfq3SuYusqypdFVallbFx6ixGQ94XyvrMSKGVkDjgU4FyH8CSFHlGetXPeIdfIq-7UTeKsQYRtHX6ImJifpnTXaGtEaJxj8FzUM-gKDRWw11Vwmm-TZ1PqPaT6L6pnJpKwTHO4-pvXzoPkG_d6QZXuffkf_vJT2GlCcrZ51qLnsGCGz-H5RtUjS_g6KuZ1c002G5g3UBnzbozRTbxLJytot6yUNPMJ-a09iUMt_s4JTaqM-F-kohR3cZnugpH9zKvNVgcT8buJbAqVUJ7rXThiSxemcRok3lXSWFk5nwP4nZxS9vwtVPbkB9lxzQdAFEiIMoAiFL14EP3zlnNVnLn0xstCsrGck3LOQR68LHF0Xz439Je3S3tLTzaP_wyKAcHw_46PE4CjCkBagMWZxeX7jU8tFezk-nFm6BTDL7fN76uAcw4WGk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-K85sE3DbZN0suj6IbimAN17K0kaQKKbmOr_n6TtOumqCA-Jw3tyZeck-Z83wE4YZoys_Vq7Afcw5R6AnPmx1gRrgKpEyJcNmG3FbXbca-XdGZY_C7bfXIlWXAarEpTPz8fZvq8Ir5R48kss9iyok3Ig9k8LFCbSG_P6_fdClFWTm6GyWm8v5VMqxBMfKvFMhWgMqufkNJhub3cVvHxXKkzc84JcECjpGTefP8an73bNGT9csvqnFdz7f-fvQ6rZeCKLgqkbcCc6m_Cyoyc4RY83om8KDiBGk6ZwoyMqv9uaKCR-_9osI0c7xcPxHOx3yJzJDZLDnWKbLFXO0SnKHUz3obHZuPh8hqXZRuwJGGUYxILwa2Mj9BCMuF7Bg6Mx8qTKst4lkgWZkL6oZIm3NQ6YVJHghLOCDUNOiQ7UOsP-moXUBYywjVnPNFWUJ2JQHARaZVRImikdB38iblTWWqa29IaL2mlxuxMlhqTpc5kKavDafXMsFD0-LX3wWQW03J1j1MTIlkkeCSuw9lk1qbNP4-297fux7DUuWqmrZv27T4sB27ebc7QAdTy0Zs6hEX5nj-NR0cO9B9vbflG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Obtaining+Efficient+Solutions+of+Interval+Multi-objective+Linear+Programming+Problems&rft.jtitle=International+journal+of+fuzzy+systems&rft.au=Batamiz%2C+Aida&rft.au=Allahdadi%2C+Mehdi&rft.au=Hlad%C3%ADk%2C+Milan&rft.date=2020-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1562-2479&rft.eissn=2199-3211&rft.volume=22&rft.issue=3&rft.spage=873&rft.epage=890&rft_id=info:doi/10.1007%2Fs40815-020-00800-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1562-2479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1562-2479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1562-2479&client=summon